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ABSTRACT. - Consider a Dirichlet form (~)):

where D is a d-dimensional domain, a is a bounded, symmetric, locally
elliptic, d x d matrix-valued function on D, p is a strictly positive probabil-
ity density on D, and a, p are locally Lipschitz continuous on D. We
investigate two methods for appoximating the stationary, symmetric Mar-
kov process X associated with (~, ~ (f)), which in the case of smooth
non-degenerate data is a diffusion process with infinitesimal generator

2014V.(~V) in D and conormal reflection at the boundary of D. The first
2p
(or exterior) approximation is a conventional penalty approximation by
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14 E. PARDOUX AND R. J. WILLIAMS

diffusions defined on all of The second (or interior) approximation
uses diffusions confined to D by singular drifts that tend to infinity at the
boundary of D. The existence of such singular diffusions is established as
a result of possible independent interest. For both approximation methods,
the approximating sequences of processes are shown to be tight using a
decomposition of Lyons and Zheng. The conditions under which one can
identify any weak limit as a realization of X are most general for the
interior approximation scheme and are satisfied for example if for any
compact set K c is uniformly elliptic on D n K and p is strictly
bounded away from zero there. Finally, we show under further mild
regularity and non-degeneracy conditions on a and p that if aD is locally
of finite (d-1)-dimensional upper Minkowski content, then X is a semi-
martingale.

Key words : Dirichlet form, reflected diffusion, stationary, symmetric Markov process,
penalty methods, singular drift, semimartingale, Minkowski content.

RESUME. - Considerons une forme de Dirichlet (~, ~ (~)):

ou D est un domaine de est une fonction bornee de D dans l’ensemble
des matrices dx d symetriques et definies positives, pest une densite de
probabilité strictement positive sur D, a et p sont localement lipschitziennes
sur D. Nous utilisons deux méthodes pour approcher le processus de
Markov symetrique et stationnaire X associe a (~, ~ (~)), qui dans le cas
de donnees regulieres est une diffusion de generateur infinitesimal

1 2p~.(ap~) dans D, avec reflexion conormale a la frontiere de D. La
premiere approximation est une approximation « extérieure »; elle utilise
la methode classique de penalisation d’une diffusion dans tout La

seconde est une approximation « interieure »; elle utilise des diffusions qui
sont contraintes a rester dans D par une derive singuliere. Nous etablissons
l’existence de telles diffusions ; il s’agit d’un resultat probablement inter-
esssant en soi. Dans les deux cas d’approximation, la tension est etablie
en utilisant une decomposition due a Lyons et Zheng. Les conditions sous
lesquelles on peut identifier toutes les limites faibles comme des realisations
du processus X sont plus générales dans le cas de l’approximation inte-

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



15SYMMETRIC REFLECTED DIFFUSIONS

rieure, et sont satisfaites en particulier si pour tout compact K de 
est strictement elliptique et p uniformement positive sur D n K. Enfin on
montre que sous des hypotheses assez faibles de régularité de a, p, aD et
de non dégénérescence de a et p, X est une semimartingale.

0. INTRODUCTION

In this paper we consider the Dirichlet form (~, ~ (~)):

where D is a domain in is a symmetric bounded, locally elliptic,
dx d matrix-valued function on D, dJl = pdx and p is a strictly positive
probability density on D. To ensure that this is a Dirichlet form (see
Theorem 2.1), we impose the mild regularity assumption that a and pare
locally Lipschitz in D [see (Al)-(A2) of section 1].
The theory of Fukushima [9] associates to the Dirichlet form ~ 

a stationary symmetric Markov process X with strongly continuous semi-
group on L2 (D, Jl). The infinitesimal generator of this semigroup is an
extension of the partial differential operator

We paraphrase this by saying that X behaves in D like a diffusion with

diffusion coefficient a and driftV. (ap). Here and throughout this paper
2p

we use the term diffusion loosely to mean a Markov process that on the
interior of its state space has an infinitesimal generator that is an elliptic
partial differential operator. When we need the more restrictive notion of
a continuous strong Markov process, we shall use precise words to this
effect. Indeed, for there to be a continuous strong Markov process with
paths in D associated to (~, ~ (~)), one needs to impose additional
assumptions on the data (D, a, p). In particular, if D is bounded and has
smooth boundary, and a, p can be extended off D to smooth functions
defined on IRd such that a is uniformly elliptic and p &#x3E; 0, then there are
many ways to define a continuous strong Markov process in D with

Vol. 30, n° 1-1994.



16 E. PARDOUX AND R. J. WILLIAMS

associated Dirichlet form (~, ~ (~)). For instance, when "smooth" is

interpreted to mean C2-smooth, the work of Lions and Sznitman [17],
Theorem 4. 4, on solutions of stochastic differential equations with reflect-
ing boundary conditions, guarantees that given a d-dimensional Brownian
motion W and initial point x E j) and letting 6 = Ja denote the positive
definite, symmetric, square root of a, ~=2014V.(~), and n denote the

2p
inward unit normal to aD, there is a unique solution (Xx, L") of (3)-(5)
that is adapted to W:

(4) L" is a continuous, one-dimensional, non-decreasing process,

The boundary behavior of Xx is captured by the last integral in (3) and
(4)-(5), which indicate that X is reflected at the boundary of D in the
eonormal direction an. The process Lx is called the local time of X" on aD.

By Ito’s formula, the process X" generates a solution starting from x of the
submartingale problem used by Stroock and Varadhan [26] to characterize
diffusions with smooth boundary conditions. Indeed, the uniqueness of
solutions of that problem [or of (3)-(5)] guarantees has
the strong Markov property. The process obtained by randomizing the
initial condition of this process so that it has the stationary law ~ on D
can be verified by integration by parts to be a realization of the stationary
symmetric Markov process associated with the Dirichlet form (~, ~ (~)).
An extension of the above claims to unbounded D can be achieved by
imposing suitable growth conditions on a and p.
When aD is not smooth or a or p may degenerate at the boundary

of D, little is known about representations of the form (3)-(5) for the
Markov (or strong Markov) process associated with (~, ~ (~)). However,
by analogy with the smooth case, we shall refer to such processes as

symmetric reflected diffusion processes.
In the special case where a -_- I, D is of finite Lebesgue measure and p is

constant, X is called (normally) reflected Brownian motion in D and more
is known about this process. In particular, Bass and Hsu [2], [1], have
shown that when D is a bounded Lipschitz domain, there is a continuous
strong Markov process on D associated to (~, ~ (~)) and relative to the
filtration generated by X one has the semimartingale decomposition:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



17SYMMETRIC REFLECTED DIFFUSIONS

where W is a d-dimensional Brownian motion martingale, L is a continu-

ous, adapted, non-decreasing process that increases only when X is on

aD, and n is the inward unit normal vector field defined a.e. relative to

surface measure on aD. Since L does not charge the set of times for which
X is at points where n does not exist, (6) is well defined.

For an arbitrary domain D of finite Lebesgue measure, Williams and

Zheng [29] have shown that one can approximate the stationary reflected
Brownian motion X in D by a sequence of stationary diffusions with
drifts that tend to infinity at aD in such a way as to keep the sample paths
of these diffusions in D. We refer to this as an interior approximation. It
further follows from the work of [29] that X is a semimartingale if the

boundary of D is locally of finite (d- I)-dimensional upper Minkowski
content [see (A8) for the definition] and in this case an averaged version
of the decomposition (6) holds (see Theorem 6.1 below).

In this paper we generalize the results of [29] to symmetric reflected
diffusions associated with the Dirichlet form (~, ~ (f)) and we compare
the interior approximation with a conventional penalty (or exterior)
approximation method. We stress here that we only consider the stationary
Markov process associated with (~, ~ (g)) and we do not address the

question of when it has an associated continuous strong Markov process
on D. The latter is an interesting open problem. (For the case where a
and p do not degenerate at the boundary of D, which includes the case of
reflected Brownian motion, this question has recently been addressed by
Chen [6], and some sufficient [6] and necessary [28] conditions for such a
strong Markov process to have a certain semimartingale decomposition
have been given. Since the submission of our paper, further progress has
been made on this question in the non-degenerate case by Chen, Fitzsim-
mons and Williams [7].)
The structure of our paper is as follows.
Section 1 describes some notation and assumptions. In section 2 we

verify that (g, ~ (g)) is indeed a Dirichlet form under these assumptions
and characterize it as the maximal one associated with self-adjoint, non-
negative definite, Markovian extensions of the operator (L, C~ (D)). This
generalizes Lemma 2. 3 .4 of [9] from the Brownian motion case to the
diffusion case treated here. In sections 3 and 4 we develop exterior

(penalization) and interior approximations, respectively, to X. The argu-
ments in these two sections have the following common skeleton:

(i ) define an approximating sequence of stationary, symmetric diffu-
sions, and identify the associated Dirichlet forms,

(ii ) establish tightness of this sequence of processes using the decompo-
sition of Lyons and Zheng [18] and a uniform bound on the diffusion
coefficients of these processes,

(iii) verify there is strong convergence in L2 (Jl) of the semigroups on
L~ functions whenever there is weak convergence and conclude that a

Vol. 30, n° 1-1994.



18 E. PARDOUX AND R. J. WILLIAMS

weak limit of the approximating sequence is a stationary, symmetric
Markov process with strongly continuous semigroup on L2 (D, ~) and
that its infinitesimal generator is an extension of (L, C~ (D)),

(iv) under suitable conditions, identify the Dirichlet form associated
with any weak limit as (~, ~ (6)), and conclude that the approximating
sequence converges weakly to X.
The main differences between sections 3 and 4 lie in steps (i ) and (iv).

The definition of the approximating sequence of processes is significantly
more difficult in section 4 than in section 3. Indeed, the penalty approxim-
ation of section 3 uses a sequence of ordinary diffusions defined on [Rd
with drifts that outside of D point back toward D and grow in magnitude
to + oo as one proceeds along the sequence. On the other hand, the
interior approximation of section 4 employs a sequence of diffusions
confined to D by singular drifts that for each diffusion in the sequence
tend to + oo in magnitude as the boundary aD is approached. The proof
that such diffusions exist and do not exit D is deferred to section 5. The
result stated there may be of independent interest since it is related to
work of such authors as Carlen [4], Zheng [30], Norris [21],
Fukushima [10], Cattiaux and Leonard [5], and references cited therein on
diffusions with singular drift. The extra complication in step (i ) for the
interior approximation is rewarded in step (iv) with more general condi-
tions under which one can identify the limit process. In section 3 we need
to assume that aD is of zero d-dimensional Lebesgue measure and that
there is a set of functions that is dense in the Hilbert space associated
with the form (~, ~ (~)) and which can be extended to a set of functions
defined on [Rd that is dense in each of the domains of the Dirichlet forms
for the approximating penalized processes. This extension property usually
requires some additional conditions on (D, a, p) (see Remark 3.10). On
the other hand, in section 4 a sufficient condition for the identification is
that for each compact set K in [Rd, on K n D, a is uniformly elliptic and
p is strictly bounded away from zero, conditions which require no direct
assumptions on D.

In section 6 we address the question of when X is a semimartingale.
For this we impose slightly stronger regularity assumptions on a and p,
formulated precisely in (A 1 ")-(A2") of section 6. Using the tightness criter-
ion for semimartingales of Meyer and Zheng [19], we are able to verify in
a similar manner to that in [29] that X is a semimartingale if the boundary
of D is locally of finite (d- 1)-dimensional upper Minkowski content
and to obtain some properties of its semimartingale decomposition (see
Theorem 6.1). Whilst this manuscript was in preparation, we received a
preprint of the work of Chen [6] on sufficient conditions for symmetric
reflected diffusions in bounded domains to be semimartingales. Under
slightly weaker regularity conditions on a and p than ours in section 6,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



19SYMMETRIC REFLECTED DIFFUSIONS

Chen shows that X is a semimartingale when the boundary of D is of

finite (d- I)-dimensional lower Minkowski content. Since his method of

approximation is different from ours, we feel our result may still be of
interest. We would like to thank Z. Q. Chen for sending us his preprint
and for telling us about the paper [10] of Fukushima.

1. NOTATIONS AND ASSUMPTIONS

For a vector x ~ Rd and set F c Rd, I x will denote the Euclidean norm

and d(x, For two sets F and G in

Rd(d~1) we write F c c G if F c F c G and the closure F of F is

compact. For a domain D c the a-field of Borel subsets of D will be

denoted and for a a-finite measure v on (D, ~ (D)) and

oo], we let LP (D, v) denote the space of Borel measurable functions

f: D -~ ~ that are in LP with respect to the measure v, and we let

denote the LP-norm on LP (D, v). we write LP (v) for
v). If v is Lebesgue measure on D, we simply write LP (D) for

LP (D, v). For the inner product on L2 (D, v), we shall use (.,. )L2 (D, ~),

i. e., ( f, g)L2 (D, v) = fg dv for all , f ’, g E L2 (D, v). When there is no ambigu-
ity as to the measure involved, we shall simply write ( . , . ) for

( ’ ? ’ ~ )L2 (D, v)’
For each non-negative integer n, we let denote the Sobolev

space of functions f E LP (D) that have all distributional derivatives up to
and including those of order n in LP (D). The norm on wn, P (D) is taken
to be

where D°‘ f denotes the a-th derivative of f for any multi-index a, and in
particular, DO f = f. The local spaces (D) consist of functions f : D - R
that belong to Wn~ P(D’) for all domains D’ c c D. We note that for

n &#x3E;__ 1, (D) is the same as Cn -1 ° 1 (D), the space of functions which
have derivatives up to and including those of order (n -1 ), and which
together with those derivatives are locally Lipschitz continuous on D. We
use the usual notation that H" (D) = W"~ ~ (D) and (D) = (D).
We let denote the set of functions that are n-times

continuously differentiable on D, n = 0, 1, 2, ... We shall write C (D) in
place of C° (D). The set Coo (D) will denote those functions that are

infinitely differentiable on D. For n = 0, 1, 2, ..., oo, C~(D) will denote

Vol. 30, n° 1-1994.



20 E. PARDOUX AND R. J. WILLIAMS

those functions in Cn (D) that have compact support in D and C~ (D) will
denote those functions in C"(D) which together with their partial deriva-
tives up to and including those of order n are bounded on D. Again, for
n = 0, the superscript n will be suppressed.

Occasionally, for a vector or matrix valued function f defined on D or
[Rd, we shall write for example, f E Wn’ p (D) to mean that each component
of the vector or matrix valued function belongs to (D).

For k _&#x3E; 1, let C ([0, 1], denote the space of continuous Rk-valued
functions defined on [0, 1], and, unless indicated otherwise, consider

C([0, 1], [Rk) to be endowed with the topology of uniform convergence.
Throughout this paper d will be a fixed positive integer and D will be a

fixed but arbitrary domain in In sections 2-4, functions a : D -+ [Rd Q [Rd
and p : D --~ R will be assumed given such that they satisfy
(Al) (D) is symmetric, bounded and locally elliptic on D,
in the sense that for each compact set K c D, there is ~,K &#x3E; 0 such that

for all ç E jRd and x E K; and

In particular, note that since (D) c C (D), for any compact set

K c D there are constants cK and CK such that 0  cK __ p (x) ~ CK  oo for

all x E K. We regard (D, a, p) as the data for the stationary symmetric
reflected diffusion that we wish to construct. Such a process should live

in D, have infinitesimal generator on functions f E C~ (D) given by

and have associated Dirichlet form (~, ~ (~)) given by (1)-(2). We shall

let b = 1 D . (ap), i. e., for j =1, ..., d,
2p

2. THE DIRICHLET FORM

The aim of this section is to study the Dirichlet form (~, ~ (~)) defined
by (1)-(2). We shall closely follow the terminology of Fukushima [9] and

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



21SYMMETRIC REFLECTED DIFFUSIONS

freely use the results proved there. We shall first prove that (S, ~ (~)) is
indeed a Dirichlet form, and then identify the associated unbounded

operator on L2 (D, ~), which will be the infinitesimal generator of the
process to be constructed in the next section. Note that the results of this
section will be applied later not only to the Dirichlet form (6, ~ (S))
under study, but also to the approximating forms which will be introduced
in the next two sections.

Recall that (~, ~ (6)) is called a Dirichlet form on L2 (D, ~) if it is a

symmetric, closed and Markovian bilinear form on @ (S) (~), where
~ (~) - called the domain is a dense linear subspace of L2 (D, p).
In this section, ( . , . ) denotes the inner product in L2 (D, ~), where as
before d=pdx on D.

THEOREM 2 . 1. - (~, ~ (~)), as defined by (1)-(2), is a Dirichlet form.

Proof. - The symmetry of S follows readily from that of the matrix
The Markovian property of (~, ~ (~)) follows from the fact that for

(p, E C~ (~) as in [9], page 5, ( f ) = cpE ( f ) ~ f where _ 1.
To show that (6, ~ (~)) is closed, suppose is a sequence

in ~ (S) such that ( £ ) is Cauchy relative to the norm II. I ~ (t) given by

We first note that there exists fe L2 (D, a) such in L2 (D, ~).
Let {Dk }~k=1 be an increasing sequence of open subsets of D such that

By the local ellipticity of a and since p is bounded away from zero on
Dk, for any k &#x3E;_ l, ~ c~ &#x3E; 0 such that

Hence for each k &#x3E;_ 1,

and Moreover p-measure. Hence from Fatou’s
Lemma

To show 0 as n - oo, note that

Vol. 30, n° 1-1994.



22 E. PARDOUX AND R. J. WILLIAMS

Since (7) holds and f ~ D (E), it suffices to show that V E &#x3E; 0,  k (E) and
such that 

This follows from the Cauchy property in ~ (8) and the fact that
V fNEL2(D, u) for each N. D

It follows from Theorem 1. 3 .1 and 1.4.1 in [9] that there exists a
unique negative semi-definite self-adjoint operator A on L2 (D, which
generates a strongly continuous symmetric Markovian (3) semigroup

t &#x3E;_ 0 ~, and satisfies:

Note that the following properties hold:

We shall use the following definition of Gd (~)) in terms of the semi-
group ( Pt, t &#x3E;_ 0 ~ :

Finally we associate to A the resolvent {G~=((xI-A)’Ba&#x3E;0}, which
satisfies

c ~(~ i;)=(~ v), MeL’(D, ~~(~),
where ~)=~(M, M, ~e~(~). Moreover,

where ~~a&#x3E; (.f G~ .f~ g) ~
We want now to identify the operator A associated to the Dirichlet form

(~, ~ (~)) defined by (1), (2). For that, we first introduce the operator L

(~) In fact "subMarkovian" in the usual terminology.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



23SYMMETRIC REFLECTED DIFFUSIONS

from C~ (D) into L2 (D, ~,), defined as follows (we use here and henceforth
the convention of summation upon repeated indices):

We note that L f E L2 (D, p) whenever f E C~c (D), since the aij are bounded

are bounded on compact subsets of D. We note that
2 p ax. 

p

and hence for f, (D), by integration by parts:

Thus, (L, C~ (D)) is a negative semi-definite, symmetric operator. We first
show:

LEMMA 2 . 2. - (A)) is an extension of (L, C~° (D)).

Proof. - Let Then and

g) + (h, g) _ (. f g), (D), i. e.,

Since h E (D), aij p~ (D), and the support of g is a compact
subset of D, we can integrate by parts in the above to obtain:

Hence, if L* denotes the adjoint of L then (L*) and

However, since h = G1 f = (I - A) -1 f, we also have:

Hence ~ (A) = Range c ~ (L*) and A = L* on £D (A), i. e. A c L*.
The result then follows from Lemma 2. 3.2 (i) in [9]. D

Let .91 M (L) denote the set of all self-adjoint, negative semi-definite
Markovian extensions of L. We have just shown that AEdM(L). We shall
next show that A is the maximal element in dM(L) in the sense of the
next theorem. This theorem is a generalization to our L of Lemma 2 . 3 . 4

of [9] which was established for L = 10. Since the proof for L is similar

Vol. 30, n° 1-1994.



24 E. PARDOUX AND R. J. WILLIAMS

to that for -A, we only give details where there is a difference in the

argument due to our weak regularity assumptions on the coefficients of L.
For we shall denote by the associated Dirichlet

form, and

THEOREM 2.3. - Suppose c ~ (~) and

Proof. - By the same reasoning as in the first paragraph of the proof
of Lemma 2.3.4 of [9], it suffices to show that for a&#x3E;0,

we have f E Htoc (D)
and

Since L* = L on C~° (D), by the definition of ~V’a, (L - a) f = 0 in the sense
of distributions. Then by an extension of Weyl’s lemma applicable to L
(see Hörmander [ 11 ], Theorem 17.2.7), it follows and

(L - a) f = 0 a.e.
Let {G~ denote the resolvent for B, G;(f2)= lim n n

and extend the definition of (g, h) to whenever the right member

is well defined. Then by the same kind of argument as in the third

paragraph of Lemma 2 . 3 . 4 of [9], possibly using truncation of f and then
passage to the limit, we obtain

where

Thus

and using the first formula above for/p we have

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



25SYMMETRIC REFLECTED DIFFUSIONS

This paragraph takes the place for L of the justification of (2 . 3 . 25)

for 1 A given in [9]. By Lemma 2 . 3 2 (I) in [9], B c L*, hence
J

and the same holds A n in place of f Then (9) becomes

Here we have used the fact that E WZ° 2 (D) with compact support in
D in the first line and the symmetry of G~ in the second line. Now,

where {PBt, t &#x3E;__ 0 } is the semi group associated with B. Since
and P B is strongly continuous, is

continuous, and

For the other term, we note that P B (L cp) - L cp in p-measure as t 1 0, and
is bounded by a constant, hence since f2 ~ L1 (D, p),

We have proved that, as P - oo,

Now since f ~ N03B1 and by integration by parts,

Thus,

Vol. 30, n° 1-1994.



26 E. PARDOUX AND R. J. WILLIAMS

Hence,

Letting we deduce finally

3. APPROXIMATION BY PENALIZATION

Let (D, a, p) denote the triplet described in section 1. We shall construct
a sequence {Xn} of symmetric Markov processes taking values in all of Rd,
which under additional assumptions described in Theorem 3 .9 converges
weakly to the process X associated to the Dirichlet form (~, ~ (f)). We
shall add one crucial assumption to those made in section 1, which will
be supposed to hold only in this section:

(A3) aD = DBD has zero d-dimensional Lebesgue measure.
We note that when (A3) does not hold, the limit constructed by penaliza-
tion (which is an "approximation from the exterior") would not need to
agree with the limit we shall construct by approximation from the interior
in section 4.
We shall use the following lemma, which is proved in Stein [24], p. 171,

to define a regularization of the distance to D.

LEMMA 3 . 1. - Let G be an open set in For let d(x) denote
the distance of x from G~. There exists a continuous function 8 : f~ and

strictly positive constants cl, c2, such that

(i) 
(ii ) and for any multi-index (3, the 03B2-th derivative ~03B2 8 of 8

satisfies

where I B denotes the sum of the components of the multi-index (3.
Let us now define the approximation. For this, extend a by I and p by

0 outside of D.

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques



27SYMMETRIC REFLECTED DIFFUSIONS

LEMMA 3 . 2. - There is a sequence {(Dn, an, 1 such that

U Dn = D, and for each n,
n

(1 ) Dn is open, Dn C C Dn + 1 C D,
(ii ) an E W 1 ° °° an is symmetric and uniformly elliptic on 

(iii ) pn E W 1 ° °° (Rd), pn &#x3E; 0 on Rdpn dx= 1, and there is a finite con-
stant cn such that

Proof - Let b denote the function e from Lemma 3 .1 associated with
G=D’and

Let p E Cr ((~d) be such that p &#x3E; 0 on and for some and c &#x3E; o,

where B1, /= 1, 2, ..., denotes the ball in ~d of radius I centered at the

origin. Let {Dn}~n=1 be a sequence of open subsets of D such that

For each n, let ~n E C~° ((~d) such that 0 _ c~n  1,

and let ~n =1- ~n.
Define

where k" is a normalization constant:

The properties stated in the lemma are easily checked. Note in particular
that kn -+ 1 as n - oo by dominated convergence (we use (A3) here to
insure a.e. convergence). D

Vol. 30, n° 1-1994.



28 E. PARDOUX AND R. J. WILLIAMS

For each n, by Lemma 5 . 2.1 and Theorem 5 . 2. 2 of [25], there is a
function such that (f~d), is symmetric
and positive definite for each x E [Rd and 6n 6n = an. Let

and We note that an = a, bn = b on Dn.
Let (Q, iF, P) be a probability space on which are defined a d-dimen-

sional Brownian motion {Wt, t~0} and an independent d-dimensional
random vector Yn with law ~,n. Consider the stochastic differential equation

We have the following

THEOREM 3 . 3. - Equation (13) has a unique strong solution which is a
stationary symmetric Markov process with sationary measure ~,n and an
associated strongly continuous semigroup {Pnt, t &#x3E;- 0 } on L2 (lRd, The

associated Dirichlet form is (~n, ~ (~n)) where

Before proving this theorem, we need to establish a technical lemma:

LEMMA 3 . 4. - Let and 

Suppose that the matrix a (x) = (x))d ~ -1 is symmetric for each x E (~a,
and that there exists oc &#x3E; 0 such that ~’ a (x) ~ &#x3E;_ a I ~ ~ 2, for all x, ~ E (~d. We
define

Let q : R + X fl~ + be the unique (4) measurable function satisfying

(4) It is a consequence of our proof that q is unique.
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where ( . , . ) denotes the usual inner product in L2 (~d).
Moreover, denote a diffusion process in with infinitesimal

generator L and initial law y) dy. Then for any t &#x3E; o,

y)dy is the law o Y .

Proof. - We note that from the assumptions made on the

martingale problem associated to L is well posed. (Indeed, the associated
stochastic differential equation even has a unique strong solution (see
Veretennikov [27]), but we won’t use this fact.) Hence the law of the
process { Yt, t &#x3E;_ 0 } is uniquely determined by the conditions given in the
statement of the lemma. We shall denote expectation under that law by
~~, and expectation under the law of the same process with the initial
condition Yo = y a.s. will be denoted by lEy, y e ~d.
The assumption (iii) says that q solves in a weak sense the Fokker-

Planck equation:

For t&#x3E;O and let ~ v (s, denote the unique
element of L2 ((o, t), H1 (~8d)) (~ C ([o, t], L2 which in a similar weak
sense solves the backward Kolmogorov equation:

see Dautray-Lions [8], Theorem XVIII. 3 . 1 and 2 for a reference. We first
claim that

Indeed, this formula is known under additional regularity assumptions
on the coefficients a and P, see Bensoussan-Lions [3], Theorem 2. 7. 4.
The claim now follows by taking limits along a regularizing sequence of
coefficients, both in the partial differential equation for v (using the
methods in [8], Chapter XVIII) and in the martingale problem for Y (see
Stroock-Varadhan [25], Theorem 11. 3. 3).
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Now, from [8], Theorem XVIII. 1 . 2, s - (q (s), v (s)) is absolutely con-
tinuous and

where (., .) denotes the pairing between H 1 (~d) and H - (~d). Hence

for any 

Proof of Theorem 3 . 3. - Existence and uniqueness of a strong solution
follow from the results of Veretennikov [27]. By Lemma 3.4 with

a= -~, P==~ q (t, have that is an invariant probability

measure for Xn.

By identifying the space L2 wih L2 (Q, a (Xo), ~) for each t &#x3E;_ 0
we can define a bounded linear operator Pt on L2 (lRd, by

The fact that P~ is a bounded linear operator with norm one on
L2 follows from Jensen’s inequality and the conservative property

The symmetry of {X~} follows from the fact that the process
obtained by time reversal at a fixed time t is again a solution of a stochastic
differential equation with the same coefficients and initial law as in (13),
see Pardoux [22]. Note that condition (H2) (ii) there is not needed since
an is non-degenerate (see Remark 2. 3 of [22]), and that the Lipschitz
continuity of b is assumed there only to ensure existence and uniqueness
for the stochastic differential equation.

Since Cb (lRd) is dense in L2 (lRd, and { P } is a contraction semigroup,
strong continuity on L2 will follow from

for any g E Cb The latter follows from Jensen’s inequality, the conti-
nuity of the paths of Xn and bounded convergence.
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Let

Since Xn is a solution of ( 13), by applying Ito’s formula we have that for

Since V g. an is bounded, the stochastic integral with respect to W defines
a martingale. Hence

By the strong continuity of the semigroup’ { Ps, and boundedness
of the last entity above converges in a (Xo), ~) to

(Ln g) as t ~, 0. It follows that the strong domain of the infinitesimal

generator An contains C~° and that

Hence, since C~ (lRd) is dense in H1 (lRd, ~,n), the Dirichlet form associated
to xn is the unique one extending

which is defined by (14)-(15). 0

Since we are only concerned with stationary Markov processes, from
hereon we restrict attention to processes defined on the time interval [0, 1].
From the definition of Xn we have that

is a continuous martingale with respect to thenfiltration generated by Xn,
which we call the "forward" filtration of Xn, and Mn has mutual variation
process

Since xn is symmetric, it follows that for ~n --_:X ~ _ .,
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is a continuous martingale with respect to the filtration generated by Xn,
called the "blackward" filtration of X", and the mutual variation of Mn is
given by

v v

It can be readily verified by substituting ( 16) and ( 18) in the following
that we have the decomposition (cf. Lyons-Zheng [ 18], pp. 251-252)

Since the mutual variations of M" and M" given by (17) and (19) are
absolutely continuous with respect to dt and have derivatives in t that
are uniformly bounded in t and n, it follows (see Jacod-Shiryaev [12],
Prop. VI. 3 . 26, Thm. VI. 3 . 21) that the laws of

define tight sequences of measures on C([0, 1], R) and consequently by
Theorem VI . 4 .13 of [12] the laws are tight.

Since Pn -+ P in L1 (f~d), X~ converges weakly to Xo whose law is J.1,

where ~ (dx) = pdx. Thus, individually the laws of {Mn ~n 1, ~ M" ~n 1, and
{X~ }~= i are tight and consequently the laws M", X~) ~n 1 define
a tight sequence of measures on C ([o, 1], Suppose that

(M, M, Xo) is a weak limit point of this sequence and define

Then (M" Mn, Xn) converges weakly along a subsequence to (M, M, X).
For notational convenience, without loss of generality, we may suppose
that the convergence is along the sequence (not a subsequence). It can be
readily verified that X inherits stationarity and symmetry from the Xn.
Moreover, since the law of X~ is Iln for each t E [o,1] and ~n ~ ~, we
deduce that ~ is the law of Xt, for each t E [0, 1]. Since D is the support
of Il, and X almost surely has continuous paths, we deduce that

and moreover, for each 1], Xt E D a.s., since ~. (D) =1.
In a similar manner to that in the proof of Theorem 3 . 3, we define for

each 1] the bounded linear operator Pt on L2 (D, Il) by:

and remark that Pt is symmetric since {Xt} is.
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LEMMA 3. 5. - For any f, and t E [0, 1], we have

Proof. - We first claim that it suffices to prove the lemma for

f, To see this, observe that for hE L 00 (lRd) and g E Cb 

It suffices to consider the first two terms on the right side. Now,

since Pr has norm one on L2 (D, Jl), and

where c = (~ I h I I ~ + I I g I I ~)2. Thus, since Cb (lRd) is dense in L2 it
suffices to prove (i), and similarly (ii) for f, g E Cb 
Assuming g E Cb we have for any h E Cb (lRd),

by the convergence of Pn and the weak convergence of X" to X. It is easily
deduced from this that Pt g in L2 (D, Jl) weakly, as n - oo, for each
g E Cb Now (ii) follows from the L1 convergence of p" to p.
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We now show that P r g converges strongly to Pt g in L2 (D, Jl), again
for each let { X~ ~ x, t &#x3E;__ 0 ~ be the unique strong
solution of (13) with initial condition Xn° " (o) = x. By well posedness of
the associated martingale problem (see [25], Exercise 6. 7 .4), the law of

is unique is measurable. Hence,

Fix x E D such that the last identity holds and such that x E D~. Let

We observe that for n &#x3E;__ m, the coefficients of equation (13) restricted to
D~ do not depend on n. Let (a, b) be an extension of (a, b) outside Dm,
such that a E W 1 ~ °° ( (~d) is symmetric and uniformly elliptic, and b is
bounded and measurable. Then the associated stochastic differential equa-
tion has a unique strong solution Xx starting from x. For Ost, let
p (s, x, y) denote the associated transition probability density (see
Theorem 9 . 2 . 6 in Stroock-Varadhan [25]), which as a function of y is in
L2 (I~d). Let ?= inf { u &#x3E;_ 0 : Xu e Dm ~. Then,

where

and the same bound holds for lln’ Given E &#x3E; 0, we can choose s &#x3E; 0 small

enough such that 2 ~ ~ g ~ ~ ~ (~ (i  s) _ E. Then

for any n &#x3E;__ m. Moreover, from the weak convergence in L2 (D, ~,) of
~~

converges as since "-2014"-- is in and hence
_ 

7~(.)
~" ~ ’’1~ (.)eL~(D, ~). We conclude from this convergence and (25)

~(.)
that {P~g(~)}~ is a Cauchy sequence in !R, for x in D. Strong

Annales de Poincaré - ProbabiHtes et Statistiques



35SYMMETRIC REFLECTED DIFFUSIONS

convergence in L2 (D, ~.) follows from the bounded convergence theorem,
and the strong limit equals the weak limit. D

LEMMA 3 . 6. - ~ Pt, 0 _ t _ 1 ~ is a strongly continuous symmetric Marko-
vian semigroup on L2 (D, p).

Proof - The symmetry has already been noted and the Markovian
property is evident from the definition of Pt. For the semigroup property,
since L°° (D, ~,) is dense in L2 (D, ~,) and Pr has norm one on L2 (D, p), it
suffices to show that for each g, h E L °° (D, p), and such that

But by the symmetry of Pt this is equivalent to

Observe that with P r , P~, P i + S, in place of Pt, Ps, D,
respectively, and the functions h, g extended by 0 outside D, the above
holds by the symmetry and semigroup properties For

all n sufficiently large, the left member of (26) can be shown to be within E
of that with the "n-replacement" described above, by invoking Lemma 3. 5
and the convergence in L~ (f~d) of /?~ to p, together with the uniform
bound for The strong continuity of

0 ~ t -_ 1 } now follows precisely as in the proof of Theorem 3 . 3. D

THEOREM 3.7. - The weak limit process X is a stationary symmetric
continuous Markov process with stationary measure ~, on D and associated
strongly continuous semigroup {Pt, 0  t  1} on L2 (D, p).

Proof. - To prove X is a Markov process with semigroup {Pt, 0 _ t  1}
on L2 (D, ~,), it suffices to show that

for all ho, h1, ..., and ... , such that

sl +... We extend each of the hi, 1, ..., to be zero on D~,
so they are in C~ (~d). By the analysis of Lemma 3. 5, one can show that
the left member of (27) equals
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But by the Markov property of X", this equals

which by the weak convergence of Xn equals the right member of (27). 0
Under suitable conditions, we now identify the symmetric Markov

process X, with strongly continuous Markovian semigroup {Pt, 0 _ t _ 1}
on L2 (D, as the one having Dirichlet form

(~, ~ (~)) denote the Dirichlet form associated with {Pt, 0 _- t --1 ~ . Let A
denote the infinitesimal generator of {Pt, 0 ~ t _ 1 } and let ~ (A) denote
its strong domain.

LEMMA 3. 8. - For any g E C~ (D), we have g (A) and

Proof. - Let g E C~° (D) and h E Cb (D). Then, after extending g and h
by zero outside D, we have

Now for n sufficiently large, the support of g will be contained in D" an(
then

Thus the last line of (29) equals

by Lemma 3 . 5 (ii). Since h was arbitrary we have
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By the strong continuity of Ps, s -~ PS (Lg) is a continuous function from
[0, t] into L2 (D, ~) and so it follows that

strongly in L2 (D, Jl). D

It now follows from Theorem 2 . 3 that ~ (l) c ~ (~) and

Before we can state our final result, we need to define:

A = ~ fE W 1 ~ °° compact support}
and AD, the set of restrictions to D of the elements of A.

THEOREM 3 .9. - Suppose that 
’

(A4) AD is dense in D (8) with the norm ~.~D(E) defined by

Then (8, ~ (~)) _ (~, ~ (~)) ~
Proof. - It suffices to prove that !Ø (~) (~) and for all g (~),

Since ~ (~) equipped with the is complete, it suffices

from (A4) to show that AD c ~ (~) and that (31) holds for geAp.
Let g E AD. Then g has an extension to Rd-that we still denote by

g - which belongs to A. In that sense, g and from Lemma 1. 3 . 4

of [9], for each t &#x3E; o,

Taking the limit as n - oo in (32), we deduce that

The result follows by applying Lemma 1. 3 .4 of [9] again. D

Remark 3 .10. - Suppose a is uniformly elliptic, D is bounded and p is
bounded above and below by positive constants. 
and is equivalent to (D)’ In this case, a sufficient condition
for (A4) to hold is that D is an E - 6 domain, i. e., there is E &#x3E; 0 and 03B4&#x3E;0
such that whenever x, y e D and ( x - y ~  ~, there is a rectifiable arc r c D
joining x to y such that
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and

where I r I denotes the length ofr. If D is an 8-8 domain, then by a
theorem of Jones ([13], Theorem 1) any function in W 1 ~ 2 (D) is the restric-
tion to D of some function in W1, 2 (~d), and since A is dense in W 1 ~ 2 (~d)~
it follows that AD is dense in W1, 2 (D). We note from the paper of
Jones [13] that an s-8 domain can have a highly non-rectifiable boundary
and for any a E [d-1, d), there is an E - ~ domain whose boundary has
positive a-dimensional Hausdorff measure.
Remark 3.11. - The results of this section remain true if we replace

the by any other sequence satisfying the properties
stated in Lemma 3.2. In particular, we could have made the following
choice for pn:

where kn is chosen in such a way that pn dx =1. Accordingly, kn -4 0 as
n - oo and the term involving 03C6n creates a large drift towards the interior
of D from points x in In this case, the "strong push" is only
exerted inside D, as in the next section, but it is not strong enough so as
to keep Xn inside D. When Xn exits D, we count on recurrence to bring it
back inside. Note that in the construction used in this section, there is
also a strong push on due to However, this push inside
can be avoided in the case where D is bounded and p can be extended to
an element of W 1 ~ ~° (f~a).

4. APPROXIMATION FROM THE INTERIOR

Let (D, a, p) be the given data as described in section 1. We first

approximate a and p by data for a sequence of diffusions defined on all
of by defining (Dn, an, pn) almost as in Lemma 3 . 2, with the only
difference being that qn and kn are replaced by 1. It can be verified that
all of the properties stated in Lemma 3 .2 still hold except possibly for

and in as n - oo .

Let 8 denote the function e from Lemma 3 .1 associated with G = D.
For each x E D, define

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



39SYMMETRIC REFLECTED DIFFUSIONS

Note that for each fixed n, fn (x) - + oo as x~~D and for each fixed
as n - R. We extend fn to D~ by defining fn (x) _ + oo if

xeD". Now define

(34) Pn = exp ( -.fn)~
where exp ( - oo) --- o. It can be readily verified using Lemma 3 .1 that

pn E (D) and for each multi-index 03B2, the 03B2-th derivative of pn at x E D
tends to zero as x - aD. Combining this with the fact that pn is identically
zero outside of D, it follows that pn is a C~ function on (l~d. Note also
that 03C1n ~ e -1 on D as n - oo . Let

As in section 3, for each n we define a function an: f~a -~ [Rd (x) [Rd such
that 6n E W1’ °° ((~d), an (x) is symmetric and positive definite for each

and an satisfies Let

and let be the probability measure on D that has density 03B3npn Pn relative
to d-dimensional Lebesgue measure, where

We note from the definition of pn that Yn - e as n - oo . One can check
by dominated convergence that yn in L~ (D) as n - oo .

Let (Q, F, P) be a probability space on which are defined a d-dimen-
sional Brownian motion {Wt, t &#x3E;_ 0 } and an independent random vector
Yn taking values in D and having law Consider the following stochastic
differential equation in D:

Note that |gn (x) ( may tend to + oo as x ~ aD, and so in general (36)
does not fall within the realm of the general existence and uniqueness
theory for solutions of stochastic differential equations. Nevertheless, the
following theorem which guarantees existence of a unique strong solution
of (36) that lives forever in D is a consequence of Theorem 5 .1 below.

THEOREM 4 . .1. - The stochastic dfferential equation (36) has a unique
strong solution {Xnt, t~0}. Moreover, Xn does not exit D almost surely,
and Xn is a stationary, symmetric Markov process with stationary measure

and associated strongly continuous semigroup {Pnt, t &#x3E;_ 0} on L2 (D, n).
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For each n, let (~n, D (~n)) be the Dirichlet form associated with the
strongly continuous symmetric Markovian on

L2 (D, 

LEMMA 4 . 2. - We have ~ (~n) = H~ (D, ~,n) and

Proof - One can show as in section 3 that the strong domain of the
infinitesimal generator An for {P, t &#x3E;_ 0 ~ contains C~° (D) and that

where It then follows from Theorem 2 . 3 that

H (D, and

Thus it remains to show that H~ (D, c ~ (~n) and that the reverse of
the above inequality holds for g in H1 (D, Jln)’ This can be proved in the
same manner as Lemma 3 . 5 of [29] with the observation that since an is
bounded and uniformly elliptic, whenever (37) holds, the norm ( . ( (~ ~~n&#x3E;
associated with Gn, defined by

is equivalent to the norm on H~ (D, given by

Since we are only concerned with stationary Markov processes, from
hereon we restrict attention to processes defined on the time interval [0, 1].

In a similar manner to that in section 3, we can show that any subse-
quence of the sequence {Xn, n has a weakly convergent subsequence,
whose limit {Xt, t E [0, 1]}, is a stationary symmetric process with initial
law Il and continuous paths in D. Define a of
bounded linear operators on L2 (D, Il) by:
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LEMMA 4 . 3 . - For any f, (D) and t E [0, 1 ], we have

Proof. - As in Lemma 3 . 5, it suffices to prove the result for

f, g E Cb (D), and the weak convergence of Pntg in L2 (D, Il) as well as (ii)
is proved as there.
For the proof of strong convergence, the only difference from the

situation in Lemma 3 . 5 is that b is replaced by a sequence {bn }~n=m which
agrees on Dm, and which we choose to converge

uniformly to b, V. ( a p) on D~.
2p

For each E &#x3E; 0, we need to be able to choose s such that

However this follows from Chebyshev’s inequality, since from elementary
estimates for stochastic differential equations,

tends to zero as s --~ 0.
Moreover the transition density Pn (s, x, y) of Xn depends on n, and in

order to conclude we only need that

in L2 (D), which follows from Theorem 11. 4 . 2 in Stroock-
Varadhan [25]. D

We can now prove the following in a similar manner to the proof of
Theorem 3. 7.

THEOREM 4.4. - The weak limit process X is a stationary symmetric
continuous Markov process with stationary measure ~, on D and associated

strongly continuous semigroup {Pt, 0 _ t  1 } on L2 (D, 
By a similar proof to that of Lemma 3 . 8, with the additional observa-

tion that V fn I goes to zero uniformly on any compact subset of D as
n -+ 00, it follows that the infinitesimal generator of {Pt, 0 _ t  1 ~ is an
extension of (L, C~ (D)).

Let (?, ~ (~)) denote the Dirichlet form associated to X. As in section 3,
~ (~) (~) and
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THEOREM 4. 5. - Suppose that for each compact set K c f~d,
(A5) a is uniformly elliptic on K n D,
(A6) yn Pn) (x) _ ck p (x) for all x E D n K, n for some constant ck,
Then, (~, ~ (~)) _ (~)) ~
Proof - By (38), it suffices to show D (E) ~ D (E) and for all g (E),

Since !Ø (~) is complete with respect to the norm ~~~ defined by

and (as we will show below).

(C) n L~ (D, 11): g is zero outside K n D for some
compact set K (depending on g) in 

is dense in D(E) with norm (E), it suffices to show that A ~ D (E)
and (39) holds there.
To see that A is dense let and such that

Further, let such that 1], for all
x E (~d, and

Define and observe that hn E A. Moreover, for

/ " 1/2

a~~ (x) ~ 2 . Since g E ~ (~), the last line above
1 /

tends to zero oo, and it follows that A is dense in ~ (~) with the
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We now verify that and (39) holds for gEA. For gEA,
since a is uniformly elliptic on the support of g, there is Àg &#x3E; 0 such that

and and then by assumption 
and also g E L2 (D, hence By Lemma 1 . 3 . 4 of [9] and
Lemma 4 . 2, for each t &#x3E; 0,

It follows form Lemma 4 . 3 (ii ) that the left member of (41) tends as

Now a.e. on D, as where the

sequence on the left is dominated by (~a~~ + 1)| |~g|2 cgp~L1 (D) and by
(A6), c9 is a constant depending on g. Thus, on letting n - oo in (41) we
obtain

Invoking Lemma 1 . 3 . 4 of [9] again, we conclude that and

Remark 4. 6. - An examination of the above proof shows that all we
really need for the result of Theorem 4. 5 is that (a) there be a common
set of functions that is in all of the ~ (sn) and is dense in ~ (6), and (b)
one can pass to the limit as n - oo in (41) to get (42). The reader may
verify that another sufficient condition that can be used in place of
conditions (A5)-(A6) is that W1, 00 (D) is dense in D(E) with the norm
~.~D(E).
Remark 4 . 7. - Condition (A6) is really quite weak. It is always satisfied

if p is uniformly bounded away from zero on D n K for each compact
set K c Moreover, since p is bounded away from zero on compact
subsets of D, (A6) only puts a lower bound on how rapidly p may go to
zero at the boundary of D. In fact, one could even modify our choices of
pn and pn to still keep the same qualitative features but to accommodate
more densities p that go to zero at aD at a "reasonable rate".

Remark 4.8. - Under the result of Theorem 4. 5, any subsequence of
has a further subsequence that is weakly convergent to X, the
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symmetric Markov process with strongly continuous Markovian semi-
group associated with the Dirichlet form (~, ~ (~)), and so it follows that
~ Xn } converges weakly to X. Without the identification provided by
Theorem 4. 5, we simply know that any subsequence of ~ X" ~ has a

weakly convergent subsequence whose weak limit is a stationary symmetric
Markov process with strongly continuous Markovian semigroup and
associated Dirichlet form (~, ~ (?)) satisfying

Remark 4. 9. - Other approximations from the interior are possible. If
we choose the Dn’s to have smooth boundaries, we could choose Xn to be
a diffusion reflected at the boundary of Dn, as constructed for example in
Lions-Sznitman [17]. (Indeed, this is the kind of approximation used by
Chen [6] in his contemporaneous, independent work on the existence of
Skorokhod-like decompositions for reflecting diffusion processes with non-
degenerate a and p.) Alternatively, one could choose the drift of Xn so as
to keep this process inside Dn. If ~n (x) denotes the distance from x E (~d
to D~ and fn = exp ( 1 /(n ~n)) on Dn, then since aDn is smooth, proving that
the additional drift

maintains Xn inside Dn is not too hard to show using fn as a Lyapounov
function, and does not require the involved argument in section 5. How-
ever, we feel that our approximation is more natural, since our Xn lives
in all of D.

5. CONSTRUCTION OF A DIFFUSION WITH SINGULAR DRIFT

In this section, we carry out the construction of a diffusion with singular
drift, which is needed in section 4 for the definition of the approximation
from the interior.

Here D will denote the domain in I~d where the coefficients for our
stochastic differential equation are defined. The drift will be only locally
bounded in D, and we will need to show that the exit time of the diffusion
from D is a.s. infinite. In fact, we shall do that for a stationary and
symmetric Markov process, and we shall show that it never hits the "set
of nodes", i. e., the set where its stationary density vanishes. We deduce
from this the desired result for all starting points x in D of the diffusion.
Our result generalizes earlier results of Carlen [4] and Zheng [30] who
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assume that the diffusion coefficient is the identity matrix. In [10], Fukush-
ima considers a Dirichlet form ( 1 ) with D = f~d, uniformly elliptic C~
diffusion coefficient a, and density p that may degenerate to zero on a set
of points having zero Lebesgue measure. Assuming p is locally bounded
on [Rd and satisfies a local finite energy condition, Fukushima uses a

potential theoretic method to show that the zero set of p is not reached
by the process associated with his Dirichlet form. His proof might be
adapted to establish our result in most cases. (We assume less regularity
of a, though more of p.) Nevertheless, we believe our method is of indepen-
dent interest, being more sample path oriented, along the lines of the work
of Zheng [30], Meyer-Zheng [20], and Norris [21]. Here we adapt the

approach of the latter to our situation.
The following assumptions are adopted throughout this section.

(A 1’) a = (a~~) E W 1 ~ °° ( (~a, is symmetric and uniformly elliptic
on (~d;

(A2’) 

We also assume as given a function p such that

We denote by  the measure on D defined Define

so that b+g=V.(app). Note that (AF) and (A2’) imply that b is
2/?p

bounded. Let ~0~) be symmetric, positive definite and
such that aa = a.

We want to study the equation:

where {Wt, t &#x3E;_ 0 ~ is a given d-dimensional standard Brownian motion
defined on a probablity space (Q, iF, P).
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The aim of this section is to prove:

THEOREM 5 . 1. - For any xED, equation (43) has a unique strong
solution starting from x, which does not exit D in finite time.

COROLLARY 5. 2. - If Y is a D-valued random vector with law p and is
independent of {Wt, t &#x3E;_ 0 ~, then the solution of (43) with Xo = Y is a

stationary symmetric Markov process with an associated strongly continuous
semigroup {Pt, t &#x3E;_ 0 ~ on L2 (D, ~,).
We begin with the:

Proof of Theorem 5. l. Step 1: Local existence and uniqueness. - In
this step, we prove existence and uniqueness up to the exit time of the
solution from D, using rather standard arguments.

denote an increasing sequence of open subsets of D, as
defined in Lemma 3. 2, and for each n, let gn be a bounded and measurable
mapping from jRd into itself, which coincides with g on Dn. For each n,
we can apply Veretennikov’s result [27] to equation (43) with g replaced
by gn and initial condition Xo = x, yielding a unique strong solution

~ X t , t &#x3E;__ 0 ~ . Let We deduce from standard argu-
ments the existence of a unique solution {Xt, 0 -- t  S} of equation (43)
starting from x, where S = lim S, and for 0 _ t _ Sn. Since we may

n

consider D as the state space for the process { Xt, 0 _- t  S ~, in the

following we shall call S the explosion time. (Readers concerned about X
being defined on a stochastic interval may define Xt = a for 
where a is a cemetery point isolated from This defines a strong Markov
process with paths in D U ~ a ~.)

Step 2: A sufficient condition for the explosion time to be a.s. infinite. -
We now show that provided the solution of (43) does not explode (i. e.
exit D) in finite time a.s. when initialized with an initial law v on D with
respect to which Lebesgue measure on D is absolutely continuous, then
for any x in D, the solution of (43) starting from x does not explode a.s.
in finite time.

0 - t  S ~ be a solution of equation (43) with initial law v.
We assume that

and we claim that (44) implies that

Indeed, we first note that
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hence

for v-a.e. x in D, and therefore for Lebesgue a.e. x in D. Suppose now
that there exists x E D such that Then there must
exist t &#x3E; 0 and n E I~I such that

However

where pr (x, . ) denotes the transition probability density of the process
{X~} (starting from x), which exists from Lemma 9 . 2 . 2 of Stroock-
Varadhan [25]. Now for any y in Dn,

and the assumption made upon x implies that there is a set of positive
Lebesgue measure in Dn such that for all y in that set, P (S  oo I Xt = y) &#x3E; 0,
which contradicts the above equality and (45).

Step 3: When initialized with the law ~, the solution of equation (43) does
not explode a.s. - This is the main and last step of the proof. We shall
exploit the symmetry of the solution of (43) when initialized with ~, (this
symmetry is formally recognized in Corollary 5.2), while adapting ideas
from Norris [21].

Let us first consider the equation (43) without the unbounded drift g.
We shall put it back using a Girsanov transformation a little later.
Given a filtered probability space (Q, Q) on which are defined

a d-dimensional Brownian motion {Vt, t &#x3E;__ 0 ~ (which is also supposed to
be an {Ft}-martingale and an ffo-measurable random vector Xo with
law p (x) dx on there exists, again from Veretenikov’s result, a unique
strong solution {Xt, t ~ 0} .of the equation

Moreover, by the arguments in the proof of Theorem 3 . 3, ~ ~t, t &#x3E;_ ~ ~ is
a stationary symmetric diffusion process.
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We let

and for k =1, 2, ...

where

with a some continuous, bounded, and everywhere strictly positive proba-
bility density on IRd.
We claim that:

For the proof of this, note that Q-a.s. on { 0  S  oo ~, Xo E D and
Xs E D~, hence p (Xs) = 0. By a Girsanov transformation and a time change
argument using the boundedness and uniform ellipticity of a, one can
deduce a Levy-type bound on the modulus of continuity of X, from which
it follows that Q-a.s., for each t &#x3E;__ 0 there exists c and E &#x3E; 0 (E may depend
on t and co) such that, whenever I t - s ~ __ E,

Hence from (A7) (iv), there exists a random variable E such that E&#x3E;O

Q-a.s. on ~ 0  S  00 }, and a constant c such that

on the Now if 0~sS, Xs ED, hence

for Now on this random time interval, XS lies in a
compact set (depending on hence a (XJ is bounded away from zero
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on the same random time interval. But

hence (47) is established. From (47) and the definition of Tk, we have that

and the second inequality is Q-a.s. strict 
We now define

with the convention that Zt=O if Xs~Dc for some From (48) and
the fact that on D, we have

Hence by standard arguments (see e.g. [14], p. 198), ~ Zt ~ Tk, t &#x3E;_ 0 ~ is an

L2-bounded martingale for each Let

and define P~ on (Q, by

By Girsanov’s theorem, under ~k,

is a Brownian motion stopped at Tk.
Now fix t &#x3E; 0. For define

where the last superscript ~ denotes completion with the Q-null sets

in,
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Then, under Brownian motion that is a martingale
with respect to the backward filtration {Hs:S E [0, t]} and

where the last integral is a "backward Ito integral" defined as follows:

where s = to  t i  ...  tJ= t and supj-1i=0 (ti + 1- tji) - 0 as j - oo . The claim
of the last sentence is made in Theorem 2.2 and Corollary 2.4 of
Pardoux [22], with the same minor adaptation as in the proof of our
Theorem 3. 3.

We now introduce, for each s E [0, t],

with the convention that Zst = 0 if Xu E D‘ for some u E [s, t]. Let Zt = Zo t.
We now claim that

To see this, let

where the supremum of an empty set is taken to be zero. Then since V is
a Brownian motion martingale with respect s e [0, t] ~, we have

By considering the cases where Xs ED for all s E [0, t], and the alternative,
separately, we conclude that

Then (51) follows from (52) by Fatou’s Lemma.
We will now prove that for each t &#x3E;_ o,

Since (53) is trivially satisfied on the set ~ S __ t } from the definitions of Zt
and Zt, by comparing the exponents in (53), we see that it suffices to show
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that Q-a.s. on the set ~ S &#x3E; t ~,

Now we have roughly speaking the following two facts:
(a) the "forward" Ito formula applied to Xt satisfying (46) yields that

on ~S&#x3E;t~

and

(b) the "backward" Ito formula applied to Xt satisfying (50) with s = 0
yields that on {S &#x3E; t ~

Note that (54) [resp. (55)] is not obtained by a direct application of
Ito’s formula since log p ~ C2 but rather as follows. For any n, there
exists a function gn E C2 which coincides with log p on Dn. We apply
the forward (resp. backward) Ito formula to gn. This gives (54) [resp. (55)]
on the for each n, hence on the set ~ S &#x3E; t } = U ~ Sn &#x3E; t }, where

n

Subtracting (55) from (54) yields the desired result.
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Letting E~ denote expectation under we can now conclude that for
t &#x3E;_ 0 fixed,

, ..,

from (A 1’), (A7) (iii).
This shows that for each t &#x3E;_ 0,

For each define

It follows from (56) that this defines a probability measure on (Q, 
t

(see Stroock-Varadhan [25], p. 35). Then satisfies
k

Now let
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From (49), ~ Wt ~ Tk, t &#x3E;_ 0 } is a continuous P-martingale with mutual
variation

Consequently {Wt, t &#x3E;_ 0} is a Brownian motion under P, and 

where Xo has distribution ~ under P. The fact that X does not exit D
follows from (48), (57) and the fact P (Xo e D) = 1. D

We can now proceed with the:

Proof of Corollary 5.2. - We only need to prove stationarity and
symmetry, since strong continuity of the semigroup follows in a similar
manner to that in the proof of Theorem 3.3. We shall use the notations
from the proof of Theorem 5 .1.
We first note that for 

by monotone convergence, since Q-a.s. on Hence
k

and

Let now 03C6, 03C8 ~ Cb (D). From (59), (53), we deduce

_, _ 
’ __ _ _ __ _ _ _ _

where Now we rewrite (50) as

with V. _ - Vt _ ., and also

i. e., Zt is the same functional of (X, V) as Zt is of (X, V). Now, under
Q, V and V are both standard Wiener processes and X (resp. X) is a
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strong solution of a stochastic differential equation with coefficients (b, a)
driven by V (resp. by V) and with initial condition Xo independent of V
(resp. Xt independent of V), where Xo and Xt have the same law. Hence,
under Q, the law of (X, V) equals the law of (X, V), and the last line
of (60) equals

We have proved that

which establishes the symmetry property, as well as stationarity (choose
~r --_ 1 ). D

6. SEMIMARTINGALE REPRESENTATION

In this section we give sufficient conditions for the Markov process X
constructed in section 4 to be a semimartingale and we give a form for
the decomposition in this case. For this, in addition to conditions on D,
we need to impose more stringent assumptions on a and p than previously
encountered. Accordingly, we shall assume henceforth that a and p have
extensions to all of ~d (again denoted by a and p) such that

(Al") a : f~d -~ ~d (8) ~d, a E C1 1 ( l~d), a is symmetric, bounded and locally
elliptic on ~d,

In this case, we could have taken simpler modifications an, pn of a, p
than those defined at the beginning of section 4. In particular, suppose
that for each n, ~n E C°° such that

0 _ ~n _ 1 and

Define ~rn =1- ~n and let an, pn be defined by equations ( 11 )-( 12) with the
of this section and with kn =1, q" =1 (as in section 4). Then the

proofs of section 4 go through with only minor modification using these
(D~, a~, One point to note is that sometimes the D~ are used for two
purposes, firstly as the sets where and bn = b, and secondly as

convenient sets whose closures are compact sets in D which expand to fill
all of D. For this second use, one can use other bounded open sets with

compact closures in D that cover all of D.
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Assumption. - We shall assume in this section that {Xn} is the sequence
of processes as defined in section 4 but with D", as defined above.

Moreover, conditions (A5)-(A6) of Theorem 4. 5 will be assumed to hold,
so that {Xn} converges weakly to X, the process associated with the
Dirichlet form {~, ~ (~)).

Using conditions of Meyer-Zheng [19] for convergence of semi-martinga-
les to semimartingales, we will identify conditions under which X is a
semimartingale. In the following, Bm is defined as at the beginning of this
section and

Observe that by the assumptions (A 1 ") and (A2") on a and p, b is
continuous.

THEOREM 6 .1. - Suppose that for each m &#x3E;__ 1,

Then X is a continuous semimartingale, with decomposition relative to the
filtration { FXt} generated by X of the form

where M is a martingale relative to ~ ~ X } with mutual variation process:
 Mi, Mj &#x3E;t = t0aij(Xs ds, and V is a continuous { FXt }-adapted process of
bounded variation such that for each v E C2c (Rd, Rd),

Remark 6 . 2. - Condition (61) is slightly weaker than condition (4 . 1 ) of
Williams-Zheng [29]. However, an examination of the proof of Lemma 4 .1
in [29] reveals that one only needs a subsequence for which (4 .1 )
in [29] holds, and the existence of such is guaranteed by our condition
(61) (5). We also note from Theorem 4.1 of [29] that a sufficient geometric
condition for (61) to hold for each m is that the boundary of D be locally

upper Minkowski i.e., for each m,

(~) This was also observed by Z. Q. Chen [6].
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where v denotes Lebesgue measure on In fact, if one restricts x to be
in D in (A8), this condition still implies that (61) holds. (One might
paraphrase the condition in this case by saying that the (d-1)-dimensional
upper Minkowski content measured from within D is finite).
The following lemma will play an important role in our proof of

Theorem 6 . 1. Here Mn, Mn are defined from Xn, X" by (16) and (18) with
bn + gn in place of bn there.

LEMMA 6.3. - Suppose (M", Mn, Xn) converges weakly to (M, M, X)
along a subsequence. Then M is a martingale with respect to the forward
filtration generated by X and M is a martingale with respect to the backward
filtration generated by X. Moreover,

Remark 6.4. - To avoid problems with null sets, we take X to be
defined on a complete probability space (SZ, ~ , and the forward filtra-
tion generated by X where-
denotes augmentation by the P-null sets in F. Similarly, the backward
filtration of X is defined with X. = X1 _ , in place of X.
Remark 6 . 5. - We note that when one has (Mn, Xn) converging weakly

to (M, X) along a subsequence, and each Mn is a martingale with respect
to the forward filtration of X’~, it does not follow in general that M is a

martingale with respect to X. For example consider X"=-B, Mn = B
n

where B is a Brownian motion.

Proof of Lemma 6 . 3. - For simplicity we suppose (Mn, X") conver-
ges weakly to (M, M, X), not just along a subsequence. We will prove
the results for M, the arguments for M being similar. Since Mn is a

martingale with respect to the filtration generated by Xn, it follows from
the weak convergence that M is a local martingale with respect to the
filtration generated by X and M (M is included here to ensure adapted-
ness).

Since or is a non-decreasing function
of r, the (random) set of points of discontinuity of r -+ ’tr is at most

countable and hence has zero Lebesgue measure. Fubini’s theorem then
yields that for a.e. ir is P-a.s. a continuous functional of (X, M)
(cf Kurtz [15], p. 13-14). Thus we can choose a sequence of reals r -~ 00
such that for each r in the sequence and
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(M",~ ~r, converges weakly to (M. ~ Tr, X. ~ ~r) as n -~ 00. Since an = a
E [Rd: I x ~ __ r } for n &#x3E; r, and aij is continuous on [Rd, we also have

converges weakly to It follows from [ 19], Theorem 12,

that the mutual variation of M. ~ ~r is given by (64) with t A ir in place
of t for all t E [0, 1]. Letting r ~ oo yields the mutual variation of M. Since
a is bounded, it follows that M is an L2-martingale, not just a local
martingale. It remains to show that M is adapted to {~~}.
Let{Um }~m=1 be an increasing sequence of open subsets of D such that

for each m, Um is a compact set in D and UUm=D. Observe that
m

where Tr(a) is the trace of a and the last equality comes from
for all s. Since the stochastic integral is con-

tinuous, 

Thus, P-a,s.,

Fix ..., d ~ and Let such that u (x) = xi on LJm.
Then by Ito’s formula applied to u and Xn, we have

where Ln = 1 2pn03C1n V . 03C1n V ). Since u has compact support, its support

is contained in B~ for all some no. Since a~ = a, p~ = p on B~, for
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where § fn tends to zero uniformly on the support of u as n ~ ~. Also,

V u, , a and b are continuous and bounded on the support of u, so
axi ax~

it follows that we may take weak limits in (67) (ef Kurtz-Protter [16]) to
obtain

Rearrangement of this equation yields that

is adapted to ( 3’/, 1 ] ~ . But since on Um, we have

Letting m - oo and i range over {1, ..., d~, from (66) we conclude that
M }-adapted. D

Proof of Theorem 6. 1. - 
such that for all x E Bm and supp (u) c Bm + 1. Consider n &#x3E;_ m + 1
and observe that for such n, an = a, bn = b on supp (u). It follows from Ito’s
formula that

We first consider the term (gn . ~ u) (Xs) ds in (69). Observe that by the0

stationarity of X~‘,

denotes the supremum norm on Bm+ 1. Since yn -~ e as
n - oo, condition (61) implies that the lim of the left member

of (70) is finite. Hence, by Meyer-Zheng [19], Corollary 9, there is a
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subsequence of u) (X:) ds that converges weakly (relative to

the pseudo-path topology on the Skorokhod space D([0, 1], to a

bounded variation process. By section 4 we know that there is a further
subsequence of that subsequence along which (Mn, Xn) converges weakly
to (M, X) (with the uniform topology on C ([0, 1], f~2d)), where by
Lemma 6. 3, M is a martingale relative to the forward filtration { ~ X ~
of X. It follows from Kurtz-Protter [16], Theorem 2 . 2, that since

a, b, u, V u, ~ a 2 u are continuous and bounded on the support of u,
8Xi 8xj

converges weakly along the same subsequence as (Mn, X") to (71)
with the indices n removed. It follows that the weak limit Vu of

{ (gn . V u) along this subsequence is a continuous bounded

variation process adapted to {FXt}. Combining the above, we conclude
that for all 1 ],

By stopping X at im = inf { t &#x3E;__ 0 : Xt  Bm ~, from (72) we obtain a decompo-
sition of Note from this that the last term in (72) is zero for t _ im.
On letting m - oo and i range over {1, ..., d}, we obtain by consistency
that

where V is a continuous, { ~ X )-adapted process with paths of bounded
variation. Noting the mutual variation of M from Lemma 6. 3, we see
that it remains to show (63).
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For f~a), by using (73) to reexpress dVt, we have

where 0 denotes the Stratonovitch integral. By Lemma 6. 3, X - Xo is the
difference of a forward and backward martingale with respect X and hence

by Lyons-Zheng [18], (4. 5), so too is t - where the

martingale initial values are zero. It follows that the expectation of this
process vanishes at each t. Hence,

where using the Stratonovitch-Ito conversion (e.g., see Protter [23], p. 216),

The first term on the right of (76) is zero. Thus, combining (75)-(76) with
the definition of b and stationarity of X, we have

which simplifies to (63). D 

~ 

Remark 6. 6. - If a, p, aD are smooth, the right member of (63) is

equal by the divergence theorem to

where n is the inward unit normal to aD and o denotes surface measure
on aD. This is consistent with X having conormal reflection (i. e., reflection
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in the direction an) at the boundary of D. For in this case,

where L is a one-dimensional, continuous, non-decreasing process adapted
to X that increases only when X is on aD. The process L is called the
local time of X on aD. Its Revuz measure is concentrated on aD and has

densit 1 2p with respect to the surface measure 6. Consequently,
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