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ABSTRACT. - Let (XJi E 7l be a strictly stationary and strongly mixing
sequence of Rd-valued zero-mean random variables. Let be the

sequence of mixing coefficients. We define the strong mixing function a by
and we denote by Q the quantile function of Xo ~, which is the

inverse function of t - P ( X0| &#x3E; t). The main result of this paper is that
the functional central limit theorem holds whenever the following condition
is fulfilled:

where f ’ -1 denotes the inverse of the monotonic function f. Note that this
condition is equivalent to the usual condition E (X~)  oo for m-dependent
sequences. Moreover, for any a &#x3E; 1, we construct a sequence with

strong mixing coefficients an of the order of n-a such that the CLT does
not hold as soon as condition (* ) is violated.

Key words : Central limit theorem, strongly mixing processes, Donsker-Prohorov invari-
ance principle, stationary sequences.

RESUME. - Soit une suite stationnaire et fortement melangeante
de variables aléatoires reelles centrees, de suite de coefficients de melange
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64 P. DOUKHAN, P. MASSART AND E. RIO

(an)n &#x3E; 0 ~ On definit la fonction de taux de melange a ( . ) par et

on note Q la fonction de quantile de Xo I. Sous la condition

on etablit le theoreme limite central fonctionnel pour la suite ~. Pour
une suite m-dépendante, la condition (*) est equivalente a la condition
classique E(X20)  + ~. De plus, pour tout a &#x3E; 1, on construit une suite

stationnaire dont les coefficients de melange fort sont de 1’ordre
de n - a telle que le theoreme limite central n’est pas verifie si la condition
(*) n’est pas satisfaite.

1. INTRODUCTION AND MAIN RESULTS

Let be a strictly stationary sequence of real-valued zero-mean
random variables with finite variance. As a measure of dependence we
will use the strong mixing coefficients introduced by Rosenblatt (1956).
For any two o-algcbras j~ and ~ in (Q, ~% , let

Since (Xi)i Ellis a strictly stationary sequence, the mixing coefficients an
of the sequence are defined by an = a (~ o, ~n), where

and is called a strongly mixing
sequence if lim Examples of such sequences may be found in

Davydov (1973), Bradley (1986) and Doukhan (1991).
n

Let Xi. If the distribution of is weakly convergent to a
i= 1

(possibly degenerate) normal distribution, then said to satisfy
the central limit theorem (CLT). Let define the 1] ~
by

square brackets designing the integer part, as usual. For each o, Zn ( . ) is
an element of the Skorohod space D([0, 1]) of all functions on [0, 1] which
have left-hand limits and are continuous from the right. It is equipped

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



65FUNCTIONAL CLT FOR MIXING SEQUENCES

with the Skorohod topology (cf. Billingsley, 1968, sect. 14). Let W denote
the standard Brownian motion on [0, 1]. If the distribution of Z~(.)
converges weakly in D([0, 1]) to a W for some nonnegative o, 
said to satisfy the functional central limit theorem.
For stationary strongly mixing sequences, the CLT and the functional

CLT may fail to hold when only the variance of the r.v.’s is assumed to
be finite (cf. Davydov, 1973). So, the aim of this paper is to provide a
sharp condition on the tail function t -~ [P ( Xo &#x3E; t) and on the mixing
coefficients implying the CLT and the functional CLT. By sharp condition,
we mean that, given a sequence of mixing coefficients and a tail function
violating this condition, one can construct a strictly stationary sequence
(Xi)i E 7l with corresponding tail function and mixing coefficients for which
the CLT does not hold. Let us recall what is known on this topic at this
time.
As far as we know, all the results in the field are of the following type:

assume that for some adequate function ~, ~ is integrable and that
the mixing coefficients satisfy some summability condition (depending of
course on ~), then the CLT holds.
The first result of this type is due to Ibragimov (1962) who takes

~ (x) = xr with r &#x3E; 1 and gives the summability condition

The functional CLT was studied by Davydov (1968): he obtained the
summability condition L p~n I2 - 1/2r ~ +00. Next, Oodaira and Yoshihara

n&#x3E;O

(1972) obtained the functional CLT under Ibragimov’s condition.
Since a polynomial moment condition is not well adapted to exponential

mixing rates, Herrndorf (1985) introduces more flexible moment

assumptions. Let f7 denote the set of convex and increasing differentiable
functions ~ : (~ + -~ (~ + such that § (0) = 0 and Assume

+00

that § belongs to f7, then Herrndorf gives the summability condition:

where ~ -1 denote the inverse function of ~. Actually, Herrndorf proves a
functional CLT for nonstationary sequences under an additional condition
on the variances of the partial sums of the r.v.’s Xi, and this condition is
ensured by ( 1. 1 ) for stationary sequences via Theorem 2 of Bulinskii and
Doukhan (1987).

All these results rely on covariance inequalities (such as Davydov’s)
which hold under moment assumptions. Our approach to improve on
previous results is to use a new covariance inequality recently established
by Rio (1992), which introduces an explicit dependence between the mixing

Vol. 30, n° 1-1994.



66 P. DOUKHAN, P. MASSART AND E. RIO

coefficients and the tail function. We first need to introduce some notations
that we shall use all along this paper.

Notations. - If (un) is a nonincreasing sequence of nonnegative real
numbers, we denote by u ( . ) the rate function defined by u (t) = For

any nonincreasing function f let f -1 denote the inverse function off,

, 
_ .. 

,

For any random variable X with distribution function F, we denote
indefferently by Qx or QF the quantile function which is the inverse of
the tail function t ~ ~ ( X I &#x3E; t).

LEMMA 1 [Rio, 1992]. - Let X and Y be two real-valued r.v.’s with

finite variance. Let oc = a (~ (X), 6 (Y)). Let Qx (u) = inf ~ t : ~ ( I X I &#x3E; t) _ u ~
denote the quantile function of X I. Then Qx Qy is integrable on [0, 1], and

By Theorem 1. 2 in Rio (1992), the following result holds.

PROPOSITION 1 [Rio, 1992]. - Let be a strictly stationary and
strongly mixing sequence of real-valued random variables satisfying

Then,

and denoting by ~2 the sum of the series ~ Cov (Xo, Xt), we have:
tEll

Now the question raises whether the above integral condition (which
ensures the convergence of the variance of the normalized partial sums) is
sufficient to imply the CLT. In fact the answer is positive as shown by
the following theorem.

THEOREM 1. - Let be a strictly stationary and strongly mixing
sequence of real-valued centered random variables satisfying

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



67FUNCTIONAL CLT FOR MIXING SEQUENCES

Then the series ~ Cov (Xo, Xt) is absolutely convergent, and Zn converges
t ~ Z

in distribution to a W in the Skorohod space D ([0, 1]), where ~ is the

nonnegative real defined by 62 = ~ Cov (Xo, Xt).
t ~ Z

Remark. - This result still holds for Rd-valued random variables. Then

I denotes the norm of Xo in and the multivariate process Zn
converges in distribution to a multivariate Wiener measure with some
covariance function (s, t) -~ ~ E ((Xo . s) (Xi . t)) = r (s, t), where a . b

i ~ Z

denotes the canonical inner product on ~d.

APPLICATIONS. - 1. Bounded random variables. - If Xo is a bounded
r.v., Q is uniformly bounded over [0, 1], and condition (1.2) is equivalent
to the condition £ So, in that case, the CLT obtained by

n&#x3E;O

Ibragimov and Linnik (1971) (Theorems 18.5.3 and 18.5.4) and the
functional CLT of Hall and Heyde (1980) (Corollary 5.1) are recovered.

2. Conditions on the tail function. - Let § be some element of iF.
Assume that there exists some positive constant C~ such that the distribu-
tion of Xo fulfills:

If, for some r &#x3E; 1, x ~ x - r ~ (x) is nondecreasing, Theorem 1 shows that
the functional CLT holds whenever the summability condition (1.1) is

satisfied. Hence the functional CLT is ensured by a weaker condition on
the tail of Xo than Herrndorf’s moment + oo .

3. Moment conditions. - Assume that E (~S (Xo))  + oo for some § E if.
This condition is equivalent to the following moment condition on Q:

Note that, if U is uniformly distributed over [0, 1], Q (U) has the distribu-
tion of .

So, if ~ * ( y) = sup [xy - ~ (x)] denotes the dual function of ~, Young’s
x&#x3E;o

inequality ensures that (1.2) holds if

An elementary calculation shows that (1 . 3) holds if

Vol. 30, n° 1-1994.



68 P. DOUKHAN, P. MASSART AND E. RIO

Some calculations show that this summability condition is weaker than
( 1.1 ) [one can use the convexity of § and the monotonicity of the sequence

to prove that (~’) -1 (n)  ~ -1 ( 1 /an) if n is large enough; cf. Rio,
1992]. In particular, for some r &#x3E; 1, (1.4) holds if and only
if the series ~ ock is convergent, which improves on ( 1.1 ). For

example, when for some 9 &#x3E; o, (1.4) needs 8 &#x3E; 1,
while ( 1.1 ) needs 9 &#x3E; r/(r -1 ), which shows that condition ( 1. 2) is weaker
than ( 1.1 ).

4. Exponential mixing rates. - Assume that the mixing coefficients
satisfy for some a in ]0, 1[. Then there exists some s&#x3E;O such
that (1. 3) holds with ~* (x) = exp (sx) - sx -1. Since § = (§ *) * , (1. 2) holds
if

Now, when ~ (x) ~ x log + x as x -~ + oo , the summability condition (1 . 1)
holds iff

If the mixing rate is truly exponential, that is for some positive
clog ( 1 /ak) &#x3E;_ ck for any large enough k, then ( 1. 6) does not hold. Hence
Theorem 1 still improves on Herrndorf’s result..
We now show that Theorem 1 is sharp for power-type mixing rates.

THEOREM 2. - Let a &#x3E; 1 be given and F be any continuous distribution
function of a zero-mean real-valued random variable such that:

Then there exist a stationary Markov chain of random variables
with d. f . F such that:

(i ) 0  lim inf na an _ lim sup n° an  oo ,

n

(ii ) n -1 ~2 ~ Zi does not converge in distribution to a Gaussian random
i= 1

variable.

The organization of the paper is the following: in section 2, we prove
the CLT for stationary sequences satisfying (1 . 2). In section 3, we prove
the tightness of Zn and we derive the functional CLT. Next, in section 4,
we prove Theorem 2 and give some additional results concerning the
optimality of condition ( 1 . 2).

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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2. A NEW CLT FOR THE PARTIAL SUMS
OF A STRONGLY MIXING SEQUENCE

In this, section, starting from the covariance inequalities of Rio (1992),
we prove a central limit theorem for stationary and strongly mixing
sequences (Xi)i E 7l satisfying condition (1.2). The proof of this CLT
is based on the following theorem of Hamm and Heyde (1980)
(Theorem 5.2) which relies on a deep result of Gordin (1969).

THEOREM 3 [Hall and Heyde], 1980. - Let a stationary and
ergodic sequence with E (Xo) = 0 and E(X20)  ~. Let F0 = a i __ 0). If

(Xk IE (Xn I ~ o)) converges for each n &#x3E; 0 and
Jk&#x3E;0

uniformly in K &#x3E;_ 1, then lim n -1 ~ (Sn ) = 62 for some nonnegative read If
_

0, then Jn converges in distribution to the standard normal law.
We now prove the CLT under condition ( 1. 2).

THEOREM 4. - Let (Xi)i E a be strictly stationary sequence of real-valued
centered r.v.’s satisfying (1.2). Then:

(i) the series (Xo Xi) converges to a nonnegative number a2 and .

iell

Var Sn converges to ~2.
(ii ) if 6 &#x3E; 0, Jn converges in distribution to the normal distribution

N (0, a2).

Proof. - By Proposition 1, (i ) holds. In order to apply Theorem 3, we
note that, on the one hand an ergodic sequence because it is a
strongly mixing stationary sequence and on the other hand that the other
assumptions of Theorem 3 are implied by

Our program to prove (ii ) is now to ensure that (2 . 1 ) holds by means of
Lemma 1. To this aim, we need to control the tail of E (X" I This is
precisely what is done in the following claims.

CLAIM 1. - For any nonincreasing positive function Q ( . ) satisfying ( 1. 2)
there exists some nonincreasing function Q*, still satisfying ( 1. 2), and such
that:

Vol. 30, n° 1-1994.
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Proof. - Let R(~)=~[Q(~)]~ and The mono tonicity
s~t i

properties of the above functions imply that

Let Q* (t) = (R* (t)/t)2~3. Clearly, Q* satisfies (2 . 2). It remains to prove
that Q* still satisfies condition (1.2). Now, it follows from (2. 3) that

Assume now that Q ( . ) is uniformly bounded over ]0, 1]. Both (2 . 4) and
the monotonicity of a -1 and Q imply, using the change of variable u = t/2,
that:

Hence

therefore establishing Claim 1 for Q* in the case to uniformly bounded
functions. The corresponding result for unbounded quantile functions
follows from (2. 5) applied to and from the fact that

Q* = lim i (QA)* combined with Beppo-Levi Lemma..
A/’oo

From now on, let Q=Qxo and let Q~ satisfy the properties of Claim 1.
CLAIM 2. - Let For any 1], QXO {t)  2 Q* (t/2).
Proo, f : - On the one hand, the convexity of the function

hx (u) = 2/x ( ! u ~ - x/2) + together with Jensen inequality conditionally to
ffo and the elementary inequality hx (u) _&#x3E;-1 whenever u ~ &#x3E; x show that

On the other hand, the stationarity of (Xi)i E 7l and an integration by parts
give

which, combined with (2. 6), provides:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Both the above inequality and (2. 2) imply then that

therefore completing the proof..

Proof of Theorem 4. - By Lemma 1 and claim 2,

Since Q* has the properties of claim 1, it follows that the series

I is uniformly convergent w.r.t. n. Hence the proof of

Theorem 4 will be achieved if we prove that, for any k &#x3E; o,
lim E (Xk = 0. Since E (Xk (Xn by (2 . 7),

therefore completing the proof of (2.1). Hence Theorem 4 holds..

3. ON THE DONSKER-PROHOROV INVARIANCE PRINCIPLE

In this section, we derive the functional CLT from Theorem 4.

Proof of Theorem 1. - Assume first that ~ &#x3E; 0. Theorem 4 ensures that
the sequence is uniformly integrable, via Theorem 5.4 in Billings-
ley (1968). Set S: = sup I Sk I. By Theorem 1. 4 in Peligrad (1985), it is

enough to prove that, for any positive E, there exists ~, &#x3E; 0 and an integer
no such that, for any n &#x3E; no, .

Second, if a = o, the convergence in distribution of Zn to the null random
process follows fom (3 . 2) and Theorem 4.

Clearly, there is no loss of generality in assuming that
which we shall do throughout. Since is uniformly

integrable, by Theorem 22 in Dellacherie and Meyer (1975), there exists
an increasing convex function G such that

Vol. 30, n° 1-1994.
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Since (Xi)i Ellis a stationary sequence satisfying (1. 2), the sequence 
n

defined by Yi = ~ ( ~ Xi I ) still satisfies Theorem 4. Let Tn = L Vi. So,
i= 1

we may (modifying G) assume that

Hence, the tightness of Zn is a consequence of the following proposition.
PROPOSITION 2. - Let be stationary sequence satisfying
lim n an = o. Assume furthermore that satisfies the uniform integra-

bility conditions (3 . 3) and (3 . 4). Then fulfills the tightness criterion
(3 . 2).

Let An be the following event: there exists some i E [1, p] such that

Vi &#x3E;_ 2 In. Since a stationary sequence Jn,
(3.4) yields

Hence, Let + ... and 

Clearly

It remains to control the r.v. Here, we adapt the proof of Kolmo-
gorov’s inequality for i.i.d. r.v.’s _to the mixing case. Set

E~=~W*&#x3E;_2(1+~,),Jn, W* 12(1+~,),Jn~. Then,

Now, both the mixing property and the uniform and the uniform integra-
bility property (3 . 3) yield

In the same Since the events E~. are
disjoint, both (3.4), (3 . 5), (3. 6) and (3 . 7) imply:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Now, therefore completing the proof of Propo-

sition 2..

Since condition ( 1. 2) implies lim Theorem 1 holds.
n -~ + oo

4. ON THE OPTIMALITY OF THE CENTRAL LIMIT THEOREM

In this section, we construct strictly stationary and strongly mixing
sequences of r.v.’s such that Theorem 4 does not hold as soon as condition
( 1. 2) is violated. The general way to obtain these sequences is the follow-
ing. We construct a stationary and P-mixing sequence of real-
valued r.v.’s. with uniform distribution over [0, 1]. Then, by means of the
so-called quantile transformation, we will obtain stationary and (3-mixing
sequences of real-valued r.v.’s with arbitrary distribution function F. Let
us recall the definition of the P-mixing coefficients of (Rozanov
and Volkonskii, 1959). Given two a-fields A and fJ6 in (Q, 5, the P-
mixing coefficient ? between .91 and B is defined by

where the supremum is taken over finite partitions (Ai)i E I and 
respectively .91 and B measurable [notice that 03B2(A, 03B2) ~ 1]. The mixing
coefficients [in of the sequence are defined by ~n)~

is called a P-mixing sequence if lim [in = 0.
n+oo

It follows from Theorem 4 and from the well known inequality 2 an __ ~n
that the central limit theorem holds whenever the following integral condi-
tion holds:

Here, we obtain some kind of converse to Theorem 4 for polynomial
rates of decay of the mixing coefficients. Furthermore, our counterexample
works for 03B2-mixing sequences as well.

THEOREM 5. - For any a&#x3E; 1, there exists a stationary Markov chain
of r.v.’s with uni.form distribution over [0, 1] and sequence of

Vol. 30, n° 1-1994.
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03B2-mixing coefficients ((3n)n &#x3E; o, such that:
(i ) 0  lim inf na (3n _ lim sup na (3n  oo .

(ii) For any measurable and integrable function f : ]0, 1] ~ R satisfying

n

n-1~2 ~ does not converge in distribution to a Gaussian
I = I

r.v.

We derive from Theorems 4 and 5 the following corollary, yielding
Theorem 2.

COROLLARY 1. - Let a &#x3E; 1 be given and F be any continuous distribution
function of a zero-mean real-valued random variable such that:

Then there exists a stationary Markov chain of r.v.’s with d.f. F
such that:

(i) 0  lim inf 2 . na an _ lim sup na 03B2n  ~. Here (an)n &#x3E;_ o and (03B2n)n ~ o denote
n -&#x3E;+oo 

the sequences of strong mixing and ~3-mixing coefficients of ~.
n

(ii ) n -1 ~2 ~ Z~ does not converge in distribution to a Gaussian random
I = I

variable.

Furthermore, does not satisfy the Kolmogorov LIL:

PROPOSITION 3. - For any continuous d. f . F of a zero-mean r.v. satisfying
(a) of Corollary l, there exists a stationary Markov chain of r.v.’s
with d. f . F, satisfying (i) of Corollary 4 .1 and such that, we have, setting

n

I=1

v

Proof of Theorem 5. - The sequence will be defined from a

strictly stationary Markov chain (XI)i E ~’

Definition of the Markov Chain. - Let  be an atomless probability
distribution on [0, 1] and T : ]0, 1] -~ [o, 1 [ be a measurable function. The
conditional distribution n (x, .) of Xn+ 1, given (Xn = x), is defined by

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



75FUNCTIONAL CLT FOR MIXING SEQUENCES

Assume furthermore the function T to fulfill the integral condition

Then the nonnegative measure v defined by

is an invariant probability. By Kolmogorov’s extension theorem, there
exists a strictly stationary Markov chain (Xi)i E 7l with transition probabili-
ties n (x, . ) and stationary law v. If the d.f. F~ of v is continuous, setting

we obtain a stationary Markov chain of r.v.’s with uniform
distribution over [0, 1].

Mixing properties of the Markov chain. - Let and
Let ~n) denote the coefficient of (3-mixing

between F0 and f7 n. Let F be any continuous distribution function. If F03BD
is continuous, [in also is the coefficient of P-mixing of order n of the chain

TL defined by Y~ = F -1 (X~)).
For any probability law m on [0, 1], for any measurable function

f : [0, 1 ] -~ (~ +, we set:

The following result provides a characterization of those distributions y
such that the Markov chain does not satisfy (4 .1).

LEMMA 2. - For any positive integer n,

Comment. - Let n - Lemma 2 ensures that, for any u in

[o, 1], .

If follows that the Markov chain satisfies (4 .1 ) if and only if

Proof of Lemma 2. - Since a stationary Markov chain, by
Proposition 1 of Davydov (1973), ~in (~ o, (a (Xo), a (Xn)). So,
if Po, n denotes the bivariate distribution of (Xo, X"),

where ~m~ denotes the variation norm of the measure m. Let
Since (Xi)i Ellis a Markov chain, the strong

Vol. 30, n° 1-1994.
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Markov property ensures that, starting from (Xo = x), for any n],
the conditional distribution of Xn given (i = k) is Let P~ denote
the probability of the chain, starting from (Xo = x):

Clearly, ~x (i &#x3E; k) _ [T (x)]k. Hence, taking the ll (v)-norm in (4 . 4), we
obtain:

The main tool is then the majorization of the total variations of the signed
measures IIn - k (~,, . ) - v. First, we give a polynomial expansion of the
measure .). Let m be any signed measure on [0, 1]. The linear
operator H : m - n (m, . ) has an unique extension to the set signed meas-
ures, which we still denote by IY, and

We now prove that there exists an unique sequence of numbers
such that

Proof. - We prove (4. 6) by induction on n. First the assertion holds
Secondly, if we assume that the assertion holds for any l  n, then,

at the step n,

where an = ( 1- T (x)) (~., . ) - v) (dx). Now, by the induction
0

hypothesis,

which implies the existence of the sequence (an)n &#x3E; o. Since IIn (~,, . ) is a

probability measure, the sequence (an)n &#x3E; o has to satisfy the equations

for any nonnegative integer n. Hence the coefficients an are uniquely
defined.

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques
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Now, recall that we have in view to This bound
will be derived from the following main claim.
CLAIM 3. - For any nonnegative integer n, o.

Proof. - By equation (4. 7),

By the convexity of I - ~~ (Tl),

By induction, it follows that

Hence,

The elementary equality

implies that

therefore establishing Claim 3 ..
Equation (4. 6) and Claim 3 imply now that

Both (4. 4), (4. 5) and a few calculation show that

Now ~x (i &#x3E; n) _ ~x (Xn = x) _ (T (x))n, which together with (4 . 3) ensures
that 2 ~in &#x3E;_ 2 E~ (Tn). Hence Lemma 4 .1. holds..

Applications to the lower bounds for the CLT. - Throughout, let
T (~) = 1 - ~. In order to obtain power rates of decay for the mixing
coefficients of the sequence ~, we define the probability measures y
and v by

for some positive a. With the above choice of v

Vol. 30, n° 1-1994.
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Let k be a positive integer. Clearly,

Hence

Here r denotes the r-function. Since F~ (x) = xa, setting Ui = Xa, we obtain
a stationary Markov chain of uniformly distributed r.v.’s. with the same
mixing coefficients. So, both (4.16) and Lemma 2 imply (i) of Theorem 5.

Clearly, there is no loss of generality in assuming 
which we shall do throughout the sequel. In order to prove that the

sequence ( f does not satisfy the CLT if (a) of Theorem 5 holds,
we now prove that some compound sums of the sequence ( f (U i)i E 7l are
partial sums of i.i.d. random variables.

Let be the increasing sequence of positive stopping times
defined by To=T, where T is defined just before (4.4), and

for any k &#x3E; o. Set Clearly
XTk has the distribution ~,. Hence, by the strong Markov property, the
r.v.’s are i.i.d. with tail function ~ (ik &#x3E; n) _ ~~ (Tn). Clearly,

We now prove that

Proof of 4 . 18. - Clearly, the bivariate r.v.’s (XTk, are i.i.d. Let
The r.v.s ~k are i.i.d. with common distribution ~., and

Since a &#x3E; 1, by (4.19), E (i i )  oo , which implies that (Tn - n IE is

weakly convergent a normal distribution. Hence, for any E &#x3E; 0, there exist
A &#x3E; 0 such that

Now, by (4.19),

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques
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and

Hence the law of large numbers applied to the sequence of i.i.d. integrable
random variables (ik f o ensures that

-~ 0 in probability

as n tends to infinity. Since the above random variable majorizes

the random variable n -1 ~2 ~ f (U~) - ~ f(U;) on the event
t=i t=i

(n ~ (i 1 ) E [T[n _ A ,~n~, T~n + A ~n~J) via (4 .17), both (4 . 20) and the above

inequality imply (4.18). N
It follows from (4.18) that, if 

.

does not converges to a normal distribution, the same holds for
n

n-1/2f(Ui). Now, by the converse to the usual central limit theorem

(cf. Feller, 1950), Lln converges to a normal distribution if and only if
E (UTk))  oo . By (4 . 20), it holds iff

Hence, using the change of variable u = ~", we get Theorem 5.

Proof of Corollary l. - The r.v.’s Z~ are defined from the corresponding
r.v.’s Ui via a quantile transformation. So, and have the
same mixing structure. We now prove that the sequence of strong
mixing coefficients of the sequence satisfies the left-hand side

inequality

Proof of (4.22). - For any continuous d.f. F, the sequences
(F -1 and have the same strong mixing coefficients. Hence,
by (ii ) of Theorem 5 and Theorem 4, for any continuous and symmetric
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ri/2
d.f. F such that Ji u-1/a [F- ~ (u)]2 du = oo, we have:

o

/*1/2

Jo a 1 (u) [F 1 (u)]2 du = oo,

where a denotes the strong mixing rate function of the sequence ~.

Using a density argument (one can find a sequence (Fn) of continuous
and symmetric d.f. such that G= lim T [Fn 1]2) we get that for any

1/2

nonincreasing function G : [0, 1 /2] -~ such that Jo u -1 /a G (u) du = oo ,

we have :

Suppose that (an)n &#x3E; o does not satisfy (4.22). Then there exists some
increasing sequence of positive integers such that, for any k &#x3E; o,

For any set let G (u) = 0. By (4 . 23),
on one hand,

and, on the other hand,

which implies (4. 22).

Notice now that the integral 
Jo 

is convergent if

and only if both the two above integrals Jo u -1/a [F -1 (u)]2 du and
yi/2

Jo u -1 /a [F -1 ( 1- u)] 2 du are convergent. So, setting Zi=F-1(Ui) iff

u -1 /a [F -1 (u)] 2 du = oo , and Zi = F-1 (1-Ui) otherwise, and applying
Theorem 5, we get Corollary 1.

Annales de l’Institut Henri Poincare - ProbabiHtes et Statistiques



81FUNCTIONAL CLT FOR MIXING SEQUENCES

ProofofProposition 3. - By definition of Tn,

Since the r.v.’s ik ZTk are i.i.d. with E (| ’Lk ZTk |2) = + ~, Strassen’s converse
to the law of the iterated logarithm (1966) shows that:

.

Proposition 3 then follows from (4.24) and from the fact that
lim T n/ n = E (i 1 ) a. s.
+~
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