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Covariance inequalities for strongly mixing processes
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ABSTRACT. - Let X and Y be two real-valued random variables. Let a

denote the strong mixing coefficient between the two a-fields generated
respectively by X and Y, and Qx (u) = inf {t: P ( ] X I > t) ~ M} be the quan-
tile function of We prove the following new covariance inequality:

which we show to be sharp, up to a constant factor. We apply this

inequality to improve on the classical bounds for the variance of partial
sums of strongly mixing processes.

Key words : Strongly mixing processes, covariance inequalities, quantile transformation,
maximal correlation, stationary processes.

RESUME. - Soient X et Y deux variables aleatoires reelles. Notons a le

coefficient de melange fort entre les deux tribus respectivement engendrees
par X et Y. Soit la fonction de quantile
de I X I. Nous etablissons ici l’inégalité de covariance suivante :

et nous montrons son optimalite, a un facteur constant pres. Cette inegalite
est ensuite appliquee a la majoration de la variance d’une somme de

variables aleatoires d’un processus melangeant.

Classification A.M.S. : 60 F 05, 60 F 17.
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1. INTRODUCTION AND RESULTS

Let (~ be a probablility space. Given two a-fields d and r1I in
(Q, ~ P), the strong mixing coefficient a (d, is defined by

[notice that ~) ~ 1/4]. This coefficient gives an evaluation of the
dependance between d and ~.
The problem of majorizing the covariance between two real-valued r.v.’s

X and Y with given marginal distributions and given strong mixing
coefficient was first studied by Davydov (1968). He proved that, for any
positive reals p, q, and r such that l/r== 1,

where 0’ (X) denotes the a-field generated by X. Davydov obtained C = 12
in (1.0).
Davydov’s inequality has the following known application to the control

of the variance of partial sums of strongly mixing arrays of real-valued
random variables. Let (Xi)i E 7L be a weakly stationary array of zero-mean
real-valued r.v.’s [i. Q. Cov (X~, Xt)= Cov (Xo, for any s and any t in
Z~]. For any n E Zd, we define a strong mixing coefficient 0153" by

where c (Xi) denotes the c-field generated by ~~. We shall say that the
array is strongly mixing iff lim an = O. Then inequality (1 0)

yields the folloBving result.

THEOREM 1 . 0 (DaVydOV). - Let d ~_ 1 and let be a weakly
stationary array of real-valued random variables. Suppose that

Under the additional assumption ~ 2/r  + ao y the series

£ Cov X~) is absolutely convergent, has a nonnegative sum 0-2, and
t ~ Zd
lim n-d Var Sn = 0’2.

n - + o0

Up to now, inequality (1 . 0) and his corollaries were the main tool for
studying mixing processes. We have in view to improve on Davydov’s
inequality. Let 2(1(F, G) denote the class of bivariate r.v.’s (X, Y) with
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. given marginal distributions functions F and G satisfying the mixing
constraint Let denote the
usual inverse function of F. In order to maximize Cov (X, Y) over the
class G), it is instructive to look at the extremal case a== 1/4 (that
is, to relax the mixing constraint). In that case, M. Frechet (1951, 1957)
proved that the maximum of Cov (X, Y) is obtained when

(X, y)=(F-1 (U), G -1 (U)), where U is uniformly distributed over [0, 1 ]
(actually, Frechet gives a complete proof of this result only when F and
G are continuous). In other words, we have:

In view of ( 1.1 ), one may think that the maximum of the covariance
function over G) should depend on 0153, and rather than
on the moments of X and Y. Unfortunately, the exact maximum has a
more complicated form in the general case than in the extremal case
a.= 1/4. However, we can provide an upper bound for I Cov(X, Y) I, which
is optimal, up to a constant factor.

THEOREM 1. l. - Let X and Y be two integrable real-valued r.v.’s. Let
a = a (cr (X), a (Y)). Let Qx (u) = inf { t : P ( X > t) __ u ~ denote the quantile
function of I X I. Assume furthermore that Qx oy is integrable on [0, 1].
Then

Conversely, for any symmetric law with distribution function F, and any
a E ]0, 1 /4J, there exists two random variables X and Y with common distribu-
tion function F, satisfying the strong mixing condition 0153(O’(X), O’(Y))~0153
and such that

Remarks. - Using the same tools as in the proof of inequality (a), one
can prove the following inequality:

Inequality ( 1. 2) is more intrinsic than inequality (a), for the upper bound
in (1.2) depends only on the "dispersion function" (s, t ) - F -1 (t)

Vol. 29, n° 4-1993.
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- (s) of X and on the dispersion function of Y. However, inequality
(a) is more tractable for the applications.
Theorem 1. 1 implies ( 1. 0) with C=21+1/p, which improves on Davy-

dov’s constant (note that, when U is uniformly distributed over [0, 1 ],
Qx(U) has the distribution of and apply Holder inequality).
The assumptions of moment on the r.v.’s X and Y in Davydov’s

covariance inequality can be weakened as follows. Assume that

Then, it follows from
Theorem 1.1 that

Of course by Markov’s inequality. Hence, we obtain a
similar inequality under weaker assumptions on the distribution functions
of X and Y than Davydov’s one. We now derive from Theorem 1.1 the
following result, which improves on Theorem 1. O.

THEOREM 1. 2. - Let be an array of real-valued random variables.
Define a -1 (t) _ ~ For any positive integer n, let Qn denote the

i e 7Ld

nonnegative quantile function defined by:

Then,

Moreover, is weakly stationary and if

then,

and denoting by a2 the sum of the series ~ Cov (Xo, Xt), we have:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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In particular, if is a strictly stationary array, then Q" = QXO = Q, and
so, if

then, (b) and (c) hold with M = a’’ (u) [Q (2 u)]2 du.
Remark. - In a joint paper with P. Doukhan and P. Massart (1992),

we prove that the functional Donsker-Prohorov invariance principle holds
for a strictly stationary sequence if a condition related to ( 1. 5) is fulfilled.

Applications. - Let r > 2. If the tail functions of the r.v.’s X~ are
uniformly bounded as for any positive u and
any Then,

A-t

for some constant C depending on r and Cr. Hence the conclusions of
Theorem 1.0 are ensured by a weaker condition on the d.f.’s of the r.v.’s
Xy than Davydov’s one [this is not surprising in view

i e lld

of (1. 3)].
Set-indexed partial sum processes. - Let be a strongly mixing

array of identically distributed r.v.’s satisfying condition (1.5). Let

A c [0, be a Borel set and let

where [i -1, i] denotes the unit cube with upperright vertice i and X denotes
the Lebesgue measure. Then, we can derive from (a) of Theorem 1.2 the
following upper bound:

[Apply (~) of Theorem 1.2 to the array defined by

We now study the applications of Theorem 1.2 to arrays of r.v.’s
satisfying moment constraints. So, we consider the class of functions

$’ = { ~ : IR + - IR + : ~ convex, increasing
and differentiable, 03C6(0)=0, lim03C6(x) x = oo}.+00 ~ J

Vol. 29, n° 4-1993.
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and, for we define the dual function ~* by
~* (y) = sup [xy - ~ (x)]. When the Cesaro means of the ~-moments of the

x>o

random variables Xf are uniformly bounded, Theorem 1.2 yields the
following result.

COROLLARY 1. 2. - Let (Xi)i E a be a stongly mixing array of real-valued
random variables. Let 03C6 be some element of g- such that E (j> (X2i))  + 00

for any i E and assume furthermore that the mixing quantile function
satisfies

Then,

Moreover, if is weakly stationary and if

then,

and denoting by a2 the sum of the series ~ Cov (Xo, Xt), we have:
t ~ Zd

Applications. - Suppose that is a weakly stationary array satis-
fying ( 1. 6). Then, lim O. Hence, there exists some one to one

mapping x from rBJ * onto 7Ld such that, for any integer k, 01537t ~k + 1) ~ ocn ~k~.
Let = 

~k~. An elementary calculation shows that ( 1. 6) holds if

where (~’) -1 denotes the inverse function of ~’. In their note, Bulinskii
and Doukhan (1987) obtained similar upper bounds for the variance of
sums of Hilbert-valued r.v.’s under the assumption

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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[apply Theorem 2, p. 828, with p = 2 and 03C6i (t) = )) (t2)]. Let us now compare
this result with ( 1. 8): (1.9) implies ( 1. 8) if, for any large enough k,
p - 1 (1 /a~k~) >_ (~’) -1 (k), which is equivalent to the condition

Since ~ -1 is a concave function, (1.10) holds if ~ -1 ( 1 /a~k~) __ Now,
by the monotonicity of the sequence the convergence of the

series in ( 1. 9) implies lim k a~k~ ~ -1 = 0, therefore establishing

(1.10). Hence, in the special case of real-valued r.v.’s, our result implies
the corresponding result of Bulinskii and Doukhan. In particular, when

03C6(x)=xr/2 for some r > 2, ( 1. 8) holds iff the serie ¿ k2((r-2)03B1(k) is conver-
k>0

gent while Theorem 1. 0 of Davydov or condition ( 1. 9) of Bulinskii and
Doukhan need ¿ 03B11-2/r(k)  ~. For example, when d= 1 and

ik>0

~n = O (log n) - e) for some e>o (notice that r/(r - 2) is the critical
exponent) this condition holds for any 0> 1 while Theorem 1.0 or ( 1. 9)
need e>r/(r-2), which shows that Corollary 1. 2 improves on the corre-
sponding results of Davydov or Bulinskii and Doukhan.

Geometrical rates of mixing. - Let be a weakly stationary
sequence satisfying the mixing condition for some a in ]0, 1 [.
Then there exists some such that ( 1. 6) holds with

~* (x) = exp (sx)-sx-1. Since ~ = (~*)*, condition (1. 7) holds if

The organization of the paper is as follows: in section 2, we prove the
main covariance inequality. Next, in section 3, we prove Theorem 1.2 and
Corollary 1.2.

2. COVARIANCE INEQUALITIES FOR STRONGLY MIXING r.v.’s

Proof of (a) of Theorem 1. I . - Let X + = sup (0, X) and

X - = sup (0, - X). Clearly,

A classical calculation shows that

Vol. 29, n° 4-1993.
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Now, the strong mixing condition implies:

Let Cx (u) = P (X > u). It follows that

Apply then (2 . 1 ), (2 . 2) and the elementary inequality

It only remains to prove that, for any r.v.’s X and Y,

Let U be a r.v. with uniform distribution over [0, 1] and let (Z, T) be the
bivariate r.v. defined by (Z, T)=(0, 0) iff U>2 a and (Z, T)=(Qx(U),
Qy (U)) iff U  2 0153. So, on one hand

On the other hand,

Hence

and (2 . 4) follows, therefore establishing (a) of Theorem 1 . 1..

Proof of (b) of Theorem 1.1. - Let F be the distribution function of a
symmetric random variable. We construct a bivariate r.v. (U, V) with
marginal distributions the uniform distribution over [0, 1] ] satisfying
0153(O’(U), in such a way that (X, Y) - (F -1 (U), 
satisfies (b) of Theorem 1.1.

Let a be any real iri [0, 1 /2]. Let Z and T be two independent r.v.’s
with uniform distribution over [0, 1]. Define

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques



595COVARIANCE INEQUALITIES

Clearly, U and V are uniformly distributed over [0, 1]. We now prove
that

Proof. - Let I=[0, 1]. Let Pu v be the law of (U, V) and Pu, Pv be
the respective marginal distributions of U and V. Clearly,

] (12)=4a-2a~. Hence (2 . 6) follows from the known

inequality I Pu, v - (I2) > 4 a (o (U), o (V))..
Now, let (X, Y) _ (F -1 (U), F’’ (V)). Clearly,

Since X has a symmetric law, for almost every u in
[0, 1 /2 [. Hence

therefore establishing (b) of Theorem 1.1..

3. ASYMPTOTIC RESULTS FOR THE VARIANCE OF PARTIAL
SUMS

Proof of Theorem 1. 2. - First, we prove (a). Clearly,

Now, by (a) of Theorem 1.1 and Cauchy-Schwarz inequality,

Hence

Both (3 .1 ) and (3 . 2) then imply (a) of Theorem 1. 2.

Vol. 29, n° 4-1993.
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Second, we prove (b) and (c). When is a weakly stationary
sequence, an elementary calculation shows that

Therefore, under the assumption ( 1. 4),

both (3 .4) and Beppo-Levi lemma imply (b) of Theorem 1. 2. Concluding
the proof then needs the following equality:

Since the series L Cov (Xo, Xt) is absolutely convergent, (3. 5) followed
t ~ Zd

by an application of Lebesgue dominated convergence theorem implies (c)
of Theorem 1 . 2 ..

Proof of Corollary 1. 2. - By Young’s inequality, for any nonnegative
numbers x and y, ~~))*(~)+~(jc), which implies that

Now, by Jensen inequality,

Hence

(3 . 8) then implies Corollary 1. 2, via Theorem 1 . 2..

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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