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Domains of analytic continuation for the top
Lyapunov exponent

Yuval PERES

Mathematics Department, Stanford University,
Stanford, CA 94305-2125, U.S.A

Ann. Inst. Henri Poincaré,

Vol. 28, n° 1,1992, p. 148. Probabilités et Statistiques

ABSTRACT. - For a product of random positive matrices with Marko-
vian dependence, we show the top Lyapunov exponent depends real-

analytically on the transition probabilities (under an ergodicity assump-
tion) and determine explicit domains of analytic continuation.

Key words : Random matrices, Lyapunov exponent, analytic continuation.

RESUME. - On demontre que l’exposant caracteristique maximal d’un
produit de matrices positives aléatoires en dependance Markovienne est
une fonction analytique-reelle des probabilites de transition, et on donne
explicitement des domaines de prolongement analytique.

1. INTRODUCTION

Consider independent identically distributed random variables X1,
X2, ... taking finitely many values {A1, ... , Ab } in the space of d x d
real matrices. We are concerned with the regularity of the top Lyapunov

Classification A.M.S. : 60 B 99, 32 D 15 60 J 15, 60 K 99.
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132 Y. PERES

exponent

(where E denotes expectation and 11.11 is a norm on the space of matrices)
as a function of the probability parameters

In [P] it is shown that when A1, ..., Ab are nonsingular matrices and
the top Lyapunov exponent is simple (i. e. "(1 > Y2; see § 4), then Y1 depends
real-analytically on pl, ... Our object here is to obtain explicit
domains of analytic continuation for y 1.

Such domains provide lower estimates for convergence radii of perturba-
tion series; their usefulness is explained in Kato’s book [Ka], section II. 3.

This we are able to do only when the matrices {A~} have non-negative
entries, using Birkhoff’s contraction coefficient r(A) which is defined in
Section 2.

DEFINITION. - A non-negative matrix is called row-allowable if it has
no all-zero rows.
Note from Section 2 that 0 ~ T (A) ~ 1 for any row-allowable square

matrix A, that T (A)  1 when A is strictly positive and, most importantly,
that T (A) may be readily calculated from the entries of A. Our main result
is an extension to Markovian random products of the following.

THEOREM 1. - Let F = ~ A1, ... , Ab ~ be a set of row-allowable non-
negative matrices such that at least one A, has strictly positive entries.

Let be i. i. d. F-valued random variables. Then there is a relatively
open domain Q in the complex hyperplane

defined by

sucn tnat

(i ) Q (F) contains all positive probability vectors ( p 1, ... , 
(ii ) The top Lyapunov exponent y 1 defined in ( 1 ), as a function of the

probability vector ..., pb) defined in (2), may be extended to, a complex-
analytic function on Q (F).
Remark. - Instead of some A E F being strictly positive, we really need

only the sightly weaker condition t (A)  1. To obtain some domain of
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133ANALYTICITY OF LYAPUNOV EXPONENTS

analytic continuation, it actually suffices that T (A)  1 for some matrix A
in the semigroup generated by F, as one can replace F by all products of
a certain length r thereof, and consider the random product in ( 1 ) in
blocks of length r. The probability parameters for this new random product
will be homogenous polynomials of degree r in the original probabilities.
The rest of the paper is organized as follows. Section 2 begins with

preliminary material on Hilbert’s projective metric. Then we relate
Theorem 1 to previous work, most notably that of Ruelle [R], and sketch
its proof.

In section 3 random matrix products with Markovian dependence are
considered, and an extension of Theorem 1 to that setting is established.
Some methods for estimating Lyapunov exponents are discussed in

section 4. Birkhoff’s contraction coefficient was already used for this pur-
pose by Wojtkowski [Wojt]. The paper ends with some unsolved problems.

This study was motivated by the application of random matrix products
to computing dimensions of intersections of Cantor sets, presented in
[KP].

Remark. - After the results of the present paper were obtained, I
received from P. Bougerol a copy of H. Hennion’s preprint [Hen], in which
similar methods are used to establish differentiability properties of the top
Lyapunov exponent for a random product of i. i. d. non-negative matrices,
as a function of the matrix entries. In the same paper, Hennion proves
the most general stability result for the top Lyapunov exponent obtained
to date, in the context of i. i. d. non-negative matrices. A special case of
his result is the fact, that with the assumptions and notation of Theorem 1,
yl depends continuously on the (positive) probabilities pl, ... , pb.

2. BACKGROUND AND A PROOF OF THEOREM 1

For any vector denote by x the direction it determines in the
projective space P (tR~). Let

Hilbert’s projective metric is the metric h ( . , . ) on P + (Rd) defined by

Any row-allowable non-negative d x d matrix A acts naturally on IP + (lRd)
by

Vol. 28, n° 1-1992.



134 Y. PERES

The main result of [B] is that when A is strictly positive, it acts as a strict
contradiction on P + (Rd). More precisely, define for a row-allowable d x d
matrix A = the Birkhoff contraction coefficient

Birkhoff [B] obtained an explicit formula forr:

where if each column of A is either zero-free or all-zero, then

., j , "’,,, --U 

(with k, I restricted to the zero-free columns, and 1 __ i, j _ a~ and otherwise
V (A) = 0. Recall that we assume A is row-allowable throughout. Another
proof of (8) if given in [S], section 3. 4.
We now wish to recall the main results of Ruelle [R] and relate them

to the present paper. The top Lyapunov exponent 03B31 is defined in general
as follows. Let ( Y, P, be a probability space, a: Y -~ Y a measure
preserving map, and M a measurable function from Y to the space of

d x d matrices, with M ( y)  oo . Let

Ruelle studies the dependence of y 1 (M, Jl) on M and shows, in particular,
that if Y is a compact metric space, a and Mo are continuous, and Mo
maps Y to the set of strictly positive matrices, then y 1 (., Jl) is real analytic
in a neighborhood of Mo. Actually, the positivity assumption is expressed
in [R] in a more invariant form, by requiring that all matrices in the image
of Mo, map some closed cone in jRd to its interior.
Without the positivity condition, Le-Page [LP2] has established Holder

continuity for Y 1 as a function of the matrix entries in the i. i. d. case,
under rather general assumptions. We are interested in the dependence of
y 1 (M, Jl) on the measure p, when it is restricted to be a product measure,
or more generally, a Markov measure. Let us note that for general
matrices, even continuity results are difficult to establish (see the paper
by Slud in [CKN1] and the references therein). One should always bear

in mind the example in [Kif]: if the two matrices A1 = (~ 0 1 and
A2 = (2 0 0 1/2 ), taken with probabilities P1 and p2 = 1 - p1 respectively, are
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135ANALYTICITY OF LYAPUNOV EXPONENTS

used to define an i. i. d. random product, then y1= 0 if 0~i~l but
yl = log 2 for pi = 0. Thus the restriction in Theorem 1 to positive probabil-
ity vectors is necessary. However, if all matrices ..., Ab are assumed to
be strictly positive, the domain of analytic continuation Q(F) in Theorem 1
contains the closed simplex of all probability vectors (PI’ ... , pb).
As noted in the remark after Theorem 1, the assumption made there

that some A~ is strictly positive may be weakened. However, it cannot be
discarded completely. Indeed consider, as in [P], where

is assigned probability pj, and aj, One finds that

which has a point of non-differentiability as a function of 0 p1  0 if

Theorem 1 is considerably easier to prove than its extension discussed
in the next section. Though not logically necessary, sketching the proof at
this junction might be helpful.

Proof of theorem 1 (sketch). - Defining Q (F) by (4), we only need to
verify assertion (ii) of the theorem.

define

Step 2. - For K c Q(F) compact, let

If f is a Lipshitz function as above, then

Vol. 28, n° 1-1992.



136 Y. PERES

Infer from this and the identity

that for each the sequence (T# f) (M) converges uniformly on
compact subsets of Q(F). The limit T~z f does not depend on x and is an
analytic function ofzeQ(F) by Lemma 11 in page 11 of[GRo].

Step 3. - Apply step 2 The function

is analytic in Q(F), and for a positive probability vector p = (pi, ... , 
r 00 (p) coincides with the top exponent Y 1 defined by ( 1 ) and (2). This is
most easily verified by considering Cesaro averages of the sequence

for n >_ 1 and fixed x E P + 

3. MARKOVIAN RANDOM MATRIX PRODUCTS

In order to extend Theorem 1 to the case in which the factors Xn in the
random matrix product ( 1 ) are no longer i. i. d., but instead form a matrix-
valued, homogenous Markov chain, we need to fix the allowed transitions.
Let U = (u (i, j))b ~ -1 be a zero-one matrix which is irreducible, i. e., the

only nonempty subset A of { 1, ...,~} satisfying i E A, 
is A ={ 1, ... , b } (see [S], section 1 . 3).
Denote by S (U) the set of b x b stochastic matrices with the same

support as U:

Let be a fixed set of row-allowable non-negative d x d
matrices. For each PeS(U) denote

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



137ANALYTICITY OF LYAPUNOV EXPONENTS

where {X~} is the F-valued stationary Markov process with transition
probabilities

and initial probabilities

Here xp is the unique probability vector satisfying

(Throughout the paper a superscript t denotes "transpose".)

THEOREM 2. - With the notation above, assume that
(i ) U is irreducible.

(ii ) For some 1 _ l  b, every column of A1 is either zero-free or all-zero.
Then there is a relatively open subset SZ1 (F, U) of the complex affine

space of matrices,

with the properties
(I) 03A91 (F, U) contains S (U).

(II) There is a complex-analytic function r : S21 (F, U) -~ C, such that
for everv P E S (U)

where the right hand side was defined in ( 12) .
(III) SZ1 (F, U) is the set of all b x b matrices Z = in H (U) such that

1 is a simple eigenvalue of Z with all other eigenvalues strictly smaller in
absolute value, which also satisfy

where p ( . ) denotes spectral radius.

Remarks. - 1. Condition (ii ) of the theorem is equivalent to ’t (A,)  1.

To obtain real-analyticity of P ~ Y1 (P) in S (U), it suffices to assume

instead that for the set Fr composed of all products of length r,

some A E Fr satisfies ’t (A)  1. Indeed, the blocks of length r,

in the product (12) constitute an Fr-valued irreducible Markov chain with
transition probabilities which are polynomial functions in the so

applying the theorem to this new random product gives the desired result.

Vol. 28, n° 1-1992.



138 Y. PERES

2. The same device of blocking allows us to pass from any finite-

memory homogenous Markov chain to a chain with memory 1.
3. Theorem 1 is the special case of Theorem 2 obtained by taking

and for all i, j. Indeed the only (possibly) nonzero
eigenvalue of a matrix with identical rows is the sum of the elements in a
row, so taking for all 1 maps the domain Q(F) defined in
(4) into the domain Q1 (F, U) defined in Theorem 2 (III).

4. Observe that unlike the domain Q(F) of Theorem 1, 01 (F, U) is

usually unbounded.
5. The proof of Theorem 2 will be based on two lemmas, which we

state in greater generality than is needed for the present application.

NOTATION AND PRELIMINARIES.

(i) Recall [p + denotes the positive portion of projective space.

Fixing d, for 0al and integer we denote by L~ the complex
vector space of functions /: {1,2, ..., b ~ x P + which satisfy a
Holder condition with parameter a in the second variable, i. e., all the

quantities

for 1 ~ ~ ~ are required to be finite [recall h ( . , . ) is Hilbert’s metric].
(ii) For the remainder of this section, we fix an arbitrary "reference

point" For f E L~ we define

1 .,,b 

It is readily verified that La, equipped with the norm. is a Banach

space.
(iii) Denote by C the subspace of La consisting of constant functions,

and by Cb the subspace of functions which depend only on the first

coordinate:

(iv) Recall that for any closed subspace W of a Banach space V, the
Quotient space V/W is also a Banach space with the norm

(see, for instance, [Ka], section 3 .1. 8). If T is a bounded linear operator
on V for which T (W) c W, we denote by [T; W] the restriction of T to W
and by [T; V Iw] the induced linear operator on the quotient space (the
same notation is used for a square matrix acting by left multiplication on
Cb). The spectrum of T is the union of the spectrum of [T; W] and the
spectrum of [T; V/W], when W is finite dimensional. Consequently, under
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139ANALYTICITY OF LYAPUNOV EXPONENTS

the preceding assumptions,

where p ( . ) denotes spectral radius.
(v) The quotient norms on L/C and may be written more

explicitly. Namely, for fe Lf we have

and

LEMMA 3. - Let be a set of row-allowable dx d
matrices, with t  1 for some 1 _ l __ b, and let U be a b x b irreducible
zero-one matrix. For each matrix Z = E H (U) [see ( 16)] define the opera-
tor Tz on L~ (where 1 ) by

Then Tz preserves C, and the spectral radius of the induced action,
p [Tz; L~/~], is at most

where is the diagonal ~ (c, c, ..., c~t ~ in ~b, which is invariant under left
multiplication by Z.

Proof. - The b-dimensional space 15~ is also Tz-invariant. The canonical
isomorphism between 15~ and ~b, transports [T z, to left multiplication
by the matrix Z, and takes ~ to the diagonal Ab of ~b. Therefore,

It remains to estimate p ([T~; La/~.b]). For f’E La, 1 _ i _ b and x, y E f~ + (p~a),
we have

.~ .

where was defined in ( 19), h ( . , . ) is Hilbert’s metric, and we have
used (7).

Vol. 28, n° 1-1992.
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From (29) one sees that L~, with

Denote by Q the b x b non-negative matrix

and by m ( f, a) the column vector

men may De rewritten as

where the inequality should be interpreted coordinatewise. Iterating, we
get

Using the expression (24) for the quotient norm in L:/Cb, (34) implies that

where by we mean the maximal row-sum of Q" (which is the

operator norm of Qn acting on IRd with the maximum norm). Therefore,

Combining (28) and (36) and recalling (22), the asserted inequality

follows..

LEMMA 4. - Let F, U and Tz be as in the preceding lemma, and let
0  a ~ 1. Denote by SZ~ (F, U) the set of matrices

where H (U) was defined in (16) and x (Z, a) in (26). Then
(i ) For every f E L~, Z E Qcx (F, U) and i E { 1, 2, ..., b } the sequence

(TQ f) (i, v) converges. The convergence is uniform on compact subsets of
Qcx (F, U) [and therefore the limit is an analytic function of Z E Qcx (F, U)].
The limit does not depend on i E { 1, ..., b ~.

(ii) Qcx (F, U) is a relatively open subset of H (U), and contains S (U).

Proof - (i) Fix a compact subset 5i of Qcx (F, U). Employing continuity
of the spectral radius, we may find e satisfying

For each Z~K, there exists n ~ 1 with

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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By compactness, for some n (39) is satisfied for all Z E Jf, and it follows
that

It suffices to establish (i ) under the assumption

Then (24) and (40) imply that

and

Now fix ze { 1, 2, ..., b } and observe that

Let

and infer from (41 ) that for 1 ~ j  b,

In conjunction with (42) this yields

Thus, denoting

we find from (43), (44) that for all 

ensuring the required uniform convergence of (T z , f ’) (i, v). The inequality
(42) implies the limit does not depend on i. By [GRo], lemma 11, p. 11,
the limit is a holomorphic function of Z in Qcx (F, U).

(ii) Qa (F, U) is open, since the spectral radius of a matrix depends
continuously on its entries. Let

Since P is an irreducible stochastic matrix, the Perron-Frobenius theorem
[S], theorem 1.5, asserts that 1 is a simple eigenvalue of P, with all

other eigenvalues of modulus less than 1. Therefore, since Ab is the right

Vol. 28, n° 1-1992.
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eigenspace of P corresponding to the eigenvalue 1,

Recalling that ’t (A,)  1, we observe that the inequality

is strict for i = l and at least one value of j. Invoking the Perron-Frobenius
theorem again,

In conjunction with (45), this proves that PEQcx(F, U)..

Proof of theorem 2. - First, note that the definitions of 03A91 (F, U) in
the statement of the theorem and in (37) agree, so we need only to
establish assertion (II) of the theorem.

Recall that for every f~Lb1 and ZEQ1 (F, U), Lemma 4 guarantees the
existence of

where the limit does not depend on k E { l, ...,~}, and is an analytic
function of ZEQl (F, U).
We apply this to the functions f ; E Lb defined by

where we have equipped (~b with the maximum norm /1.1100’ and ~ik is the
Kronecker 03B4.
The inequality

valid for vectors x, with positive components and 
ensures that hj E 

DEFINE:

We know that r 00 is analytic in 03A91 (F, U); it remains to verify ( 17) .
Let PeS(U) and let { Kn ~n > o denote a Markov chain with state space

{1, ...,~}, transition matrix P and initial distribution xp. Then the ran-
dom matrices satisfy ( 13) and ( 14).

It is convenient at this junction to take the vector v E which was
used to define the norm in L~, to be the all-ones vector v = ( 1, ..., 1/.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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If we equip (~d with the maximum norm 11.1100 and the space of dx d
matrices with the corresponding operator norm, then for every non-

negative matrix A,

The definition (12) of the top Lyapunov exponent may be rewritten
1

where we define, for n >_ 0

The proof will be complete once we check that

By conditioning on K1, ..., Kn we find that (50) is equivalent to

For any f~Lb1, one easily verifies by induction on n~0 that

for all k E { 1, ..., b J.
Therefore

Thus, from (53) we get

which implies (51) and, in view of (49), also

4. ESTIMATES OF LYAPUNOV EXPONENTS

In the context of i. i. d. random products of invertible matrices, Gui-
varc’h and Raugi [GR] found general criteria for simplicity of the top

Vol. 28, n° 1-1992.
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Lyapunov exponent, i. e., for the inequality to hold (see, for

instance, [CKN2] for the definition of all Lyapunov exponents yl, y~, ...).
A special case of their results is the following assertion:
Assume that the invertible define a strongly

irreducible action on [Rd (i. e., no finite union of proper subspaces is
invariant under all AJ and, for some 1 ~/~&#x26;, the matrix A~ has a unique
simple eigenvalue of magnitude p(AJ.
Then the i. i. d. random matrix product, defined by attaching to

A1, ... , Ab corresponding positive probabilities pl, ... , satisfies

However, their methods do not yield lower bounds for the difference
Y2.

QUESTION 1. - For the i. i. d. random product mentioned in the previous
paragraph, can one obtain lower estimates for Y 1- Y2 expressed explicitly
in terms of the probabilities p 1, ... , pb and the entries and spectra of the
matrices A1, ... , Ab?

If the matrices ... , Ab are non-negative and allowable, i. e., without
all-zero rows or columns, and we assume that at least one Al is strictly
positive (the invertibility assumption may be dropped), such estimates
may be given; namely, we then have the inequality

This assertion is contained in the following general (and easy) estimate,
which slightly extends a result of Wojtkowski.

PROPOSITION 5. - Let {Xn }n~1 be an ergodic stationary stochastic

process, taking values in the space of allowable non-negative d x d matrices,
such that E [log+  ~. If, with positive probability, all entries of X1 i
are positive, then the two top Lyapunov exponents "(1’ y2 for the random
product of the Xi differ and, moreover,

[7/* the right hand side is infinite, (54) should be interpreted as asserting that
72=-co.]
Proof - Of the different (equivalent) definitions of the Lyapunov

exponents 71,72.... for the process {xn}, the most useful in the present
context is the following (see [CKN2] for the equivalence of the different
definitions, and for the proof of the assertion below which is part of
Oseledec’s theorem). Denote

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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and let Bn be the unique positive-definite matrix satisfying

where S~ is the transpose of Sn. Then with probability 1, the matrices Bn
tend to a (random) limit matrix B, with eigenvalues

For any symmetric d x d matrix A, denoted by

the eigenvalues of A.
For allowable matrices A with non-negative entries, Hopf proved in

1963 fHopl the basic inequality

(Here the symmetry assumption on A is not required if À2 is interpreted
as the second largest absolute value of an eigenvalue. See [S], theorems
2.10 and 3.13 for an exposition).
The definition (55) of Sn implies .

so that applying (58) to gives

Since

takine loearithms we see that

Passing to the limit, Birkhoff s ergodic theorem implies

which, in view of (57), completes the proof..

Remark. - For 2x2 matrices, (54) was already noted by Wojtkowski
[Wojt], and used by him to estimate from below the entropy of a billiard

system. The main reason for including Proposition 5 here is to spark off

Vol. 28, n° 1-1992.
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QUESTION 2. - Can the relation between the maximal domain of analytic
continuation for y 1 (in the sense of Theorems 1, 2) and the gap 
be made explicit?
We turn now to the excruciating problem of the subject:

QUESTION 3. - Devise reasonably general and effective algorithms for
explicit calculation (or at least approximation) of Lyapunov exponents.
For the remainder of the discussion, we restrict attention to i. i. d.

random products, as these seem sufficiently elusive.
In 1963 Furstenberg [F] found a formula for the top Lyapunov

exponent, valid under quite general hypotheses:

where ~,~ is the distribution of each factor in the i. i. d. product, and v is
a pi-stationary measure on projective space (see [F] or [BL] for details).
This formula is fundamental for establishing positivity of 03B31 [for SL (d, R)-
valued random matrices] but its utility for computation is limited by one’s
knowledge of the stationary measure v. Thus far, Lyapunov exponents
have been calculated explicitly only under very special circumstances ([CN],
[Keyl], [KP], [Let]). The central limit theorems in [FK] and [LP1] ] allow
Monte-Carlo estimation of yl, which suffers from the usual drawbacks

(slow convergence and unreliability). Since the definition ( 1 ) of yi 1 provides
approximations to Y 1 from above, E. Key has suggested using supermulti-
plicative functions to obtain lower bounds [Key2]. For instance, if Xi are
i. i. d. positive d x d matrices and Sn is defined by (55), then

.a(

where Per denotes the permanent, are approximations converging to yl
from below.

This provides rigorous bounds, but the convergence is usually exceed-
. ingly slow the error of the n’th approximation (60) seems to be of order
03A9(1 n)].

In the setting of Theorem 1, i. e., when each of the factors Xn in
the random product is chosen from the allowable non-negative matrices
Ai, ... , Ab with probabilities pi, ... , p~, an approach suggested by (59)
is to use the approximations (p), defined in ( 10).

These give exponential convergence

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques
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b

where 1 [assuming 1] and
j = 1

J= 1

is arbitrary].
Note, however, that the computational effort required to calculate 1," (p)

is also exponential in n [the same holds for the approximations (60)].
Le-Page [LP1] proved (61), with some uncomputable 8  1, for invertible

Ai, ... , Ab, replacing the assumption that Ai are non-negative by "strong
irreducibility" and "the contraction property" (see [BL] for definitions
and details). In that context, no sharpening of the inequality 8  1 is

known (this is closely related to question 1 above).
We feel the problem of calculating Lyapunov exponents deserves atten-

tion comparable to that allotted to its deterministic analogue, the eigen-
value problem (e. g. [Wil]). Also suggested by the discussion above is

QUESTION 4. - Can simplicity, stability and regularity results for Lyapu-
nov exponents be obtained without assuming the matrices involved to be
non-negative or invertible? For instance, we conjecture that for an i. i. d.

random product defined by (2), the condition yl >Y2 suffices to guarantee
(local) real-analytic dependence of 03B31 on (Pl’ ...,pb).

Finally, we mention two intriguing convexity conjectures due to E. Key.

QUESTION 5 ([Key 1], [Key 2]). - Denote by f(p) the top Lyapunov
exponent for an i. i. d. random product where each factor equals A with
probability p and B with probability 1-p. Key conjectured that:

(i) If A, B are normal d x d matrices, then f is a convex function in the
interval (0,1 ).

(ii) If A = Bt, then f is concave in (0,1 ) .
Because of Theorem 1 and [P], these conjectures can (usually) be studied

by examining the derivatives of f.
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