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ABSTRACT. - The purpose of this paper is the proof of an almost sure
central limit theorem for independent nonidentically distributed random
variables.
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almost sure convergence.

Le sujet de l’article est la demonstration d’un theoreme
central limite presque sur pour des variables aleatoires independantes non
identiquement distribuées.

1. INTRODUCTION

1 } be a sequence of independent random variables, defined
on a probability space (Q, .91, P), such that EXn = 0 and EXn = an  oo,

Let us put So = 0, ... + Xm = ES2n.
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2 B. RODZIK AND Z. RYCHLIK

Let Yn (t), t E [0, 1], be the random function defined as follows:

It is dear that sk whenever t = 2014~ and is the straight linen~ ) 
ffn 

n~ ) &#x26;

Yn (t) is continuous with probability one, so that there is a measure Pn in
the space (C [o, 1], according to which the stochastic process

~ Yn (t), 0 _ t _ 1 ~ is distributed. Here and in what follows C[0, 1] denotes
the space of real-valued, continuous functions on [0, 1] ] and P denotes the
a-field of Borel sets generated by the open sets of uniform topology.

It is well known that n &#x3E;_ 1 ~ satisfies the Lindeberg condition,
i. e., for every E &#x3E; 0

D

then Pn -+ W as n - oo, where here and in what follows W denotes the
Wiener measure on C([0, 1], ~) with the corresponding Wiener process
{W (t), 0 _ t __ 1 ~, [cf. Billingsley (1968), p. 61].
The purpose of this paper is the proof of an almost sure version of this

theorem. Namely, for x E C [o, 1] ] let bx be the probability measure on
C[0, 1] which assigns its total mass to x. Let us observe that the distribu-
tion P~ of Yn is just the average of the random measures 8y ~~~ with
respect to P, i. e., for every 

Of course, for every 03C9~03A9, (03B4Yn (03C9), n ~ 1 } is a sequence of probability
measures on the space (C[0, 1], ~). We study weak convergence of the
sequence

on the space (C [0, 1], The results obtained extend, to nonidentically
distributed random variables X~, n &#x3E;_ 1, the Theorems given by Brosamler
(1988), Schatte (1988), Lacey and Philipp (1990). Other generalizations of
the almost sure central limit theorem, based on an argumentation which
is purely ergodic and Brownian, are obtained by Atlagh and Weber (1992).
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3AN ALMOST SURE CENTRAL LIMIT THEOREM

But as in the papers mentioned above only the case of independent and
identically distributed random variables is considered.

2. RESULTS

Let ko =1  kl  k2  ... be an increasing sequence of real numbers
such that kn -+ oo as n - oo . For s&#x3E;O we define C[0, 1 ]-valued random
elements by

Let

In what follows hi = ki + 1 - ki, i ? 0, and hn = max hi, 

THEOREM 1. - If

and, for every E &#x3E; 0,

then

D

where - denotes the weak convergence of measures on (C [©, 1], ~).

THEOREM 2. - n &#x3E;__ 1 ~ be a sequence of independent random
variables, defined on (SZ, A, P), with EXn = 0 and 
for some 0  b _ 1. Assume

and, for every E &#x3E; 0,

Vol. 30, n° 1-1994.
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and

where n &#x3E;_ 1} is some increasing sequence, bn ~ oo as n - ~, and
hn = max af.

1_i_n+1 i

Then

D

where - denotes the weak convergence of measures on (C [0, 1], ~).
From Theorem 2 we immediately get the following extension of the

main result of Brosamler (1988).

THEOREM 3. - Let {Xn, n &#x3E;__ 1} be a sequence of independent random
variables, defined on (SZ, ~, P), with and
E I Xn I2 + 2s = ~2 + 2s  oo for some 0  b  1.

Then

D

where - denotes the weak convergence of measures on (C [0, 1 ], ~).
In the case where {Xn, n &#x3E;_ 1} is a sequence of independent and ident-

ically distributed random variables Theorem 3 gives the result of Brosamler
( 1988).

3. AUXILLIARY LEMMAS

The proof of Theorem 2 is based on a martingale form of the Skorokhod
representation theorem that we recall for the convenience of the reader.
This theorem is obtained by Strassen (1967), p. 333.

LEMMA 1. - Let {Zn, n &#x3E;__ 1} be a sequence of random variables such
that for all n, E ..., Z 1 ) is defined and E ..., Z 1 ) = 0
a. s. Then there exists a probability space supporting a standard Brownian
motion ~ W (t), t &#x3E;_ 0 ~ and a sequence of nonnegative variables { in, n &#x3E;_ 1 ~

n

with the following properties. If ii, Xi = Si,
i= 1
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5AN ALMOST SURE CENTRAL LIMIT THEOREM

X;, = Sn -1, for n &#x3E;-_ 2, and Gn is the a field generated by ..., Sn and
by W (t) for then

(i) Zi, n &#x3E;_ 1 has the same law as ~ W (Tn), n &#x3E;_-1 },

(ii ) Tn is Gn-measurable,
(iii ) for each real number r &#x3E;_ 1

..,Xi) 

where Cr = 2 (8/~2)r -1 r (r + 1 ), and
(iv) E E (Xn2 ~ = E (Xn2 ~ ..., X i ) a. s.
(v) If Zn, n &#x3E;- l, are mutually independent, then the random variables in,

n &#x3E;--1, are mutually independent.
In the proof of Theorems 1 and 2 we also need the following lemmas.

LEMMA 2. - [Brosamler (1988), Theorem 1 . 6 (a)]. - If

then

D

and the convergence ~ is weak convergence of measures on (C [0, 1], ~).

LEMMA 3 [Brosamler ( 1988), Lemma 2 .12] . - If X, Z : R + -~ C [0, 1 ]
are measurable and are such that

then for all bounded, uniformly continuous functions f : C [0, 1 -~ R

LEMMA 4. - Let ko =1  kl  ... be a sequence of real numbers such
that kn -~ oo and as n - oo . n &#x3E;_ 1 ~ n &#x3E;_ 1 ~
are C [0, 1 ]-valued sequences such that

then for every bounded and uniformly continuous function f : C [0, 1 -~ R

where hi = ki + 1 l ~ ~.

Vol. 30, n° 1-1994.



6 B. RODZIK AND Z. RYCHLIK

Proof. - Let f : C [0, 1] ] --~ R be a bounded and uniformly continuous
function. Let E &#x3E; 0 be given. Then there exists no such that for every n &#x3E;_ no

since ] X,, - -~ 0 as n - oo.
Thus

so that

and this achieves the proof.

LEMMA 5. - n &#x3E;__ 1 ~ be an increasing sequence of positive
numbers such that bn ~ oo as n - R. n &#x3E;_ 1 ~ is a sequence of
independent random variables such that for some constants

w

0  in __ 2, ~ E (  oo, where EXn = 0 when 1 _ in _ 2, then
n=1 1

Lemma 5 is a consequence of Corollary 3 and Kronecker Lemma 2
presented in Chow and Teicher (1978) (p. 114 and p. 111, respectively).

4. PROOFS OF THEOREMS

Proof of the Theorem l. - At first we prove that

Thus we have to prove that

where 

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



7AN ALMOST SURE CENTRAL LIMIT THEOREM

By (2 .1 ) and (2. 2) we get

On the other hand, by Lemmas 1.11, 1.16 and 1. 4 of Freedman (1971),
for every E &#x3E; 0, we obtain

Hence, by (2.4), (4. 2) and the Borel-Cantelli Lemma

Moreover

and, by Theorem 1.106 of Freedman (1971), for every n such that 

Thus, by (2. 3), we get

Now (4.1) follows from (4.2), (4.3) and (4.4).

Vol. 30, n° 1-1994.



8 B. RODZIK AND Z. RYCHLIK

On the other hand, by Lemma 2 for every bounded and continuous
function f : C [0, 1] -~ R, we have P-a. s.

Thus, by (4 . 1 ) and Lemma 3, we get

for all bounded an uniformly continuous functions f : C [0, 1] ] --~ R, hence
for all bounded and continuous functions.

But

On the other hand

so that

since (kt/ht) log ( 1 + hi/ki) -~ 1 as i ~ oo . Thus the proof of (2 . 5) is ended.

Proof of Theorem 2. - By Lemma 1 there exists a probability space
(Q, .91, P) supporting a standard Brownian motion ~ W (t), and a
sequence of nonnegative random variables {03C4n, n &#x3E;_ 1} such that the

sequence {W(Tn), n~1} has the same law as the sequence {Sn, n~1},
where Tn = i 1 + ... + in, n &#x3E;__ 1. Thus from now on we shall identify Si,
S2, ..., and W (T1), W (T2), ...

Define Zn : Q - C [0, 1 ] by setting

and linear on each interval k =1, 2, ..., n.
Let us also define C[0, 1 ]-valued random elements W~S~, for s &#x3E; o, by

and put Vn = W~~n ~, n~ 1. Then one gets

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



9AN ALMOST SURE CENTRAL LIMIT THEOREM

where, for xeC[0, 1], sup On the other hand, for every

s&#x3E;0,

Furthermore, by Lemma 11 (c) of Freedman (1971), for every 
we get

Moreover, Lemma 16 (c) and Lemma 4 (a) of Freedman (1971) yield

Hence, by the inequalities given above with h,* = max o?, we get

so that (2. 8) and the Borel-Cantelli Lemma yield

On the other hand

and

if and only if

Vol. 30, n° 1-1994.
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By Lemma 1 the random variables in, are mutually independent,
and so that by (27) and Lemma 5

and, in particular,

Thus, for every E &#x3E; o, there exists ~, &#x3E; 0 such that

Since E &#x3E; 0 can be chosen arbitrary small, it suffices to prove (4. 7) on the
set Let b &#x3E; 0 be given. Then, similarly as in

n

Brosamler (1988), p. 569, we get

Hence by (2. 9) and the Borel-Cantelli Lemma

Now (4 . 6), (4 . 7), (4 . 8) and Lemma 4 with kn = n ~ 1, yield

for every bounded and uniformly continuous function f’ : ~~, ~~ -~ R. Thus
(4.9) and Theorem 1, also with kn = n &#x3E; 1, end the proof of Theorem 2
since 

Proof of Theorem 3. - Under the assumptions of Theorem 3

h,* _ ~2, so that (2. 6) and (2. 8) hold. On the other hand,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



11AN ALMOST SURE CENTRAL LIMIT THEOREM

putting bn = n~ I + s~2»~ ~ + s~~ n &#x3E; 1, one can easily check that (2 . 7) and (2 . 9)
hold, too. Thus Theorem 3 follows from Theorem 2.
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