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Nonlinear diffusion with jumps
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ABSTRACT. - We study McKean-Vlasov diffusions with jumps, given
by nonlinear martingale problems with integro-differential operators,
which may not always be represented as strong solutions to stochastic
differential equations. We show existence and uniqueness by a contraction
method on probability measures, using a coupling obtained by an adequate
sample-path representation.

Key words : Nonlinear martingale problems, couplings, fixed-point methods, interacting
particle systems, propagation of chaos.

RESUME. - Nous étudions des diffusions avec sauts de type McKean-
Vlasov, donnees par des problèmes de martingales non-linéaires avec

operateurs intégro-différentiels, qui ne peuvent pas toujours etre représen-
tees en tant que solution forte d’équation différentielle stochastique. Nous
montrons l’existence et l’unicité par une technique de contraction sur
les mesures de probabilité, utilisant un couplage obtenu grace à une
representation trajectorielle adequate.

Mots cles : Problemes de martingales non lineaires, couplages, methodes de points fixes,
systèmes de particules en interaction, propagation de chaos.
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394 C. GRAHAM

INTRODUCTION

Nonlinear diffusions with jumps abound in applications as propagation
of chaos limits for interacting particle systems. Even some apparently
continuous processes are modelled using jumps corresponding to changes
of state. For instance in Chromatography one wishes to analyse or separate
a mixture of L different species. An inert fluid pushes the mixture through
a long column partly full of an adsorbant medium. The particles of each
species have different mobilities and different affinities with the adsorbant
medium, and thus take different lengths of time to cross the column.
There is competition between molecules both for access to the adsorbant
medium and for space to diffuse. Experimentally there is a nonlinear
effect: each molecule does not see individual molecules but reacts to their
distributions. A probabilistic model for a chromatographic column is thus
given by a nonlinear system of L interacting diffusions with jumps.

There are few results on existence and uniqueness for such nonlinear
processes. It is natural to use fixed-point methods. A major difficulty
comes from the mixture of integral and differential terms in the generator.
For integral generators, regularity of the operator may lead to a contrac-
tion result on the martingale problem itself, as in Shiga-Tanaka [8] or
Sznitman [9]. Elsewise one usually considers a stochastic differential equa-
tion on which to obtain a pathwise contraction result, as in Sznitman [10]
and Tanaka [ 11 ] . Given a specific problem, usually modelled by a martin-
gale problem, it is not always possible to obtain an equation with Lipschitz
coefficients. In Graham [4], this was done (in a special L 1 setting) in the
case of discrete set of jumps; this solved the Chromatography problem
above. General representation theorems as in El-Karoui-Lepeltier [ 1 ] are
of no avail, since they give no clue as to the regularity of coefficients.
Coupling is central in obtaining fixed-point results, especially when there

is not a nice stochastic differential equation; for instance in Graham [3]
and Graham-Metivier [5], time-change is used to get the coupling. When
there is such an equation, coupling is automatic using the same driving
terms, but pathwise computations and use of the Yamada-Watanabe
theorem obscure this fact.

We first give a result when the differential part of the operator is

linear, using a coupling specified by a martingale problem. Regularity
assumptions are minimal, and generalize in this direction the results for
pure-jump processes in Gerardi-Romiti [2] (obtained by a stochastic differ-
ential equation representation). It also generalizes the result in Shiga-
Tanaka [8], and is adequate for Boltzmann-like models, where the jumps
occur in the speeds and apart from that there is free flow.
The main result considers general nonlinear integro-differential opera-

tors ; the only restrictions are bounded jump rate and natural Lipschitz
.
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395NONLINEAR DIFFUSION WITH JUMPS

assumptions. We tailor a sample-path representation for the coupling
which ensures the paths of the two marginals stay close. We then devise
an original recursive L 1 contraction scheme able to handle the accumula-
tion of deviations due to the jumps. This result enables to consider finer
models for Chromatography, where for example sorption effects on the
adsorbant medium lead to a continuous set of jumps in the adsorbed
phase. It also enables to consider particles with a continuum of states, for
instance when the number of species L goes to infinity, or when we

finely model the adsorbing medium using a continuum of adsorbed states
corresponding to thermodynamical considerations.

1. THE NONLINEAR PROBLEM AND ITS APPLICATIONS

Let Q=D(!R+, be the set of right continuous mappings with
left-hand limits, X the canonical process, its filtration,

D ([0, T], R~). We use the Skorohod topology, whose Borel a-field
coincides with the product a-field ; see Pollard [7]. ( , ) denotes duality
brackets, ~ ~ I the Euclidian norm, and 8 the Dirac measure. For a Borel
space E, n (E) is the topological space of probability measures on E under
weak convergence, and M: (E) is the set of positive bounded measures.
For ~~~ and bi are real measurable functions on 

and a is the matrix aa*. Let y be measurable on II with values
in M: (lRd - { 0 }). Let p be in Cb x in p in II We define
the diffusion operator If by

the pure jump operator f by

and the diffusion-with-jumps operator ~/=~f+~. The total mass of

~, À (x, p) = ~, (x, p, ~-{0}), is the intensity or rate of jumps, and when
À does not vanish, the probability is the law of the

amplitudes of jumps.
DEFINITION. - Let p E II «(Rd). We say that PEn (0) solves the nonlinear,

or McKean-Vlasov, martingale problem starting at p if it solves the

following inhomogenous martingale problem: Po = p, and for any p in
C2b(Rn)
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396 C. GRAHAM

is a local martingale under P, where is the own set of time-

marginals of P. Such a solution is called a McKean measure.

Remark. - This nonlinear problem can be seen as the Statistical
Mechanics limit for a particle system. As soon as we prove uniqueness
for the nonlinear problem, techniques developed in Sznitman ([9], [10])
apply to get propagation of chaos results in the mean-field, or Vlasov,
limit. See Graham [4] for a result that is valid in the present context.

Let us give a probabilistic model for a chromatographic column. A
particle position x = ( y, z) consists in its spatial position y in (Rn and
"state" z, 0 if adsorbed and 1 if desorbed. The system of particles evolves
in x ~ 0, c p~~n+ 1~ L = IRd and jumps between 2L possible states.

Assume that the j-th particle, is adsorbed at rate and
desorbed at rate and follows a nonlinear diffusion in !R" with opera-
tor when desorbed and ~o when adsorbed. We then set

p)=zIf{(y, p), acting on the y component, and
~’ (x, p)=z~(~, p)8(o,-i)+(l-~)f~(~ p) ð(o, 1)’ where -1 and 1 corres-

pond to the z component. Set ~~. The particles follow a nonlin-
ear system of martingale problems with jumps: (~~" + l L)) is
such that for 1 _- j _ L, p in Cb (Il~" + 1),

are orthogonal martingales, where PS is the law of (X;, ..., This
model englobes McKean’s caricature of the Boltzmann equation by a
two-speed model of Maxwellian molecules in McKean [6] and Shiga-
Tanaka [8], with additional streaming and diffusing, and other discrete-
speed Boltzmann equations.

Let E be a Polish space, with topology induced by a metric d. We may
define on M: (E) the metric of total variation

To define the Kantorovitch-Rubinstein metric on we use the

Lipschitz V x, y) ~
and set

which is equal to the Vasserstein metric:

If (E, d) is complete then so is (II (J?), p), and p induces weak topology
plus convergence of the first moment; see Zolotarev [12].

. Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



397NONLINEAR DIFFUSION WITH JUMPS

p shall denote the Vasserstein metric for and Ix-yl.
DT is the Vasserstein metric for a complete metric inducing the Skorohod
topology on QT. We also consider the uniform metric

sup 1 Xt - Yt and the corresponding Vasserstein metric AT
on We have See Pollard [7] for details.
Adding a constant to p does not change ~ cp, P ~ - Q ~ for proba-

bility measures P and Q, and we may restrict the supremum in ( 1. 6) to
functions vanishing at the origin. This definition extends nicely to jump
measures since they are defined on ~-{0}, and we set on

2. THE RESULTS ON THE NONLINEAR PROBLEM

We now give two results, the first using the metric V and the second
the metric p. We set

THEOREM 2 1. - Assume that ~ (x, p) does not depend on p. Assume
that for any Q in II (S2T), ~, (., Qt) is locally bounded and a (., Qt) and
b (., Qt) are locally Lipschitz on uniformly in t, and that either ~, (., Qt),
a (., Qt), and b (., Qt) are bounded on (Rd uniformly in t, or Po has a second
moment and the affine growth assumption holds:

Assume furthermore that (x, p), 1.1 (x, q)) _ KV(p, q) uniformly in x.
Then there is a unique McKean measure starting at Po.
Proof. - We denote by VT both the metric of total variation on II (QT)

and the semi-metric on II (Q) obtained by projection. Let Q1 and Q2 be
two laws on Q, P 1 and P 2 be the solutions to the linear inhomogenous
martingale problems in which the nonlinearity in ( 1. 3) is replaced by the
time-marginals and (Q;)t~o. These solutions are uniquely defined
by classical results, the growth and moment assumptions being needed to
prevent explosion and to enable L2 stochastic calculus. We shall define a
coupling of P 1 and P~: this is a probability measure P on 
having first marginal P 1 and second marginal p2. Q is identified with
D(!R+, with canonical process

Vol. 28, n° 3-1992.
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P will be defined as the solution to a linear inhomogeneous martingale
problem with operator 9 = P + j%. We define

By the Hahn-Jordan decomposition theorem, there are orthogonal positive
measure kernels 1.112, v1, v~ such that 1.1 (xk, Q~) = (xl, x2) + y~ (xl, x2).
We then define

For Po we take the law concentrated on the diagonal with marginals Po.
It is easy to see this martingale problem has an unique solution which

is indeed a coupling. A simple examination of the martingale problem
satisfied by Xl - r plus uniqueness shows that Xl is equal to X2 up to
the first time T that they do not jump together, and the corresponding
jump measure is v 1 + v~. If I P 1100 ~ 1,

and since the total mass of vt (x, ~)+v~(x, x) is (x, Qt ), 1.1 (x, Qr )),
we have

and a standard contraction argument finishes the proof. D

THEOREM 2 . 2. - Assume cr, b, and 1.1 uniformly Lipschitz and ~, uniformly
bounded.~ X (x, p) _ c and ] a (x, p)-cr(y, q) + I b (x, p) - b ( y, q) +
p(p(x, p), p(y, q))  K( x- y + p (p, q)). Assume that either cr and
b are bounded, or Po has a second moment and

I m (x, p) I2 + tr (v (x, p))  K(1 + I x I2) uniformly in p.
Then there is a unique McKean measure starting at Po.

Annales de l’Institut Henri Probabilités et Statistiques
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Proof. - For laws Q~ and Q2 on Q we shall give a pathwise representa-
tion Xl and X2 of the solutions P 1 and P 2 of the linear martingale
problems corresponding to and (Qi )t > o. These solutions exist and
are unique by classical results, the growth and moment assumptions
preventing explosion and ensuring L2 stochastic integrands. We shall strive
to construct Xl and X2 as close as possible.

Since the rate of jumps is bounded by c, we shall set the times of jumps
in advance using a Poisson process of rate c. Between jumps the paths
follow Ito stochastic differential equations. The Poisson process and
Brownian motion will be chosen the same for Xl and X2. Since the law
of jumps varies from point to point, we shall chose the joint law along
the way in the best possible fashion.
We take a Brownian motion B, a random variable Xo with law Po, and

a Poisson process N of rate c with jump-times l’ all independent.
We define a probability kernel

Thus all the space-time dependency has been put in the law of the jumps,
and we replace a varying rate by a larger constant rate by allowing jumps
of amplitude 0:

By ( 1. 8),

We assume c >_ 1 for simplicity of notations.
Take To=0, and assume the processes are defined up to

For k =1, 2, define X" between T" _ 1 and as the solution of

starting at ~Tn -1 ’ Then choose (XTn - XTn - conditionally on
the past, independently of the rest, according to the law Rn having
marginals 7c(A~ -, QT") QT») such that

This choice is logical considering ( 1. 7), and Rn exists according to a
simple minimisation argument for continuous functions on compact sets.
We thus have constructed processes Xl and X2 having laws P 1 and P 2 .
Now take and we wish to get a

contraction estimate relating this to AT Q2). We denote T" n T again

Vol. 28, n° 3-1992.
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and thus we get

and since is equal to

using the Burkholder-Davis-Gundy inequalities we have

Using the Lipschitz properties, for some constant K this is bounded by

Annales do l’Institut Henri Poincare - Probabilités et Statistiques
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We take T small enough for K(T+~T~ 1. Using (2. 13) and (2. 15),

which together with (2.12) gives

&#x26;/(a2014 1)= 1. By a simple affine recursion argument,
Q2)

Now

and after reasoning as for (2.13), (2.14), (2.15), conditional expectations
give

and using (2.18)

We see that for a sufficiently small T, depending only on K and c, we

have

This certainly proves uniqueness of the McKean measure on [0, 7]. For
existence, we must be careful: the Borel a-field generated by OT does not
coincide with the product a-field, and the probability laws we deal with
are only defined on the latter. Nevertheless, the classical iteration method for

28, n° 3-)W. 
’
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a recursive sequence defined by a contracting mapping, applied in this
context, shows that the corresponding sequence of laws is Cauchy for AT
and thus for DT . Since this metric is defined through a complete Skorohod
metric, it is itself complete, and the sequence converges in II The
solutions to the martingale problems we consider are quasi-continuous,
thus T, 2 T, etc., are a.s. continuity points and we may extend existence
and uniqueness to R + . D 

B

We now use this theorem on the model for a chromatographic column
defined in Section 1. Let al, b{, b’o be the coefficients in 2{ and ~4.
THEOREM 2.3. - If ~{, bl, P~ are Lipschitz bounded for p,

then for any initial condition there is a unique solution to the nonlinear

system (1 4).
Proof. - We use Theorem 2.2. The Lipschitz assumptions are only

stated on the y coordinates, but since 1}, we can deduce a Lipschitz
assumption on ( y, z). For instance, if aJ is K-Lipschitz and bounded by
A, then the jump rate for the jump (0, -1) is p), and

q) ...~K(I +P(p~ q)). D
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