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ABsTRACT. — Let {&,, 1T} be a bounded Gaussian random function,
{=sup&, We investigate the large deviations by means of the Laplace
T

transform W,(A\)=Eexp{A{’}, 1<p<2. We derive for large r the
asymptotical equivalence
r2 P—grl-r )

P{&zr}~(z—p)”2w,< -
po

— 2 - 2 -
Xexp{—(z pr: _dp 1)r+d_} —ol” d))
2po? po? 26?2 c

where d and o are some important numeric parameters of the random
function &, and ® is the distribution function of the standard normal
distribution law.

We apply this relation to the investigation of the Gaussian measure of
large balls in the space / in order to generalize some recent results due to
Linde and author. The broad range of possible types of behavior of large
deviations is under consideration and some of them turn out to be unusual.

Key words : Gaussian processes, supremum, large deviations, /P-spaces.

RESUME. — Soit {&, teT} une fonction aléatoire gaussienne bornée,
E=sup&,. Nous étudions ces grandes déviations a I’aide de la transformée
T

de Laplace ¥,(A\)=Eexp { A{? }, 1 <p<2. Nous trouvons pour les grandes
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164 M. A. LIFSHITS

valeurs de r, I’équivalence asymptotique

p{&gr},\,(z_p)l/hpl(w)

po’

2 _ 2 _
Xexp{-—(z P)zr _d(p 1)r+d_}<1_® r—d
2po pc? 202 o

ou d et o sont des paramétres numériques importants de la fonction
aléatoire & et, @ est la fonction de répartition de la loi gaussienne standard.
Cette relation est appliquée pour les études des mesures gaussiennes des
grandes boules dans I’espace /P et pour la généralisation des résultats
récents obtenue par W. Linde et I'auteur. Un large spectre du comporte-
ment des grandes déviations est considéré et des exemples originaux sont
analyseés.

I. NOTATIONS AND KNOWN RESULTS

Let {&, teT} be a bounded Gaussian random function with an arbi-
trary parametric set T. We do not suppose that &, is centered. The bound-
edness of & implies the relative compactness of T with respect to the
natural semi-metric p (s, #)=(E|&,—&,|*)"/2. It implies also the existence
of the separable version of §. We can consider for our purpose only this
separable version. The definition of separability implies that {=sup&, is a

T

random variable. The main subject of our consideration is the behavior
of the following probabilities of large deviations:

P{¢=2r}, r- oo a.n

Due to its great importance in probability theory and statistics, this
problem has been intensively treated in the numerous papers by Landau
and Shepp, Sudakov and Tsyrelson, Dudley, Borell, Fernique, Ehrhard,
Piterbarg, Dmitrowskii, Talagrand, Adler, Samorodnitsky and many
others. We refer to R. Adler [1] as complete survey of the subject and to
the book of M. Ledoux and M. Talagrand [8] presenting deep exposition
of a general frame including Gaussian case.

We introduce now some notations in order to describe the basic known
results.

Let F and f be the distribution function and the density of r.v. (.

Let @ be the distribution function of the standard normal law N (0, 1).

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques



TAIL PROBABILITIES 165

We need the following notation for the asymptotic relations. For each

pair of functions 4, and A, defined on R* we shall write
hi~h, or hy<~h, if lim h (r)/h,(r)=1
or
lim sup i, (r)/h, (r) <1, respectively.

Particularly, the direction of our investigation is a search of some computa-
ble function 4 such that h(r)~1—-F(r)=P{{=r}.

We denote

o=sup[Dg]'/?

and eliminate from the following consideration the degenerated and trivial
case o =0. The boundedness of £ implies, certainly, that o is finite.
We denote also
d=lim lim sup (EE,+(E,—E)/2). (1.3)

£e2038-0 {s,t:D§,>62-—a,p(s,t)<8}

One can see that the limit in the right-hand side of this equality is, in
fact, nonrandom and finite. Hence, we can consider d as a real number.
Under the additional assumption of completeness of the space (T, p), one
can easily express d by means of Ito-Nisio oscillation function o (¢) defined
in [7] as

a(f)=2 lim sup (§,—&).
€0 {s:p(s,t)<e}
Namely,
d= sup (EE+a(n)/2),

{t:DE =02}

but we shall not use this representation.

It is well known for a long time that o is responsible for the main term
of the asymptotics of large deviations. In fact, d is responsible for the
second term (see the formula (1.5) below).

We introduce now the useful function

F(ry=0 " '(F(r)), reR.

This function is concave due to Ehrhard’s [5] powerful inequality. This
property makes F more convenient for investigation than the initial
function F. In fact, the introduced objects F, o, d are connected by the
simple relation

lim [F (r)— (r—d)/c]=0, (1.4
i.e. o and d define the asymptote of F for r — c0. One can find the proof
of (1.4) for centered random functions in [2].

Vol. 30, n® 2-1994.



166 M. A. LIFSHITS

A one-sided estimate of this type was earlier obtained by M. Talagrand
in [14].

The following relation is the immediate consequence of (1.4):

lim [log (1—F (r)+ (r—d)?/2 62]/r=0. (1.5)

r = o

This relation was the main achievement of the first phase of development
of the theory of Gaussian large deviations described in the surveys [4, 6]
(see also [1,8]). It shows, particularly, that there exists a single type of
behavior of the logarithm of probabilities of large deviations for all
bounded Gaussian random functions. However, we shall see below that
more precise asymptotic may differ essentially.

We denote now x (r)=(r—d)/c—F () and see from (1.4) that y is a
convex nonnegative function, decreasing to zero when r tends to infinity.
The differentiation of the equality

F(n=0F ()= (r—d)/oc—x(r)
leads us to the relation

_(r—d—ox(n)
2 o2

f(r)=(21t)_”zexp{ }(0_1—)('(0)-

It seems quite natural to extract the “normal part” from f. That’s why
we define the function g by the relation

f(r)=(2n)—1/zc-*exp{—(’_")Z}gm, (1.6)

2 o2

i.e. )
g(r)zexp{(’“d”(’)—"(z’) }(l—x'(r)cs).

It follows directly from the above mentioned properties of y that
r r
g(r)~exp{——xc: )}. (1.7

We can also derive easily from (1.6) and (1.7) the following relation for
the distribution function (see the details in [9]):

1=F(N~(1-0(r—d)/c))g ). (1.8)

In the following we shall concentrate our efforts on the investigation of
the function g.

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques



TAIL PROBABILITIES 167

II. LAPLACE TRANSFORM AND LARGE DEVIATIONS

Let pe[l, 2). Define the Laplace transform of the r.v. { by the following
formula: let for A=>0

"I’p(X)EECXp{XCp}l(C>0}
=(2n)“/20_1f exp{krp—(rz_? }g(r)dr. 2.1
(e}

0

The following theorem connects the probabilities of large deviations
with Laplace transform. There exist many results of this type for different
classes of random variables. These results called usually Tauber theorems,
use for the evaluation of large deviations the values of ¥, (A) with small
negative .. However, we use large positive . The extremely fast decreasing
of the Gaussian tail probabilities is the reason of this difference.

THeOREM 1. — Let F, fand ¥, be the distribution function, the density
and the Laplace transform of r.v. {=sup&,, respectively. Then
T

(2_‘0)1/2‘}‘ r2 P—grl-r
c@mi? "’ po?

— — — 2 — N2
Xexp{ (2 P)rz_d(l’ 1)r+d——(r d)
2po? po? 26?2 207

f(r)

}, (2.2)

2-p_ Ju1-p
1—F(r)~(2—p)”“1',,(%~—-)
PO

~@-p) ,_dp-1) @ ([, _(r—d
Xexp{ 202 r 0o r+262}<1 (I)< - >> (2.3)

Proof. — It is more convenient to inverse the direction of our research
and express ¥, by means of f. We start from (2.1) and denote by r, the

real number providing the maximum of the exponent A rP — (rz—_ci)z . There
exists an obvious equation for r,: °

Aprs™t = (ro = d)/0?=0, (2.4)
and we are able to express A as

A=[r2"?—dri ?)/pc>. (2.5

Vol. 30, n° 2-1994.



168 M. A. LIFSHITS

It would be nice to replace the exponent in (2.1) by some square form.
For this purpose we use the Taylor expansion

=rtp o =ro)+ P2 oy
— 1 -
+p(p ;(P 2)’,{—3(,,_'.0)3 (26)
with some r, situated between r, and r.

Using the expressions (2.5) and (2.6), one can obtain the following
identity

(r—d’ _ -(2-p) 2-p)
ArP— sor T oo (r=ro)*+ 2p0‘2r(2)
_ 2
+%2 o %4—.@0 ro), (2.7)

in which the remainder term
ac, ro)z[(”z_ D ar—roy+ Eﬁ(ré—"—dré-")r';*<r—ro)3]/02
L)

tends to zero when r, r, tend to infinity, but r—r, remains bounded or
increases slowly.

We substitute the identity (2.7) in (2.1) and obtain the expression
¥,\)=2n) o U exp{ 2 _”) (r—ro)*+ 2 (r, ro)}»g(r) dr]
0

— — 2
X exp @ p)2+d(p l)o_d_'
2po? poc? 26?2

We need now the following natural relation

® -2-p) 2 2m'’o
exp ——————(r—ro)*+R(r, r rdr~-—————g(r,). (2.8
L p{ ol (r—ro) (r,ro) p8(r) (2_p)1/2g( 0 (2.8)
We omit the considerably long elementary caclulations proving (2.8),
because the proof of almost the same relation (with a slightly different
remainder term £) was exposed in [9, p. 194-196].

The application of (2.8) leads to the relation

_ 2 d(p—1 &
¥,00~C-p) g rexp] S0 407D, }
2po po? 20

We substitute (2.5), make the notation change r, —r and obtain the
desired expression for the function g:

2-p_ 1-p _ _ _
g(")~(2—p)”2‘l’p<r_7dr_>exp{ Cp)a D), }
S p 2]70' po- 20-

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques
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Now the relations (2.2) and (2.3) follow, respectively, from (1.6) and
(1.8). |

CoROLLARY. — If d=0, we obtain the following simple expressions instead
of 2.2) and (2.3):
— 1/2 2—-p —(2—- 2
f(r)'\‘ (2 p) ‘P (r )exp{ ( p)rz__r_},

o(2m)i? "\ o?p 2pc? 267

2-p Y g -
1-F(n~Q2-p'*Y, r >exp{——( p)rz (1—®(r/o)).
c?p 2po?
Particularly, if € is centered and continuous, we see from (1.3) that d=0,
and the previous expressions hold. This case was under consideration
in [9]. The most instructive case d=0, p=1 was also partially considered
in [10].

III. MEASURE OF LARGE BALLS IN 7

In this section we apply the general theorem 1 to the calculation of the
asymptotic behavior of the measure of large balls in the space /7, 1 <p<2,
with respect to Gaussian product-measure. Let pell, 2), let {q;} and
{o:;},i=1,2, ... be the sequences of real numbers such that ;>0 and

Y |a|P< oo, Y of<oo.

i=1 i=1
Let {&;} be a sequence of independent standard normal random variables.
We are going to study the tail probabilities of r.v. { defined as follows:

t=( L loarar)

i.e. { is the norm of the random Gaussian /P-valued vector with indepen-
dent coordinates.
We need some additional notations for several constants. Let

g=p/(p—1), v=2—p)~', m=2p/2—p),
GE(Z crg")”m, d= Z (Ui/c)z“"”/‘z"”|ai|. (3.1)

i=1 i=1

1/p
9

For the case p=1 we understand (3.1) as d= Z |a,-

i=1

, avoiding problems

with o;=0.
We define also a function

&0\, a)=Eexp{A|E,+al’}, (A20, acRY)

Vol. 30, n° 2-1994.



170 M. A. LIFSHITS

and its normalized modification
EM a)=6(\, a)exp{Lz_’L)p‘”X“—p"[aMV}.

One can obtain (after some complicated but elementary calculations)
that this normalized function possesses a limit for A — c0, namely

é (0, a)= lim & (1, a)=v1/2(1+1(a=0})exp{(—p¥az}. (3.2)

A -

Remark. — For the case p=1 we can rewrite the function & in a more
explicit form. Namely, we can write, according to the definition of &,

&M a)=(21t)‘”2Jwexp{kr}[exp{ —(r—a)*2}+exp{ —(r+a)?)2 1ldr

0

=(2TC)_1/2 exp{a?»+7»2/2}jw [exp{;(_’_‘_(zx—-’_a))_z}
0

+exp { —Za)»}exp{_—(rM}]dr
=exp{al+A?2}[®(h+a)+exp{ —2al}®(L—a)].
Respectively,
EM, a)=& (A, a)exp { —1%/2—|a|L}
=0 (A+|al)+exp{ =2la| M} ®(A~]a]). (3.3)

THEOREM 2. — Let 6,>0 for each i=1, 2, . .. Then the following relation
holds for the deviations of the r.v. { generated by sequences {ai} and { ci}

P{Cgr}~(2—p)”2[]_[ g(cf’(ﬂ—p—drl—p), ﬁ)]

>

po? O;
— )42 -
Xexp{(—l—p)i}<1—q><’—‘i . (3.4
2(2—p)c? c
Proof. — First of all, if we want to apply theorem 1, we have to

represent { as a functional of supremum type. It is easy to do via the
standard representation of /P-norm as a supremum of values of linear
functionals which belong to the unit ball of the conjugated space /. Let,
for simplicity, p> 1. Then

0

» |titq=1}=supa,
i=1 T

with the Gaussian random field &, teT,

§=SUP{ Z (0;&+a)t;

t i=1

E.aiEZ(O'i&i"'ai)tp TE{IGI“

i=1

é = }

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques
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It is necessary to compute the parameters ¢ and d defined by (1.2)
and (1.3) for this specific function &. In fact, we have to check the formula
(3.1) for these parameters. The definition (1.2) leads in our case to the
optimization problem

0
02=sup{ Y ol
i=1

2|ri|q=1}
i=1

This problem is easily solvable by the Lagrange method and we can see

o0

1/m
that really c=< D cr?‘) and this maximal value is achieved on each
i=1

sequence in the set
T,={teT|;=(0;/0)* P VVo; ;=1 or a,=—1}.

In the case p=1 we have the same formula (3.1) for o and the following
set of solutions of the optimization problem:

t=lort;=—1, if o,>0 }

Tf{’e’ nel-1,1], if ©,=0

It is also easy to see that & possesses a continuous version, hence we
don’t observe any oscillation effects and (1.3) gives us the expression
mentioned in (3.1):

d=lim sup E&=supE§=1) (c/0)?? VY|q
i=1

€>0 ¢:pg>02—¢ teTs

Now we have to write down the Laplace transform of {, providing the
most interesting factor in the expression given by Theorem 1.

LI‘Ak)sEexp(X Y |o&ita; |P>= [T Eexp(ho? |E;+ai/c;|?)

i=1 i=1
=[1 & (o?, ajo)=T] é (\o?, aj/c))
i=1 i=1

— pvy2v _va
Xexp{@ p)p 27» o;

+p“7»"0§""1|a,-|}.

We substitute in the right-hand side of this inequality the value of A
r2 P—drlp

2

recommended by theorem 1 <k=
po

> and obtain the following

expression for each exponent.

(2_p)pv(p—2) 0_—4v[r2—p_drl—p]2 vo.;n/2_|_0_—2 vcfv—l [’.Z—p_drl —p]v | ai|
=Q=pp o P 1-d/r? o2+ 072 o2 (2T VIRP (1 — dJr]| .

Vol. 30, n° 2-1994.



172 M. A. LIFSHITS

Taking into account the expressions (3.1) we observe that the sum of
these exponents is finite and may be rewritten in the form

(z_p)p—l 0(2 p—4)vr2 [1 —d/r]z"/2+o"2 v+2(p—1)vr[1 _d/r]v
=m lo 2r*[1-dir* +o " 2r[1-d/r]"d.

As the last step of our calculations, we use Taylor expansion for both
binomial factors to obtain the expression

mloc™? 2[1—2\/d/r+v(2v—l)afz/rz]+c‘2r[1—val/r]d+o(1)
=m o 2r -2vm o 2dr
+vQRv=1)m tc 2d*+c %dr—vo~2d*+0(1)
=m loT i+ (=-2vm '+ 1) o 2dr+(RQv—-1)m = 1)vo~2d*+0(l)
=m 'c"2r*+(1-1/p)o~2dr—vo~2d?*/2+0(1).
The following relation is a resume of our calculations:
2-p_ g1-p © PP gyl-p
wp(i) G <_“2”65, ai/oi>
po? i po
-1.2 _ — 2
Xexp{m r*+(1—-1/p)dr—vd /2}'

0.2

We substitute this expression in (2. 3), reduce two pairs of exponents and
obtain the equivalence

© 2P gpl-p
1-F()~Q2-p" ] «f(’—z—’woﬁ a,-/ci>

i=1 pPo
(1-v)d? < r—d
Xexpd ———— [ 1 =D — ] ).
p{ 202 c
This is exactly the same as (3.4). B

Remark 1. — If some members of the sequence { o, } are equal to zero,
the formula (3.4) should be slightly changed.
Namely, for p>1 the factor

oo} — _

s( P P—dr'7? |
[1¢ ——— 01, 4;/0;
i=1

po
should be replaced by

ATt I % ey 2-p
|:H g(%g{’,a,-/q)]exp{r > |ai|p}
it0i>0 PO PO i:6i=0

and for p=1 the same factor should be replaced by

I1 é”( dq,a/c)
i:0;>0

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques
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Remark 2. — Let us consider the finite-dimensional case, i.e. let
o,=a;=0, i=n+1,n+2,... We have under this assumption a finite

13 1

number of factors in (3.4); each of them tends to the finite limit (3.2).
Hence, we obtain from (3.4) the formula

P{Lzri~@-p) 2“exp{(2p(2__l)p\)/ 3 z_ }

A-pd® \ [, . (r—d
Xexp{2<2—p)cz}<l d)( . ))

where p denotes the number of indexes i with a;=0.
This result was earlier obtained by Linde [13].

Remark 3. — The behavior of the measure of large balls in /#, p=2 is
much more simple than one has in our case. Let us, for completeness,
briefly recall the known results. The Hilbert case, p=2, was initially treated
by V. M. Zolotarev in [16]. The following recent and complete result,
including non-centered case is due to W. Linde [12]

Letp=2and o;,=...=06,>0,,=...20.

Let

n 1/2 [°9)
AE(Z af) , C= [] (1-o}/c}) 12
i=1 i=n+1
If A>0, then
P{{2r}~A"C"V2C

X exp{ Y af2(ci—o}) } r* V2 (1= ((r—A)/o,)).

i=n+1
If A=0, then
P{Cgr}~23/2""/2 ol "n'2T (n/2)~*C

< T @2et-oh) | (1-00/m)
i=n+1

As for the case p>2, the asymptotics is as simple as possible. The
following result is due to V. Dobric, M. Marcus, M. Weber [3] and was
deduced from a general result of M. Talagrand [15].

Letp>2and 0,=...=0,>0,,,2 =0. Then

P{{=2r}~2n(1-®(r/cy)).

Thus, each maximal eigenvalue generates a contribution equivalent to
the tail of standard normal distribution. We refer to author’s article [11]
for detailed discussion and generalizations.

Vol. 30, n° 2-1994.



174 M. A. LIFSHITS
IV. SOME EXAMPLES. LARGE OCTAHEDRONS

In this section, we apply the theorem 2 to some particular sequences
{a;} and {o,}, in order to show that the exact behavior of the deviations
may vary in a very broad range. Particularly, we show that the asymptotics
of the probability of large deviations may contain the periodical com-
ponent. We restrict our consideration by the case p=1 and d#0. One can
find similar examples for p=1, d=0 and pe[l, 2), d=0 in [10] and [9],
respectively.

Recall, that in the case p=1 we deal with the behavior of Gaussian
measure of the large /'-balls. These balls sometimes are called octahedrons,
since the /*-ball in R? is octahedron.

In what follows, we use all the notations of the theorem 2, but assume
that p=1. In view of (3.3) we shall often use the function

QM a)=®(A+a)texp{ —2ar}®(A—a).
We can rewrite the formula (3.4) in the form

s [fe( L (o]

The following example provides the most curious behavior of the large
deviations.

Example 1. — Let B>1, A>0 be some constants and o;=B7/,
a;=AB™". We show that

(o) e

with the function
rM= [T QO B, A),

which is logarithmically periodic with period B, i.e. for any A we have
x(AB)=x ().
Proof. — We have the following expression for the product from (4. 1):

o(*5 A (5 e )

In order to obtain the estimate of the remainder term, we note that
2 Bi(r— z Bi(r—
> 10gQ< ¢ . d),A>§ ) [Q( ( . d),A>~1]
i=0 o i=0 c
g;oexp{ —2AB (c:z—d)}—»O.(r-» o)

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques




TAIL PROBABILITIES 175

Hence,

1‘[ Q<Bl(’ 9 A>< ~1.
o?
The opposite estimate is the consequence of the following lemma.
LEMMA 1. — For any N, a=0 the inequality Q (A, a)=1 holds.
Proof. — The simple variable change gives
1—(I)(7»+a)=(21t)‘1/2f3O exp{ —u?2}du=Q2m)" '

Ata
©

X exp{ —v*2—2av—2a*} dv
<(1-®O—-a)exp{ —2a(h—a)—2a*} =(1-D(A—a)exp{ —2aL}.
Hence,
1O +a)+(1—®(h—a)exp{ —2ar}=Q(A, a). M

We obtain from this lemma the relation

<~ fio(* %

that finishes the proof of (4.2). |

The next example is close to the first one, but the polynomial factor
appears in the asymptotics, and we have to deal with two periodical
functions with different periods.

Example 2. — Let B>1, a>0 be some constants and
c,=B~ o} *® We show that

(o)

_d (o log 2)/(1 +a)log B —_
><<’ A ) <1—cp<—’ d)) 4.3)
c c
with the function

%1 (=TT 2@ (RB . T] [® (1B A~ 00s 2e®

i=1 i=0

which possesses logarithmical period B, and the function
xo(M)=[][(1+exp{ —2AB 0 *21)/2]
i=1

X I_[ [1+exp{ _2)\‘Bi(1+u)}])\'logZ/(1+a)logB’

i=0

which possesses logarithmical period B! **,

Vol. 30, n° 2-1994.



176 M. A. LIFSHITS

Proof. — We have the following expression for the product from (4.1):

* r—d
il=_[1 Q(\o;, 09, = — - 0.

We fix some small B, e>0 and define two boards of indexes splitting
the product into three factors. One of them turns out to be negligible, the
second leads to x; and the third one leads to y,. Let

f=inf{i:o,<A"+ADY i —inf{i:g, <A1}

It is easy to see that there exists small 3= (B) such that § — 0 when B — 0
and

1] Qroy, 6HS[] 2@ (Ao, +0HS1+38.
i>ip i>ip
Hence, the behavior of this part of our product does not influence on the
asymptotics of the deviations. For the next couple, i€[i,, i,], we shall use
the approximation Q (Ac;, 6¥)=~2® (Ao;) and give the following estimate
which is valid for large A.

Y |10gQ0ko;, o) ~log2@(ho))|s T Q0o 0D 2000y

<317 *(logA—logpB)/logB -0
for A — oo, B and ¢ fixed. Hence,
iz
[I [Q(o; o)2®(ha)]~1,

i=ip+1

and we derive that

[T Qo,oh)~ [] R2OAc)I~27 1y, ()N E2/EP,
i=ip+1 i=ig+1

For the last couple of factors, i<i;, we use the approximation
Q(ro;, o)== 1+exp{ —2Ao;**} with the following estimate of its accu-
racy:
i
Y. [logQ (Ao, of)—log(l+exp{ —2Ac)**})]
i=1

<2ijexp{ —(AC"/rI—1)22}
<4loghi(logB) 'exp{ —(A*~/1*9—-1)2/21 -0

for A — oo, € fixed. This estimate leads us to the asymptotics

i i

[1Q(o, o~ [T (1+exp{ —220} "}~y (1) 21 4.7 low 21+ tog,

i=1 i=1
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We join the obtained estimates, reduce the annihilating factors and see
that

0
[1Q(o:, o)~ xy (A) 3z (M) A 1B 2+ o8B,
i=1
Now (4.3) follows directly from (4.1). W
This example finishes the demonstration of curious “periodical” effects.
We mention now, omitting the proofs, some cases, where the asymptotic
behavior is more regular.

Example 3. — Let B>1, A>0 be some constants, and 6,=i"83, g;=Ac,.
We prove that in this case

P{ggr}~exp{ﬁl<’;—2d)ﬂ}<1—<1><L;i1>> (4.4)

with constants B and I defined as
B=B~1, Isf logQ( A)

o Zl+|3

Example 4. — Let B>1, A>0 be some constants and o,=i"B,
a;=i"®7A. Let n be the integral part of A~!. Then there exist constants
Co> €15 - . -, C, SUCh that

P{Cgr}~exp{co (r=a)'®+c,(r—d)t/4*B 1+ y c,,(r—d)“""“’”}

k=2

(ro() s

We finish our examples by the proof of the statement, which shows,
that the asymptotics of the large deviations is more simple, if it is mainly
defined not by the covariance but by the shift of measure.

THEOREM 3. — Let p=1, 0,>0 for each i and Y. (1-®(|a;|/c))< co.
i=1

Then
P{ggr}~1—m<’;d>. (4.6)

(¢

Proof. — According to (4.1), it is enough to show that
[1Q(wo; |a|/o)~1. 4.7
i=1
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We can use the following estimates in order to check this relation.
0=<logQ (Ao, |ai |/Gi)§Q()\'Gia lai |/0i)-1
<exp{ —2i|q|} @ (ho,—|a]|/c))
=exp{ =2\ |a;|} 1 - @ (|a;|/c;—Ao))).
In what follows, we consider separately two cases.
(@) If Mo, 2| a;|/o;, we obtain the estimate
logQ ko, |a;|/o)<exp{ —2A|a;|}/2<exp{ —2]|a;|*/c?}/2
S(1-23/2) (1-@(|a;|/c))/2.
(b) If Mo;<|4;|/o; and 1] a;|/o,, then
exp{ —2X1|a;|} (1—-®(|a;|/c;—Ao})
<exp{ —2i|a;|} 1-®(al/c)+@2m) ' \o;
X exXp { - (l a; |/0i —Xc))%)2 })
§1_(D(| a; |/0'i)+eXp{ —Mail}(zn)_l/z kciexP{ _(l a; |/Gi)2/2}
= +281y1p{yexp{ —yA=-0(al/c)=2(1-0(|4]|/c).

It follows from the assumption of our theorem that for large indexes i
the inequality 1<|a;|/o; holds.
Hence, either (a) or (b) is valid, and we obtain the estimate

i=n i=n

1=2[1Q o, |a,-|/csi>§exp{ =) (1~<I>(|a,-\/c.-)>}—» I (> o0).

It is sufficient for our purpose, since each finite product in (4.7) evidently
tendsto 1. W

FINAL REMARK

The author is far from consideration of theorem 1 as a final word on
the problem of Gaussian tail probabilities, in spite of its full generality
and accuracy. In fact, the domain of its useful application is essentially
limited by our capability to calculate the corresponding Laplace transform.
Besides 17-norms discussed here, another domain would be mentioned — su-
prema of some processes related to the Brownian motion. In the latter
case Laplace transform of the suprema can be found as solution of a
partial differential equation. This subject will be considered elsewhere.

Therefore, the author sees the direct goal and the key-point of the
article in the spectrum of new types of tail probabilities behavior (included,
surely, in the general frame of theorem 1).
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