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ABSTRACT. - In this paper we show the continuity of the solution of a
Hilbert-valued stochastic differential equation with respect to the initial
condition. Using an entropy criterium presented in [2], [16] the continuity
property is obtained on some compact subsets. We apply this result to
prove a theorem on existence of solution for an anticipating Hilbert-valued
stochastic differential equation of Stratonovich type. This is done using
an infinite dimensional version of a substitution formula for Stratonovich

integrals depending on a parameter.

Key words : Stochastic differential equation, Stratonovich integral.

RESUME. - Dans cet article nous montrons la continuité, par rapport a
la condition initiale, de la solution d’une equation differentielle stochasti-
que hilbertienne. Cette continuite est obtenue dans certains compacts en
utilisant un critère d’entropie prouve dans [2], [16]. Nous appliquons ce
resultat pour montrer l’existence de la solution d’une equation differentielle
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134 A. GRORUD, D. NUALART AND M. SANZ-SOLE

stochastique hilbertienne anticipante, de type Stratonovich ; la preuve est
fondee sur une version en dimension infinie de la formule de substitution
pour les intégrales de Stratonovich dependant d’un parametre.

0. INTRODUCTION

Consider the stochastic differential equation on a separable Hilbert
space H

where W = ~ W t, t E [0, 1 ] ~ is a Brownian motion taking values in some
Hilbert space K, with covariance operator Q. The coefficient b (x) takes
values on H, and 6 (x) is a linear operator (possibly unbounded) from f~
on H such that is Hilbert-Schmidt. By choosing bases on the
Hilbert spaces H and we can interpret this equation as an infinite
system of stochastic differential equations driven by an infinite family of
independent Brownian motions. This kind of equations are related with
certain continuous state Ising-type models in statistical mechanics and also
with models of genetic populations. Different problems concerning these
diffusions have been studied in [1], [4], [7], [9], [14], [15].
Assume now that we put as initial condition, instead of a deterministic

value some random vector Xo, which depends on the whole path of
W. In that case the solution of (0 .1 ), whenever it exists, is no more an

adapted process with respect to the filtration associated with W. Then
(0.1) becomes an anticipating stochastic differential equation, and we
should specify the meaning of the stochastic integral.

There has been some recent progress on the stochastic calculus with

anticipating integrands (see [3], [12]) which has allowed to study some
classes of finite dimensional anticipating stochastic differential equations
(see, for instance, [13]). Roughly speaking, it turns out that equations
formulated in terms of the generalized Stratonovich integral are easier to
handle than those written using the Skorohod integral, which is an exten-
sion of the Ito integral. For this reason, in this paper we will consider a
Hilbert valued anticipating stochastic differential equation of the form

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



135STOCHASTIC DIFFERENTIAL EQUATIONS

where the symbol "0" means the stochastic integral in the Stratonovich
sense, and Yo is an H-valued random variable which is not necessarily
independent of W. The finite dimensional analogue of (0.2) has been
studied in [13].
Our main goal has been to prove a theorem on the existence of solution

for (0.2). Due to the properties of the extended Stratonovich integral a
candidate for the solution of the equation (0.2) will be the composition
Xt (Yo)), where Xt (x) is the unique solution of (0.1). In order to show
that Xt (Yo)) solves (0.2) we need to establish the substitution result

One of the difficulties in proving such results is to show that the
solution X t (x) of equation (0.1) has a version which is continuous in the
variable x. We have been able to establish this continuity property on
some particular compact subsets of U~, by means of a generalization of
the Kolmogorov continuity criterion for processes indexed by a metric
space, as presented in Fernique’s St. Flour course (see [2]). This application
of the infinite dimensional continuity criterion has been inspired by a
recent result of P. Imkeller [5] on the existence and continuity of local
time for some classes of indefinite Skorohod integrals.

In the first section we present, in an abstract setting, some results related
with the above mentioned continuity criterion that will be useful in the
sequel. Section two is devoted to study the dependence of the solution of
(0.1) with respect to the initial condition x. The most important result
states the continuity of X~ (x) in the variable x, in the set of elements x
whose Fourier coefficients in some fixed basis of H converge to zero fast
enough. This includes the case of an exponential decay with a suitable
rate.

Section three deals with the following problem. Assume we are given a
Hilbert-valued process u (., x) depending on a Hilbert-valued parameter

such that the Stratonovich integral r u (t, exists for any x.

Consider an H-valued random variable 8. We want to analyze under which

conditions r u (t, exists and coincides with the value of the

random vector at x=8. The corresponding question in

the finite dimensional case has been studied in [12], but the methods of
their proofs do not have a direct analogue in the infinite dimensional case.
Finally, in Section 4, we present an existence theorem on the solution of
(0.2), based upon the results proved in Section 3.

Vol. 30, n° 1-1994.



136 A. GRORUD, D. NUALART AND M. SANZ-SOLE

1. CONTINUITY CRITERION FOR STOCHASTIC PROCESSES
INDEXED BY A METRIC SPACE

In this section we will derive some results on the existence of continuous
versions for processes indexed by an arbitrary metric space. Let (T, d) be
a metric space and B a real and separable Banach space. The norm in B
will be denoted . I ( . We denote by N (E), or more precisely T, J),
the smallest number of open balls of radius e needed to cover T. We
recall that a is called a Young function if

x

0(x)= ~ ( y) dy, where ()) is strictly increasing, continuous 
Then we have the following continuity criterion (see, for instance,
Corollary 3 . 3 in [2], or Theorem 1. 2 of [16]).

THEOREM 1. 1. - stochastic process taking its
values in B. Assume that the 

separable, and there exists a Young f ’unction ~ such that the following
conditions are satisfied

Then, almost surely the paths of X are continuous and

In the next lemma we will show that condition (i ) of Theorem 1.1 is
fulfilled by a particular Young function ~, assuming some LP-estimates
of the involved processes.

LEMMA 1 . 2. - Let ~ X (t), t E T ~ be a stochastic process taking its values
in Assume that there exists 1 such that for any p and s, t E T

for some positive constant k. Then, for all 03B2 &#x3E; 0 it holds that

where

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



137STOCHASTIC DIFFERENTIAL EQUATIONS

Proof. - The inequality ( 1. 2) yields

for any p &#x3E; 0, and this implies the result..
Note that is a Young function which satisfies the following

inequality

where Co = 1 2 03B2e03B2po ", for all x &#x3E; exp (2 kpo + fl) . Indeed, easy computa-

tions show that

for 6= ~ and m= ~ (log x-~i), and we know that
J2 k 2k

The inequality ( 1. 4) implies

provided Hypothesis (ii ) of Theorem 1.1 concerns the

integrability of the function 1 (N (E)) in a neighbourhood of the origin.
For this reason we introduce the following definition.

DEFINITION 1. 3. - A metric space (T, d) is said to satisfy the pro-

perty (Ek), , for some constant k &#x3E; 0, if the function

is integrable at the origin.
As a consequence of Lemma 1 . 2 and Theorem 1 . 1 we obtain the

following result.

PROPOSITION 1 . 4. - Let { X (t), t E T ~ be a B-valued stochastic process
satisfying the estimate (1. 2) for some constant k &#x3E; o. Assume also that T

satisfies the property (Ek). Then X possesses a continuous version.

By means of the same arguments one can show the next technical result
which will be needed later.

Vol. 30, n° 1-1994.



138 A. GRORUD, D. NUALART AND M. SANZ-SOLE

PROPOSITION 1. 5. - Let {Xn (t), t E T} be a sequence of rR-valued
stochastic processes. Suppose that there exists a constant k&#x3E; 0 such that
the following conditions are satisfied

(i ) there exists 1 and a sequence 0  ~n _ 1 decreasing to zero such
that

for all s, t E T, and for all p &#x3E;_ po;
(ii )

(iii) the space (T, c~ satisfies the property (Ek).
Then

Proof. - In view of condition (ii ) it suffices to show that

Consider for each n &#x3E;_ 1 the Young function defined by

where ~~ (x) is given by (1. 3). From condition (i) and Lemma 1. 2 we
obtain

for all n &#x3E;_ 1. Furthermore, ( y) = and, therefore,
lim ~~, n (y) = o, for Since ~~ 1 (bn y) _ ~~ 1 ( y), and (N (E))

n -~ m

is integrable on a neighbourhood of the origin by condition (iii), we get

Finally the convergence ( 1. 7) follows from Theorem 1.1, ( 1. 8) and

(1.9). *
In Section 2 we will apply Proposition 1.4 to prove the existence of a

version of the process {Xt (x), (t, x) E [0, 1] x ~, solution of (0 .1), jointly
continuous in (t, x) on some subspace of [0, 1] x H . Proposition 1. 5 will be
used in Section 3 to establish the substitution formula for the Stratonovich

integral.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



139STOCHASTIC DIFFERENTIAL EQUATIONS

2. SOME PROPERTIES ON THE DEPENDENCE
OF INFINITE DIMENSIONAL DIFFUSIONS WITH RESPECT

TO THE INITIAL CONDITION

Let H and f~ be two real and separable Hilbert spaces. The scalar
product and the norm in H will be denoted by ( ., . ) respec-
tively, and those of f~ by ~ . , . ~ ~ and I’ respectively. Suppose that
W = ~ W (t), t E [0, 1] ~ is a ~-valued Brownian motion defined on some
complete probability space (Q, iF, P). We will denote by Q the covariance
operator of W which is a nuclear operator on K. That is, W is a zero
mean Gaussian process such that

for all s, t E [0, 1], and h1, h 2 e K. We will denote by G2(K, U-fl ) the space
of Hilbert-Schmidt operators from (~ on H, and by ~Q 0-Il) the space
of (possibly unbounded) operators T : fl~ --~ (1-0 such that TQ1/2 is Hilbert-
Schmidt. In ~Q 0-Il) we will consider the norm I~ T II 
We consider measurable functions b : H -~ H, a : ~-U ~ ~Q ~-0) satis-

fying the following Lipschitz condition:
(H 1) There exist constants C1, C2 &#x3E; 0 such that

for any x, t E [0, 1].
Under these conditions (see, for instance, [9], [14], [17]), we can show

that for any fixed initial condition xetH, there exists a unique continuous
H-valued stochastic process X = ~ Xt (x), te[0, 1] ~, solution of the follow-
ing stochastic differential equation

We want to show the joint continuity in (t, x) of Xt (x) in some subset of
[0, 1] ] X To this end we start by proving some general estimates. In the
sequel we will denote by C3 the constant C3 = [C2 + II 6 (0) IIQ]2.

PROPOSITION 2. l. - Assume that hypothesis (H 1) is satisfied. Then, for
any constant k &#x3E; C3/2, there exists 2 such that

for every p &#x3E;_ po, t E [0, 1 ], and x, y E ()-~ .

Vol. 30, n° 1-1994.



140 A. GRORUD, D. NUALART AND M. SANZ-SOLE

Proof. - We will first show the inequality (2. 2). Fix p &#x3E; 1, and consider
the function f : f (x) = ( ~x~2p. Itô’s formula (cf. [ 17]) yields

By Schwarz’s inequality and the Lipschitz hypothesis (H 1),

and

Hence, from (2.4)

Note that exp (2 p2 C~ + p (2 C1- C~)) ~ exp (4p2 k), for p larger than some
value po because C2 _ C3  2 k. Then the result follows by Gronwall’s
lemma.

We can use the same method to show the inequality (2.3). In fact,
hypothesis (H 1) ensures

and

Then, using the Ito formula we obtain

and (2. 3) follows again from Gronwall’s lemma..

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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PROPOSITION 2. 2. - Under hypothesis (H I ), for any constant k&#x3E; C3/2
there exists 2 such that

for every p s, t E [0, 1 ] and x, y E 

Proof. - Fix p &#x3E;__ 1. Since

and in view of the proof of the estimate (2. 2), we need only to show that
for any k &#x3E; C 3 /2 we have

for any p large enough. This will be checked by using Burkholder’s
inequality for Hilbert-valued martingales (see for instance, [8], p. 212,
E.2), together with Holder’s inequality. Indeed, assuming t _ s, we have

where C (P) = ((C1 + I I b (Q)~ )2p + (C2 (0) IIQ)2p) eP 23p So, the
estimate (2. 3) yields (2. 6) for p larger than some fixed value, and the
inequality (2.5) is proved. . .

On [0, I] x we consider the metric d’ defined by

for any s, t E [0, 1], x, y E (1-~, and where d denotes the metric induced by
the norm of the Hilbert space H. Let us fix M &#x3E; 0 and consider the open

: ~.~ x I I  M ~ . Then, for any constant k &#x3E; C3/2, Proposition 2. 2
yields

for any s, t E [0, 1], ~x~, ~y~~M, P"?;Pl’ where p l depends on the con-
stants k, C1, C2, and M. As a consequence of
Proposition 1.4 we can now give the main result of this section.

Vol. 30, n° 1-1994. 
"



142 A. GRORUD, D. NUALART AND M. SANZ-SOLE

THEOREM 2. 3. - Let {Xt (x), t E [0, 1 ] ~ be the solution of the stochastic
di.fferential equation (2 . 1), with initial condition x E Let B be a bounded
subset of H such that ( [o, 1] X B, d’) satisfies the property (Ek), that means,
the function EHexp[(4k log N (E, [o, 1 ] X B, d’)) 1 ~2] is in tegrable at the
origin, for some constant k &#x3E; C3/2. Then, there exists a version of

(x), (t, x) E [0, 1 X B ~ with almost surely continuous paths.
In the sequel we will exhibit some examples of bounded sets B such

that [0, 1] X B verifies property (Ek). Fix a complete orthonormal system
{ ei, i &#x3E;_ 1} on and consider a sequence 03B2 = { i &#x3E; 1} of positive real

m

numbers such that £  We define the set
i= 1

Given 8&#x3E;0, set

Notice + oo, for The sets Bp are bounded and closed
subsets of H. Furthermore, it will be shown that the Bg are totally
bounded, and consequently compact. Moreover, for any £ &#x3E; 0 it will be

possible to estimate the number of open balls of radius E &#x3E; 0 required to
cover the subset B(3.

Before proving these facts we will state an elementary result on totally
bounded sets.

LEMMA 2. 4. - Let (Si, di), i =1, 2 be two metric spaces. Consider the
product space S = S 1 X S2 endowed with a metric d such that

In particular, if the spaces (Si, di), i =1, 2, are totally bounded, the same
property holds for the product space (S, d).

PROPOSITION 2. 5. - Let B~ be the subset defined in (2. 8), and

D~ _ [0, 1] X BJ3. Then B~ and D~ are totally bounded subsets of (~-U, d) and
([0, 1] X H, d’) respectively. Furthermore, for any E &#x3E; 0,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



143STOCHASTIC DIFFERENTIAL EQUATIONS

and

where c = 2 (1 + sup 2 and (E) defined in (2.9).
i

Proof - We will first estimate the number of open balls of radius E
needed to cover Bp, following the ideas of Imkeller (see [5], Proposi-
tion 1.1). The corresponding estimation for Dp will follow as an easy
consequence. For every ~ 1 we define

On T~ we consider a metric d~ defined by

which verifies

As a consequence we obtain

where [. ] denotes the entire part. Furthermore, T~ is compact because it is
a finite dimensional closed rectangle.

Fix E &#x3E; o, and consider the index j(E) given by (2 . 9). For any 
we have

Thus, T~ ~E~ is included in the open ball of ~-U of radius E centered at 0,
2

and therefore

Consider the metric spaces (T~ ~E~, d) and (T~ ~£~, d). The product
T~ ~£~ X T~ ~£~ can be identified with B~ and equipped with the metric d. In
that form condition (2.10) is satisfied and we can apply Lemma 2.4 to
these metric spaces. The inequality (2 . 11 ) together with (2 . 14) and (2 . 15)

Vol. 30, n° 1-1994.
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yield

and consequently (Bp, d) is totally bounded. Furthermore, (2. 14) implies

Consequently,

, J

with c = 2 ( 1 + sup 2 Finally, the inequality (2 .13) follows easily from
i

(2.12)..
As a consequence of the previous Proposition, a set of the form

[o, 1 ] X B ~ verifies the property (Ek) if

where c = 2 ( 1 + sup 2 
i

We finish this section by giving an example of class of sets B~ and D~
for which the property (Ek), k &#x3E; 0 holds.

Example 2.6. - Consider a square summable sequence of the form

ai = e-si, where b &#x3E; o. Then the sets B~ and D~ verify the property (Ek) for
any k such that k  ~/4. In fact, it holds that

and, from (2.12) and (2.17) we deduce

for some constant C &#x3E; 0, and a similar inequality holds for Dp. There-
fore, the is integrable at the

origin provided ~ ~/~  1. As a consequence, the solution of the

equation (2.1) has a continuous version on any set of the form

provided 03B4&#x3E;2C3.
The results of this section are still true if the coefficients b and a depend

on the time variable, and in addition to the Lipschitz condition (H 1) they

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



145STOCHASTIC DIFFERENTIAL EQUATIONS

verify a linear growth condition of the form

In that case the constant C3 appearing in Propositions 2.2, 2.1 ana in
Theorem 2. 3 would be the maximum of C~ and K~.

3. SUBSTITUTION FORMULA FOR THE STRATONOVICH
INTEGRAL

This section is devoted to extend the substitution result for the Stratono-

vich integral, given in Proposition 7 . 7 of [12], to an infinite dimensional
setting. We first recall and introduce some notations and facts on anticipat-
ing calculus that will be needed in the sequel.
As in the previous section W={Wt, 1] ~ will denote a (?~-valued

Brownian motion with covariance operator Q. We will assume that the
a-algebra iF is generated by W. We will denote by D the derivative
operator. That is, if F is a H-valued elementary random variable of the
form

where f E ~b v E and hl, ..., hm are elements of then the

derivative of F is the element of L2 ([0, 1] x Q; ~Q (I14, defined by

Let u be a stochastic process in L2 ([o, 1] X SZ; ~Q (f~, ~-Il)), and suppose
that there exists a constant C &#x3E; 0 such that for any elementary random
variable F of the form (3.1) we have

Then we can define the Skorohod stochastic integral of u, denoted by
i /-i

utdWt, as the adjoint of the operator D. That is, 0 ut dWt is the

element of L2 (Q, H) determined by

Vol. 30, n° 1-1994.
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for any elementary random variable F. If u is adapted with respect to the
natural filtration associated with 1] ~, this Skorohod inte-
gral coincides with the usual Ito integral for Hilbert-valued processes that
has been used in the preceding section.

Let H be a partition of [0, 1] of the form II = { 0 = to  t 1  ...  t" =1 ~ .
We will denote by ] the norm of the partition. We will also use

the notation 1, ..., and ] will represent the

Lebesgue measure of the interval A,.
Consider a process v E L2 ([0, 1] X Q; ~Q (fl~, ~-(1)), such that for almost

all 00 we have v ([0, 1]; 2 (K, H)). We recall that 2 (K, denotes
the space of bounded linear operators from K to H, which is included in

~Q ((~, !H). Then to each partition n of [0, 1] we can associate the
~2 (Cl~, valued step process defined by

and the corresponding Riemann sums

which are H-valued random variables.
The process v is said to be Stratonovich integrable if the family 

converges in probability as |03A0| ( tends to zero. The limit is called the

Stratonovich integral of the process v, and is denoted by 10vt.dWt
(see [3]).

Consider the particular case where, in addition to the above conditions,
v is an adapted process continuous in 22 (Q; 22 (K, H)). Moreover,
assume that the following condition holds:
(C 1) There exists an H-valued process a such that

and

in probability.
Then v is Stratonovich integrable and

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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The proof of this statement is as follows. Consider the decomposition

with

The continuity in L2 (Q; ~2 ((1~, H)) of the process v yields the convergence
r

in to the Ito integral Jo We can write

bn = bn + b2 with

and

Condition (C I) yields lim 
1 
bn =1 1 a (t) dt, in probability. Using the

fact that v belongs to the space L2 ([o, 1 ] X SZ; G2Q (K, fNl )), and applying
the isometry property of the stochastic integral we can prove that
lim b2 = 0, in L2 (Q; H). Hence (3 . 5) is established.

j n j o

Consider a family u (x) _ ~ u ( t, x), t E [0, 1 ] ~ of ~ H )-valued pro-
cesses indexed by x E G, where G is some subset of H, and satisfying the
following hypotheses

(h 1) the mapping (t, x, x, is measurable;
(h 2) u (t, x) is fft-measurable, for any x E G;
(h 3) for any x E G, u (., x) E L 1 ([0, 1]; ~ H))i
(h 4) t - u (t, x) is continuous in L 2 (Q; ~Q ~-~1)), for any x E G;
(h 5) there exists a constant k &#x3E; 0 and 2 such that for any s, t E [0, 1],
E G, P the process

verifies

Vol. 30, n° 1-1994.



148 A. GRORUD, D. NUALART AND M. SANZ-SOLE

LEMMA 3 . 1. - Suppose that the family of processes ~ u (x), x E G ~
satisfies hypotheses (h 1 ) to (h 5). For any partition II set

Let B be a bounded subset of G which verifies the property (Ek,) , for some
constant k’ &#x3E; k where k is the constant appearing in hypothesis (h5). Then,

Proof. - For any point x0~H, it is clear that

by the well known properties on approximation of the Ito integral. We
can write

where

Fix p &#x3E;_ 2, x, y E G, and set

In order to prove the convergence (3.7) we are going to apply
Proposition 1 . 5 to any sequence {Z03A0n (x), x E H }, n &#x3E;_ 1 such that ) |03A0n|~ 0.
First notice that condition (ii) of Theorem 1.5 follows from (3.8). In
view of the assumptions of the lemma it is sufficient to establish the

estimate

for any p larger than some real number. Define

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Then, by applying Burkholder’s inequality, we obtain

where C p = (e/2)p~2 pp. Since by hypothesis (h5) the right hand side of this
inequality is bounded by

we obtain the estimation (3 . 9) for p large enough, and this completes the
proof of the lemma ..

LEMMA 3 . 2. - Assume that the family of processes u (x), x E G satisfies
hypothesis (hl) to (h5). For any partition II of [0, 1] set

Let B be a bounded subset of G which verifies the property (Ek,) for some
k’ &#x3E; k where k is the constant appearing in hypothesis (h5). Then

Proof. - We first establish an estimate of the form

for any x, Y E G and p large enough. To prove (3.10) we remark that,
using the notation that we have introduced before, we have

The discrete time process

Vol. 30, n° 1-1994.
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is a martingale difference with respect ... , n -1 ~ . Hence,
by Burkholder’s and Holder’s inequality, for any p &#x3E;_ 2 we obtain

where the constant C~ is of the order of CP pP, for some constant C&#x3E;0.

Suppose that ~ 1} is a complete orthonormal system in K such that
{( W~, e [0, 1]} are independent real valued Brownian motions with

oo

variances 03B3i, and 03A3 03B3i~. Then using again Burkholder’s inequality for
i= i

Hilbert-valued discrete martingales we obtain

Due to the independence of un (s, x, y) and Wtj+ 1- WS, this last expression
is bounded by 

where Àp is the p-th moment of the absolute value of a standard normal
variable. By substituting (3 .12) into the right hand side of (3 .11 ) we
obtain that the left hand side of (3 .11 ) is bounded by

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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and using hypothesis (h5) we deduce (3.10). Finally by the same arguments
used in the proof of (3.10) we get

The estimate (3.10), the convergence (3.13) and the assumptions
of the lemma allow us to apply Proposition 1.5 to any sequence

{ Z03A0n (x), x E n &#x3E;_ 1} such that I IIn I ~ 0, and this completes the proof of
the lemma..
We can now state the main result of this section.

THEOREM 3. 3. - Let ~ u (x), x E G ~ be a family of processes satisfying
hypothesis (h 1 ) to (h5). Let B be a bounded subset of G which verifies the
property (Ek.) for some k’ &#x3E; k where k is the constant appearing in hypothesis
(h5). Let 8 be a B-valued random variable. Suppose that:

(h6) There exists a measurable function d : [0, 1 ] X G X SZ -~ ~ such that

Then { u (t, 8), t E [0, 1] ~ is Stratonovich integrable and

If, in addition
(h7) for any x E B,

then {u(t, x), t E [0, 1]} is Stratonovich integrable for any x~B and

Remark. - Hypothesis (h6) [respectively (h7)] ensures the existence of
the joint quadratic variation of the process ~ u (t, 8), 1] ~ (respectively
~ u (t, x), 1] ~) and the Brownian motion W. These variations exist
in the case where the processes ~ u (t, 8), 1] ~ and {u (t, x), t E [0, 1] ~
are H))-valued adapted continuous semimartingale.s. In particular if
u (t, x) has the integral representation
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then hypothesis (h6) holds and the process d (t, 8) is given by

where we assume that A (t) is an integrable process taking values in the
space ~ {~-(1, ~1 c ~2 ~ (HI)).
Proof. - We first decompose the Riemann sums corresponding to

u (t, o) ~ dWt in the following way

with

By Lemma 3 . l, A03A0(8) ~ Jo in as By

Lemma 3 . 2, lim Fn (o) = o, in L1 (Q, Finally, hypothesis (h6) ensu-

res the convergence of to 12 1 8 improbability, as 

This proves (3 . 14).
If (h7) is also satisfied, it is clear that the process {u(t, x), 1]} is

Stratonovich integrable, for any x e B, and

This shows (3 .15) and finishes the proof of the theorem..

4. AN EXISTENCE THEOREM

The purpose of this section is to prove an existence theorem for the
solution of the infinite dimensional anticipating stochastic differential

equation (0.2). We will use some ideas developed in [10] for the finite
dimensional case. That means, we will apply the substitution formula
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proved in Theorem 3 . 3. In order to check that the hypotheses (h 1 ) to
(h7) of this theorem are satisfied, some restrictive hypotheses on the
coefficients have to be imposed. We will assume that

are functions such that a is twice continuously differentiable and b is

continuously differentiable. In the sequel V will denote the gradient opera-
tor. That is, V (y (x) is an element of J~ (H, J~f (K, H)), and V2 (J (x) belongs
to H)). Along this section we will deal with the following
conditions:

Lipschitz properties. - For any x, y ~H,

Recall that C3 = [C2 (0) IIQ]2.
We consider the stochastic differential equation on the Hilbert space ~il

Notice that ~03C3Q1/2 belongs to H)). Indeed, (~03C3)(x) is
a bounded operator from H in H) and K). Therefore,
for any y e the composition V a (x) ( y) Q 1 ~2 is a Hilbert-Schmidt operator
from (~ in H, and

Moreover, ~ belongs to ~2 (U~, ~). Under these conditions, one can
show that their composition (V is an operator in the
space ~ ((1-~, ~1 (?~)), and we can define its trace, which will be an
element of H. Define

Under the conditions stated before, it is obvious that equation (4.1) is a
particular case of (2 .1 ). Therefore, all the results obtained in Section 2

apply to the solution Xt (x) of (4.1). In particular, Theorem 2 . 3 and
Example 2. 6 yield the existence of suitable bounded subsets B of Il-~

such that the process Xt (x) is jointly continuous in (t, x) E [o, 1] x B. Set
u (t, (Xt (x)). Our first aim is to show that conditions (H 1) and (H 2)
ensure the validity of hypotheses (h 1 ) to (h5) of Section 3, with G equal
to H . It is clear that (h 1 ), (h2) and (h4) hold. Hypothesis (h3) follows as
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a consequence of the Lipschitz property (H 1 ). The next lemma shows that
hypothesis (h5) is also satisfied.

LEMMA 4.1. - Assume that conditions (H 1) and (H 2) hold. Set
u (t, x) _ ~ (Xt (x)), 1], xeH, with Xt (x) the solution of (4 . 1). Set

Then for any constant k &#x3E; C3/2 there exists 2 such that

for all s, t E [0, 1 ], x, y E and p &#x3E;__ po.

Proof. - Fix p &#x3E;_ 1. We will denote by the norm in the space
~Q ( fl~, ~Q ( fl~, ~-fl )). By means of the Ito formula we obtain

where,

and

Condition (H 2) yields

and

Therefore, from (4. 5), (4. 6), (4. 7) and Schwarz inequality we obtain:

Using (H 1) we have
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So we obtain

where and C2 (p) - (2p2 _ p) 22p 3 C2 C2 1. It suf-
fices now to apply Proposition 2.1 [estimate (2.2)] to obtain the estimate
(4 . 4) .. .

Note that in the proof of Lemma 4 .1 we have used the hypothesis (H 3)
with the spaces ~Q ( (~, o--(1 ) and ~Q ( fl~, ~Q ( (~, instead of ~ ( (1~, 
and G (K, G2Q (K, H)), respectively. We want to apply Theorem 3 . 3 to
the family of t E [o, 1], x E The next lemma will

imply the validity of hypothesis (h6).
LEMMA 4 . 2. - Assume that conditions (H 1 ) and (H 2) are satisfied.

Consider the process ~ d(t, x), (t, x) E [0, 1] ] X defined by

Let B be a bounded subset of which verifies the condition (Ek) for some
constant k &#x3E; C3. Then, for any B-valued random variable 8, the family of
random variables

1 liconverges in probability to - d(t, 0) dt, as ]] H ) 1 0.
2 o

Proof. - Using the It6 formula we can write

Then, the proof of the lemma will be done in several steps.
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Step 1. - The following convergence holds

Applying Fubini’s theorem for the stochastic integral we can write

Hence, by Burkholder’s and Holder’s inequalities, we get for any p &#x3E;__ 2,

where pP. By Lemma 4 . 1 the right hand side of (4 . 9) is
bounded by , for any x, provided
k &#x3E; C3/2.
On the other hand, for any fixed x E H, we have

In fact, the arguments used in the proof of (4 . 9), with p = 2, show that

and the right hand side of (4 .11 ) tends to zero as 0, since the process
~ 6 (Xt (x)), t E [o, 1] ~ is continuous in L2 ([0, 1 X Q; ~Q ~-Il)). The
results given in (4.9) and (4 . 10) and the assumption on the set B,
allow us to apply Proposition 1. 5 to any sequence {A03A0n }, with IIn ( 1 0,
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where

This completes the proof of (4. 8).

Step 2. - It holds that

Indeed, set for u E [0, 1] and x, y E 

Then, analogous arguments as those used in the proof of (4. 9) show that,
for any p &#x3E; 2,

where Cp = (e/2)p~2 pp. Let ~ hi, i &#x3E;_ 1 ~ be a complete orthonormal system
in Then using Holder’s inequality and condition (H 2) we have

E ( ) ) Zu -x, y)) (Wu 

where Àp is the p-th moment of the absolute value of a standard normal
variable, and ~ ~i, i &#x3E;_ 1 ~ is a sequence of independent N(0, 1) random
variables. By Proposition 2 . 1 [estimate (2 . 2)] the right hand side of (4 . 14)
is bounded above by
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provided k &#x3E; C3/2. Therefore any sequence of (1-0-valued random variables
where

satisfies the estimate

provided k &#x3E; C3. Furthermore, for fixed, lim 

Therefore we can apply Proposition 1.5 to complete the proof of this
step.

Then for any B-valued random variable 6 it holds that

. Indeed, Jensen’s inequality yields

By Schwarz’s inequality, this expression is bounded by

The Lipschitz hypotheses (H 2) ensures that

Therefore, the convergence (4.16) holds.

Step 4. - For any B-valued random variable 8 it holds that
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converges a.s., as , to 1 210 d(t, 03B8)dt, where d has been defined in
2 Jo

Lemma 4.2.

Indeed, the expression (4.18) can be written, using Fubini’s theorem as

n- 1 
1 1

The functions ¿ converge to - in the weak topo-
2

1]), L2 ([o, 1])) as the norm of the partition tends to zero.
Notice that, hypothesis (H 2) yields

for some positive constant K. This last quantity is finite, due to the
properties of the set B, Proposition 2.1, Lemma 1 .2 and Theorem 1.1.
Consequently, d ( . , 8) belongs to L2 ([o, 1]; H ), a. s., and the result follows
by weak convergence. The lemma is now completely proved..
Remark 4. 3. - Let d be the process defined in Lemma 4.2. Assume

that conditions (H 1) and (H 2) are satisfied. Then, for any 

Hence (h8) holds. Indeed, this convergence follows by the arguments
developed in the proof of Lemma 4. 2.
We can now state an existence theorem for the anticipating stochastic

differential equation (0. 2).

THEOREM 4. 4. - Assume that 6 : ~ (Il~, and b : are

functions satisfying conditions (H 1) and (H2). Let B be a bounded subset
of H which verifies condition (Ek) for some constant k&#x3E; C3. Then for any
B-valued random variable Yo, the process {Yt = Xt (Yo), t E [0, 1]}, with
~ Xt (x), t E [0, 1], x E given by (4 . 1), is a solution of the Stratonovich
anticipating stochastic differential equation

where b is given by (4. 2).
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Proof. - The results proved so far show that, under conditions (H 1)
and (H 2) the stochastic differential equation (4 . 1 ) can also be written in
the Stratonovich form, i. e.

We know, by Theorem 2.3, (t, x)e[0, 1 x K} is jointly con-
tinuous. The process u (t, x) = a (Xt (x)), t E [0, 1], x E B satisfies hypotheses
(h 1 ) to (h5) of Section 2. Moreover, Lemma 4 . 2 implies that for any
random variable 8 taking values on B, hypothesis (h6) of Theorem 3 . 3
is satisfied with d (t, x) = Tr [(~ 6 Q1~2) (6 Q1~2)] (x). On the other hand,
hypotheses (h6) and (h7) of Theorem 3 . 3 are also satisfied by the set B
and the process u (t, x) = a (Xt (x)), due to Lemma 4 . 2 and Remark 4 . 3.
Consequently, Theorem 3 . 3 yields .

for any t E [0, 1]. This completes the proof of the Theorem..
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