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Indefinite quadratic functionals of Gaussian processes
and least-action paths

Terence CHAN

Statistical Laboratory, University of Cambridge,
16 Mill Lane, Cambridge CB2 ISB, U.K.

Ann. Inst. Henri Poincaré,

Vol. 27, n° 2, 1991, p. -271. Probabilités et Statistiques

ABSTRACT. - A method for finding the law of certain indefinite qua-
dratic functionals of Gaussian processes is presented. This involves estab-
lishing a Spectral Theorem for compact operators which are "selfadjoint"
with respect to a certain class of indefinite scalar products and proving a
version of Mercer’s Theorem for their integral kernels. Some applications
are given, in particular an application to changing the law of a random
harmonic oscillator according to the principle of least action. Some rela-
tions between the formulae established here and certain formulae for

Feynman path integrals are also discussed.

Key words : Gaussian process, quadratic functional, random harmonic oscillator.

RESUME. 2014 On presente une methode pour calculer la loi de certaines
fonctionnelles quadratiques indefinies de processus gaussiens. Dans ce but,
on etablit un théorème spectral pour des opérateurs compacts qui sont
« auto-adjoints » par rapport avec une certaine classe de produits scalaires
indefinis, d’ou on deduit une version du théorème de Mercer pour leurs
noyaux. On donne quelques applications, en particulier une application
au changement de loi d’un oscillateur harmonique aleatoire, selon le

principe de moindre action. On traite de plus les relations entre des
formules etablies ici et certaines formules pour les intégrales de chemins
de Feynman.

Classification A.M.S. : 60 G (60 F, 60 H, 8 1 C).
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240 T. CHAN

Let Zt be a continuous Gaussian process (in JR~). We think of Zt as a
function in a suitable Hilbert space with inner product ( ., . ~ and we
are interested in the problem of calculating the law of quadratic functionals
of Z of the form

where S is a selfadjoint oounaea operator. in particular, we present a
method for calculating the Laplace transform

(here, E~ denotes expected value for the process Z with Zo = z).
Initially, we consider only centred Gaussian processes (so ZQ=0). Later

we will use the results for centred Gaussian processes to calculate the

Laplace transform for general starting point z.
Our motivation for considering this problem is the following. Let

(Xr, Vt) be an Ornstein-Uhlenbeck type model of a simple harmonic
oscillator: 

’

1

where B~ is a Brownian motion. We are interested in least-action paths of
such a process. Since the Lagrangian of such a harmonic oscillator is

(Vf - X~)/2, the action of a simple harmonic oscillator is precisely of the
/*T 

_____

form ( 1. 1 ) with f, g,> = for f, g in the Hilbert space

L2 ([0, r], C2) and the operator S is defined by

There are many other situations in which one is interested in the law of a

quadratic functional of a Gaussian process and we shall consider a few of
these as well.

In the case where S is a positive-definite operator, there is already a
method for evaluating the Laplace transform (1 .2). We begin by briefly
reminding the reader how this works. For simplicity we take S = I.

Let c (s, t) denote the covariance kernel for the process Z with Zo = 0:

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques



241QUADRATIC FUNCTIONALS OF GAUSSIAN PROCESSES

For a continuous process the kernel c ( . , . ) is jointly continuous. Define
the covariance operator C by

acting on functions fe L 2 ([0, r], (Cd-valued L functions). We denote
by ( . , . ) the usual inner product on L2:

Strictly speaking, we ought to consider complex-valued functions. However
since C is an integral operator with real kernel, it acts separately on the
real and imaginary parts of f, so for practical calculations we need only
consider real-valued functions. As is well-known, the covariance operator
C with jointly continuous integral kernel is a positive, selfadjoint, trace-
class operator on the Hilbert space ~ = L2 ([0, ’r], (we do not assume
positive-definiteness for C since it may in general have non-trivial null
space). Therefore, it has a countable set of real non-negative eigenvalues

with corresponding orthonormal eigenfunctions cpn. Mercer’s theorem
states that the continuous integral kernel of a positive selfadjoint compact
operator admits an eigenfunction expansion of the form

From this we see that the process Z admits a series expansion of the form

where §1, ~2 - - - are i. i. d. N(0, 1) random variables. Substituting the
expansion ( 1 . 5) for Z into ( 1. 2) we see that the Laplace transform may
be calculated as

Furthermore, we know that the product at (1.6) converges since C is
trace-class (which implies that ~  (0). We can then obtain an explicit
formula in terms of a for the product at (1.6) by means of the Hadamard
factorisation theorem. (But more on this later.)
The aim of the present work is to extend this method to operators S

which are indefinite and obtain eigenfunction expansions which are anal-
ogous to ( 1 . 4) and ( 1 . 5).

Vol. 27, n° 2-1991.



242 T. CHAN

suppose that ~ has a bounded inverse. We can detine an indefinite
scalar product (., .) on ~f using the selfadjoint operator J = S -1:

inner product and ( . , . ) to denote the indefinite scalar product.] Note
that ( . , . ) is non-degenerate i. e. (x, y) = 0 for all implies
x= 0.

Let K be the operator on H defined by

mis is men an integral operator wnn integral Kernel ~~, ~.
The operator K is J-selfadjoint, that is, selfadjoint with respect to the
scalar product ( . , . ); indeed

anu me same calcultation snows maL iL is aiso j-positive:
Because K is compact, its spectrum consists of a countable set of eigenva-
lues of finite multiplicity. Let "An be the eigenvalues of K with corresponding
eigenfunctions en. Because K is J-selfadjoint, the eigenfunctions e’l are
J-orthogonal [(ei, e~) = 0 if ~7]. The proof of this is identical to the usual
proof from Hilbert space theory. Moreover, (K f, /)==( C/, f) = 0 only if
fe ker C, since from standard Hilbert space theory we have

and Therefore (K en, en) _ ~,n (em en) =  C en, > 0, so
(en, en) ~ 0 and Àn is real with sgn (~,n) = sgn en). In other words,

eigenspaces corresponding to positive (resp. negative) (1 . 8)
eigenvalues are positive (resp. negative) definite.

This is a particular case of a general result which is true for a much bigger
class of positive operators (see Chapter VII of Bognar [1]).

For the moment, let us ignore mathematical rigour and briefly describe
how we would like to proceed. By analogy with (1.4), we would like to
express the kernel k (s, t) as

whence we would obtain a series expansion analogous to (1.5) of the
form

.-

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



243QUADRATIC FUNCTIONALS OF GAUSSIAN PROCESSES

The Laplace transform (1 . 2) may then be calculated by using

Notice that J en are precisely the eigenfunctions of the usual adjoint
K* = C J -1 of K, so the eigenfunction expansion (1.9) should come as no
surprise to anyone familiar with the so-called spectral representation for
finite-dimensional matrices which are diagonalisable but not necessarily
symmetric.

2. RIGOROUS TREATMENT OF HEURISTIC CALCULATIONS

IN SECTION 1

It turns out that by far the biggest hurdle on the way to an analogue
of Mercer’s Theorem which would give the eigenfunction expansion ( 1 . 9)
is in proving an analogous Spectral Theorem for compact J-selfadjoint
operators. Much of the present theory of indefinite scalar product spaces
and spectral theory for selfadjoint operators is due to Krein. While Krein
and others have proved the existence of spectral functions for various
operators (e. g. see the references given in Bognar [ 1 ]), it is incredible that
the simplest case - that of a compact selfadjoint operator with countable
spectrum - does not seem to have been considered and as yet there is no
analogous result to the simplest of all the spectral theorems. However,
assuming that such a spectral theorem holds, that is, assuming the eigen-
functions en of K span the image of K, it is quite easy to generalise
Mercer’s Theorem to the case of J-selfadjoint operators. Let us begin by
doing so.

First, some simple preliminary results. Throughout this section we use
the symbols 1 and * to denote the usual orthogonal complement and
adjoint respectively, while the symbols (1) and (*) denote respectively
orthogonal complement and adjoint with respect to (.,.). It is easy to
see that the following relationship holds between the two different kinds
of adjoint:

The proof of the following very simple result is left to the reader.

LEMMA 2.1. - Let M be a subspace of Then

COROLLARY 2 , I . - If ~ M is a closed subspace of ~, then (-1.) = M.

Vol. 27, n° 2-1991.



244 T.CHAN

Proof - so (-L)= (Here we
have used the analogous classical result for from Hilbert space
theory.) 0

The result in Corollary 2.1 is proved in much greater generality in
Bognar [ 1 ] .

LEMMA 2.2. - Let A : H ~ H be a linear operator. Then the following
properties hold:

(i ) ker A = (Im A *~)~1> ;
(ii) ker A~*~ _ (Im A)~1j ; ,
(iii) Im A = (ker A~*~)~1~ ;
(iv) 1m A *> = (ker A)~1~.
Proof. - (i ) Given x E ker A, we have

.... ........F .I. ,., . ....

so ker A c Im A (*) On the other hand if v E Im A (*) -L), then for all y E ~,
_ .. ,. -... ~ _ . _

The proofs of (ii)-(iv) are identical to the proofs from the usual Hilbert
space theory, provided we have the result of Corollary 2.1. D

In particular, if A is J-selfadjoint then ker A (1-) = Im A. However, unless
ker A is non-degenerate [i. e. for all y e ker A imply
x = 0], it is not true that

Now obviously, unless 1B. nas a non-generate nuu space [so that tne direct

sum decomposition (2 . 1 ) holds for K], its eigenfunctions cannot possibly
span its range. We shall return to this point later. For now, let us prove
the required analogue of Mercer’s Theorem for a J-selfadjoint operator
satisfying the necessary conditions.

THEOREM 2.3. - Let J be a bounded selfadjoint operator on the Hilbert
space ~c° = L 2 ([0, ’t], ~d) and let ( . , . ) be an indefinite scalar product defined
via J as in (1 . 7) and let K be J-positive J-selfadjoint integral operator
with integral kernel k (s, t) which is continuous on [0, [0, T]. Let Àn,
n = 0, 1 , ... denote the (real) eigenvalues of K with associated J-orthogonal
eigenfunctions en. Suppose that span { = Im K. Then the kernel k (s, t)
admits the eigenfunction expansion

1

1 ne series converges uniformty in norm (i. e. tne natural norm Jor square
matrices) on [0, ’t] X [0, ’t].

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



245QUADRATIC FUNCTIONALS OF GAUSSIAN PROCESSES

Proof - Since the kernel k (s, t) is real and continuous, the eigen-
functions are real and continuous. Let

and let be the integral operator with integral kernel kn- By calculating
for fEkerK and 1, ... it is easy to see that

for Hence kn(t, t) is a J-positive matrix for each t:

[Here, kn (t, t) v is a valued-function in ~f so J kn (t, t) makes sense.]
Hence

Since J ej (t) (J e f (t))~1~ is positive-definite in the usual sense, we have, for
all v E [Rd

Recall that ~,~ (ej, e~) ~ 0, so each term in the above sum is positive. Hence
the above inequality implies

Schwartz’s inequality implies, for each v, w e fR

Hence ior fixed s ana 8>u, tnere exists im sucn that ior n > m 4 m anu

each v, 

for some constant A. Therefore for each fixed s and for each v, 
we have that

Vol. 2~. n° 2- 1 991 .
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converges absolutely and uniformly in t. Since the sum (2.2) is bilinear in
v, w, there exists a matrix k such that

nn

wmcn oy virtue 01 ine unnorm convergence ana the conunuity 01 ej(.),
is continuous in t for fixed s.

Consider now

since Iff=en for some n, the right-hand side is 
Hence by virtue of the continuity of k(s, .)-R(s, .), we have

k (s, ~)=~(~ ~ for all s, t.

We now prove the uniform convergence in s and t of the eigenfunction
expansion for k (s, t). For all v E !Rd we have

non-decreasing sequence of continuous functions converging pointwise to
the continuous function t) v. Hence by Dini’s Theorem the series
converges uniformly in t. For 8>0, there exists N such that for n > m >_ N

n 
~

application Ul s inequanty as before then gives LnaL mere

exists N such that for n > m >_ N

whence it follows that
U n ~ t)

Next we prove that the eigenfunctions of the operator K from the
previous section span the image of K, so that our formal calculations at
(1.9)-(1.11) are indeed valid. In view of the motivating example (1.3)
and in view of the fact that operators defined via symmetric matrices as
in that example are a particularly simple class of selfadjoint operators,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



247QUADRATIC FUNCTIONALS OF GAUSSIAN PROCESSES

one would ideally like to prove a general analogue of the Spectral Theorem
for J-selfadjoint operators, where J is defined via a symmetric matrix,
which would allow us to do the calculations at (1.9)-(1.11) for any n-
dimensional Gaussian process. It is therefore a great disappointment and
a source of immense frustration doing this has proved for the moment to
be intractably difficult. Here we prove the existence of a spectral expansion
for scalar products of the form

where S is a compact selfadjoint operator. For a Gaussian process Zt, we
shall then be able to find the law of any quadratic functional of the form
~Z, (I + S) Z ) .
The key result is the following theorem due to Krein.

THEOREM 2.4. - Let H be a compact selfadjoint operator on a Hilbert
space. Suppose H is either a trace-class or a Hilbert-Schmidt operator. Let
S be a compact operator and suppose B is a compact perturbation of H in
the sense that B = (I + S) H. Suppose further that B does not vanish on any
non-zero element of the closure of its image. Then the root vectors of B
span the image of B.

This theorem is a special case of a more general one (Theorem V.S.1)
in Gohberg and Krein [5].

In general, we cannot hope that the eigenvectors of a non-selfadjoint
("selfadjoint" is taken to have the usual Hilbert space meaning here)
operator will span the image of that operator; we need to consider other
root vectors as well, as in Theorem 2.4 above. However, for J-selfadjoint
operators (J here is any bounded operator via which an indefinite scalar
product is defined) we have the following result.

LEMMA 2.5. - Let A be a non-zero eigenvalue of a J-positive and
J-selfadjoint operator B. Then the associated root space coincides with the
eigenspace:

Proof - Since À # 0 the associated eigenspace is either positive-definite
or negative-definite by the result (1. 8). Now suppose that for some integer
rc >__ 2 and some function f, we have but 

Then f1 : - (B-03BB I)n-1 f is a non-zero element of the eigenspace associated
with 03BB and we have

which contradicts the definiteness of the eigenspace associated with À. D

Vol. 27, n° 2-1991.
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We are now in a position to prove our main result in this section, which
is that the calculations ( 1. 9)-( 1. 11 ) are valid if the quadratic functional
( 1.1 ) arises as a compact perturbation of the identity. 

--

THEOREM 2.6. - Let Zt be a continuous Rd-valued centred Gaussian
process with co-variance kernel c (s, t) = [E (ZS Z). Denote by C the integral
operator with kernel c (s, t) and suppose that C is a positive-definite. Let S
be a compact selfadjoint operator. Then

(2 . 3)

for a  1 /"AmiD’ where is the largest (positive) eigenvalue and
"AmiD is the smallest (negative) eigenvalue of (I + S) C and the determinant is
defined as the product of eigenvalues.

Proof - Since S is compact, the non-zero eigenvalues of (I + S) are
bounded away from zero, so if 0 is in the spectrum of I + S it is in
the point spectrum. Moreover, the null-space of I + S is at most finite-
dimensional. So by discarding a finite-dimensional subspace of we

may assume we are working on a Hilbert space on which (I + S) -1 1
exists and is bounded. Let K = (I + S) C and let J = (I + S) -1. Define a
scalar product ( . , . ) via J in the usual way as in (1 . 7). The operator K
has integral kernel k (s, t) = J -1 c ( . , t) (s), that is the operator J -1 acting
on the function c (., t) for fixed t, with the result evaluated at s. Moreover,
we know from Section 1 that K is J-selfadjoint and J-positive, and that if

and en are respectively the eigenvalues and eigenfunctions of K, then
the are real and the en are J-orthogonal.
The condition that C is positive-definite implies that it has trivial null-

space. It is clear that, since C does not vanish on any non-zero function
and since we are insisting that (I + S) also has only trivial null space (by
discarding a one-dimensional subspace if necessary), the decomposition
(2.1) holds trivially. Therefore K = (I + S) C is a compact perturbation of
a selfadjoint operator which vanishes only at 0 on Im K, and hence the
eigenfunctions en span Im K by Lemma 2.5 and Theorem 2.4. By
Theorem 2.3, the integral kernel k (s, t) has an expansion of the form

Hence Zt admits an expansion
/2014:20142014

Annales de Henri Poincaré - Probabilités et Statistiques



249QUADRATIC FUNCTIONALS OF GAUSSIAN PROCESSES

where 03BEn are i. i. d. N(0, 1) random variables. The result (2.3) now
follows. D
The assumption that C is positive-definite is used in the proof of

Theorem 2.6 only to show that the direct sum decomposition (2. 1) holds
for K: in this case (2 .1 ) holds trivially. In general, if C has non-trivial

null-space, Theorem 2.6 still holds if we can prove (2 . 1 ) directly.
We conclude this section by briefly discussing how one might calculate

(1.2) for a non-zero starting point z. So suppose now that Zo = z and let
Then Zt:=Zt-m(t) is a centred Gaussian process. We write

+2(~(.), + (~(.), {I+S)m(.)~. (2.6)
We know how to handle the first and last terms in (2.6) (the last term is
just a deterministic function). By means of the eigenfunction expansion
(2.4) for the centred Gaussian process Z, we may write the second term
in (2 . 6) as

[Recall that J = (1+S) ~.] Putting this together with the contributions of
~ from the first term in (2.6) and then completing the square, we see
that the Laplace transform of (2. 6) may be written as the infinite product
of Laplace transforms of non-central x-squared distributions, the non-
central x-squared replacing the central x-squared distribution in (2. 5).
Perhaps a better idea of how such a calculation works in practice can

be gained from the detailed example in the next section.

3. DETAILED CALCULATIONS FOR A SPECIFIC EXAMPLE

We return to our motivating example mentioned in Section 1. Let
Z = (X, V) satisfy the SDE

with initial condition Z~=z= (~ ~). Consider first the case Zo=0. For
fixed 1, we wish to find the law of

,.-

where J is the matrix

Vol, 27, 11a 2- 1 991 .



250 T. CHAN

Notice that J is both symmetric and orthogonal. We cannot apply
Theorem 2.3 directly since J = I on an infinite-dimensional invariant sub-
space and so is not a compact perturbation of the identity. However, the
process Z does have the following crucial property:

/*t

Bearing in mind the property (3 .4), it is easy to show using integration
by parts and Fubini’s Theorem that

~-

where A is tne compact posmve-aeimite selfadjoint operator defined oy
~T

1 ne operaior y - A.) nas elgenvames
.,

Let C1 (s, be the covanance kernel ot V, which detmes an

integral operator C 1 in the usual way. Set Now let

(I - A) - 1 and define an indefinite scalar product ( . , . ) 1 on H1 via

J 1 as before. We can therefore apply Theorem 2.3 to the quadratic func-
tional (3 . 5). In particular, we have

and

where 03BDn and fn are the eigenvalues and eigentunctlons of K1. However,
from the point of view of practical calculations, this would mean doing
calculations which involve the composition of two integral operators as
well as the inverse of an integral operator, and in general one would
expect this to be considerably harder to handle than working with the
operator K = J C where J is the matrix at (3 . 3). In any case the calculations
( 1 . 9)-( 1 .11 ) for a matrix J are more natural, since as we have already
said at the beginning of this section, one would like to be able to do
calculations along the lines of (1.9)-(1.11) for a general Gaussian process
not necessarily satisfying (3.4), and our approach here is in many ways
somewhat unsatisfying.

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques
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Because of (3 . 4), it turns out that we can in fact apply the results (2 . 3)-
(2. 5) to the case where J is the matrix at (3 . 3)!

LEMMA 3 .1. - Let Z = (X, V) be the Gaussian process satisfying (3 , 1)
and let J be as at (3 . 3). Denote by C the covariance operator of Z and let
K = J -1 C = J C. Denote by (en , ef) the eigenfunction of K corresponding
to eigenvalue Ån- Then

Proof - We denote by c (s, t) the covariance matrix of

Z:c(~~)=E(Z~Z~). Because of the property (3 . 4), Fubini’s Theorem
allows us to write c (s, t) in terms of c 1 (s, t):

Write J(t) = (fA (t), (t)) and consider functions of the form g (s) = C f(s) .
We have _

Differentiating the above expression with respect to s shows that
.J

and consequently the eigenfunctions en exactly reflect the phase-space
structure of Z:

j

In the present context, Lemma 3.1 implies that

since we have the obvious boundary condition en (0) = O.

LEMMA 3.2. - Let Z, J, K, Àn and e,~ be as is Lemma 3.1. The (2 . 4) and
(3 . 6) give the same expansion for V, and in particular Theorem 2.3 holds
for the quadratic functional (3 . .2).

Vol. 27, n° 2-1 991 .
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Proof - Comparing the two expansions (2.4) and (3.6) for V, we see
that we must prove

---_~ ;r fit ~ ,, "

where we nave written en= (e, en). Because 01 ( ) Lne equation

lUl’ the en component

An integration by parts shows that

we calculate

Annales de Henri Poincaré - Probabilités et Statistiques
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But the last two terms on the right-hand side are precisely those on the
left-hand side, so

Hence the equation reads for the ef component

’l’heretore

is an eigenfunction 1 corresponding to eigen-
value This proves the result (3 . 8) and hence the lemma. D

We can now proceed to find the law of (3.2). The SDE (3.1) can be
solved explicitely by observing that

is a local martingale:

Vol. 27, n° 2-1991.
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Hence the covariance matrix c (s, t) may be calculated as

We now find the eigenvalues ot K = C [recall that we take J to be
the matrix at (2.4)]. We have

r~

Differentiating the above expression with respect to s gives
- ~ . B

Annales de Henri Poincaré - Probabilités et Statistiques
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Differentiating again gives

Now notice that

so therefore, from (3 . 10) and (3.11) we see that

and also from (3 . 9) and (3.11)

27, n° 2-1991.
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Adding (3 .12) and (3 .13) yields

If we write

as nerore, men 14) simply says

which we know already trom tne previous section. using tne equation
(3.15) and integration by parts we obtain

-- ,-

Hence

Adding (3.9) and (3.11) we then obtain the following set of inhomogen-
eous ODEs for the eigenfunctions:

" / V ~B,Y~~B Y~~.Y~~ ~ / v ~~~~B v

[from (3 . 9)] en (0) = 0. By taking a suitable linear combination of (3 . 9)
and (3. 10), we see that the other boundary condition must be

inus me two natural oounuary conditions lor me ODEs (3. 1/) are

-x/nB2014.,v/fnB 2014.n /Q 1 ’7 .-. B

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



257QUADRATIC FUNCTIONALS OF GAUSSIAN PROCESSES

Equations (3 . 17 a)-(3. 17 b) have the same homogeneous solution and the
functions (of s) en (L) cos (t - s) and - en (L) sin (L - s) are particular sol-
utions of (3 .17 a) and (3 . 17 b) respectively.
We need to consider three cases. Firstly if or ?~n  - l,

(x + 1 )/?~,~ > 0 so the solution to (3 . 1 7) is

where [using (3.17 c) and (3 . 15)]

Finally, the boundary condition (3. 17 d) gives the following equation for
the eigenvalues ~: 

"

[We are of course only interested in the positive solutions of (3 . 19). J
Next, for -1 ~0, (~+ 1 )/~,,~  o so the solution to (3 . 17) is

~~ ... _ ~ _ r ~~ .. ~ ~. _

wnere J

Again, the boundary condition (3 . 17 d) gives rise to an equation for ~,,~
as follows:

For sin (3 . 21 ) may be written as

Vol. 27, n° 2-1991.



258 T. CHAN

which has no solution unless

When (~. 23) holds, (~. 22) has a unique positive solution.
The third case we need to consider is when Àn == 2014 1. In this case unless

_~*~ _ ! ~-~ _ rB ~^~ ~~t~ B.

the equations (3 . 17) have no solution.
Notice that for L  ~/2, we only get positive eigenvalues as we would

expect, since we know from the previous section that the operator K is
positive-definite for 

Recall from Section 1 that (for Zo = 0)
- ¿t’ 18- 1 -~

We are now in a position to calculate the product
oo

We know that tor /~>U, we have 1/(~2014 1) where xn are
the positive solutions of (3 .19). However even for -1 ~0, we could
obtain 03BBn by solving an equation of the form (3.19) since (3.21) may be
written as (3 . 19) if we let xn = + 1 )/~,n be purely imaginary, in which
case we still have 03BBn=1/(x2n-1). Also, since

we see tnat (3.19) is consistent with j3 . 24) even m the case 03BBn=- 1. Thus

irrespective of the value of Àn, it is valid to say that Àn solves (3.19) with
~=1/(~-1).
Now the roots occur at oc = -1 /~,n =1- x~, which because of

equation (3.19), coincide with the real roots of
n~~~ /i - 

Suppose now that y has other complex roots and let ç == x + iy E C satisfy
. / t-’B

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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If either x=0 or y = 0 then this just reduces respectively to the

equations (3.19) and (3.21), so we suppose that neither of x and y is
zero. For sin i ~ 0, the above equation may be written as

Writing this in terms of the real and imaginary parts gives

Since x~ 0 and y~ 0 we can divide these two equations respectively by x
and y to give

and, putting ~=2r~ ~=2r~ this implies that

which is impossible, since

and equality holds only when x’ == y’ == O. This shows that the function
f (ac) has only those real roots which we have described and no others. Also,
since sin (r x)/x ~ T as x ~ 0, the function f has a removable singularity at
a = and so we may regard f as an integral function. Moreover, since the
functions sin Jç and cos Jç are both of order 1/2, f ’ (oc) has order 1/2
and since /(0)==1, the Hadamard factorisation theorem (see
Titchmarsh [8]) gives

and we have finally arrived at the formula

It is worth emphasising again that (3 . 26) is only valid for certain values
of a [viz. those for and that, when there are negative as
well as positive eigenvalues, the admissible values of a must lie in an
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interval around 0, viz.

where is the largest (positive) eigenvalue and is the smallest

(negative) eigenvalue. Moreover, notice from (3.19) that as i increases,
both and increase in modulus, so that (3.27) gives a smaller
and smaller admissible range of a.

Let us now see how to calculate the Laplace transform ( 1 . 2) for a non-
zero starting point v). Let Z be defined as in Section 2 with

/ .-. ~, ~ t B

We deal with each of the terms in (2.6) in turn. The first term may be
dealt with by means of (3.25). The last term is easily calculated to be

[Note that (3.28) is precisely the action of the classical least-action path
starting at (x, v).] Consider now the second term in (2.6) which, as we
have seen, may be written as in (2.7). The integral on the right-hand side
of (2.7) may be evaluated by integration by parts:
- A

If we now normalise the eigenfunctions so that e) (I) - 1, this then gives
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where we have put

In our calculation (3.30) we have used the formula for the Laplace
transform of a non-central x-squared distribution with 1 degree of freedom
and non-centrality parameter (by which we mean the square of the
mean of the corresponding Normal distribution), with the Laplace
transform being evaluated at the argument For the moment we do
not bother to calculate the scalar product (em en) because, except for some
special values of T, the calculation is rather messy.
For a as in (3.27), let G (a, r) denote the non-negative function

(The above sum can easily be shown by direct calculation to converge.) If
we put G (ex, 0) = 0 for all a then G (., .) is actually jointly continuous.
Thus, by means of (3.26) and (3.30) we have now arrived at the formula

*2014 ~ ti - ~ 2014*

4. SOME CONNECTIONS WITH FEYNMAN INTEGRALS

In this section we show how the results obtained so far may be inter-

preted in the context of results on Feynman integrals, in particular the
Cameron-Martin formula and the translation formula of Elworthy and
Truman [4] for Feynman integrals.
We first recall the essential ingredients for defining the Feynman path

integral. Let H be a Hilbert space of paths with inner product (., . )H’
The basic class of Feynman-integrable functionals are those functionals
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f: H - C which are Fourier transtorms ot complex measures on H with
bounded variation. We denote this class of functionals by F (H); thus
f E ff (H) if and only if

for some complex measure f. The Feynman integral will be

denoted by (See [4] and the many references given there for how
such integrals are constructed.)

In [4], Elworthy and Truman obtained the following Cameron-Martin
formula for the Feynman integral:

THEOREM 4 . 1. - Let L : H - H be a trace-class and selfadjoint (with
respect to ( . , . )>n!) linear operator such that (I + L) is a bijection. Let
g : H -~ C be defined by

where (H). Then g is Feynman-integrable and

Here det is the Fredholm determinant and the index ind (T) of an

operator T with countably many eigenvalues of finite multiplicity, is the
number of negative eigenvalues of T, counted according to multiplicity.
We also have the following translation formula which is analogous to the

familiar Cameron-Martin-Girsanov change of drift formula for Brownian
motion. For a E H, let ga: H --+ C be defined by ga (y) = g (y + a), g E % (H).
Then the functional )n}~(-) is Feynman integrable and

F(exp{~~}~(.))=exp{-~- ~/2}P~). (4 . 3)

Return now to our original setting and continue with the same notation
established in the previous sections. We define a Hilbert space of paths H
to be the space of absolutely continuous functions f on [0, T] satisfying
the boundary conditions

[These boundary conditions correspond to (3 .17 c)-(3 . 17 d)]. The inner
product on H is given by
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(Recall that C 1 is the "velocity" covariance operator as defined in
Section 2 and ( . , . ) is of course the same as ever.) Let L be the

operator L = C1 (I - A). Notice that L is the ( >-adjoint of K1 and is

( )H-selfadjoint. In particular, L has the same eigenvalues as K1.
Observe now that the action of the harmonic oscillator may be written

as
/*~-

so the Laplace transform of the action as at (3.25) is just
Moreover the product on the right-hand side

of (3 . 25) ~ ( 1 + a,~,n) -1~~ is nothing but since L is has a
continuous kernel and so the Fredholm determinant is the same as the
characteristic determinant. Notice also that the range of admissible values
of a ensures that (I + a L) is positive-definite, so its index is zero. Therefore,
the formula (3.26) is the "Cameron-Martin formula" for Wiener integrals
which is the exact analogue of the formula (4.2) for Feynamn integrals
(with fm 1). It is also clear from the way (3.32) was arrived at that it

corresponds exactly to the translation formula (4. 3) for Feynman inte-
grals. The formula (4.2) is itself analogous to the classical Cameron-
Martin formula [2] for the Wiener integral of linear transformations of
Brownian motion. In fact Cameron and Martin [2] were able to use their

formula to obtain the Laplace transform of 11 B; ds.
Pushing the analogy with Feynman integrals a little further, observe

that while we do not have an explicit representation for ( . , . >H as we do
not know what C 1 is explicitly, we do have a natural reproducing kernel
for H: this is simply the covariance kernel c 1 (s, t), for by definition, it
has the property that

These connections become even more transparent if we consider the

very simple example of Brownian motion started at 0 and run up to
time 1.

Let G (s, t) = s n t, s, t E [0, 1], be the covariance kernel. The covariance
operator has eigenvalues

and eigenfunctions cpn satisfying cpn (0) = 0 and cpn ( 1 ~ = O. The natural Hil-
bert space of paths H is the space of absolutely continuous functions on
[0, 1] satisfying these same boundary conditions, with inner product
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(The inner product on H is thus the one naturally associated with the
Hamiltonian of the free particle. The derivatives are to be interpreted in
the weak L2 sense.) Now G (s, t) is precisely the Green’s function of
-d2/dt2 satisfying the boundary conditions G (s, 0) = 0 and G (s, 1 ) = 0
and these same boundary conditions for fE H mean that G (s, t) is actually
the inverse kernel of - d2 / dt2. Hence we see that the covariance kernel
G (s, t) is once again the reproducing kernel on H. (Because our integrals
are Wiener integrals rather than Feynman integrals, the boundary condi-
tions are different; in particular the starting point and not the final point
is fixed. This explains why the reproducing kernel is not the more usual
1- s v t encountered in the Feynman-integral formulation of quantum
mechanics.)

Finally, it is worth pointing out that - unlike the case of the free

particle - in the case of our phase-space picture of the harmonic oscillator,
the natural inner product on H (defined via the inverse of the covariance
operator) is not the one which one might at first expect, namely the inner
product

, : . , , - ~ .. -.

associated with the Hamiltonian ot the harmonic oscillator. ihat this is

not the inner product defined by Cll is implied by (among other things)
the rather strange boundary condition at {4 . 4 bj. The explanation for this
difference lies in the fact that, while (4.6) is the natural inner product to
put on paths in configuration space, our sample paths are realisations of
the velocity process (i. e. essentially paths in phase-space).

5. AN APPLICATION TO LEAST-ACTION PATHS

In this section we see how one could use a Cameron-Martin-Girsanov

type change of measure to construct paths of the process Zt = (Xt, Vt)
satisfying (3.1) which have least action. The deterministic harmonic oscilla-
tor corresponding to (3.1) has period 2 x, so we are mainly interested in
the case i = 2 ~. Let be the law of Z~~~ s _ (i n t) ~
be its natural filtration. Define a functional p (t) = Pcx (t) by

r" r /~ ’? ~ 1 I "1

aoove expectation is taken unuer i nus is actually a

P-martingale. Let us first try a change of measure of the following form.
We define a measure Q such that
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We leave the reader to prove the following two simple results (or else
see Jacod and Shiryaev [6]).

LEMMA 5 . I . - Yt is a local Q-martingale if and only if p (t) Yt is a local
P-martingale.

LEMMA 5 . 2. - Let G be the generator of Z. Then for fe D (G) and
t2~,

is a local Q-martingale.
The Markov property for Z shows that

where Ha (Xt, vt, t) is given by (3 . 32) with ’t = 2 7c 2014 t. Therefore, for

f= f (Zt) we have

Hence, from Lemma 5.2, the change of measure induces an additional
time-dependent drift griven by

We can calculate the drift (5 . 3) induced by Q using the formula (3 . 32)
for the function H« (x, v, t). Differentiating (3 . 32) gives

where G is the function def ned at (3.31).
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For it is easily seen trom (J. 19) that [and

03BBn=1/(x2n-1) as before]. It is also easy to calculate, assuming the nor-
malisation en (2 x) =1,

1r

Moreover the interval (3.27) now becomes -9/1603B17/16.
One puzzling aspect of our calculations is that, since a is constrained

to lie in a finite interval, there seems to be two extremal paths rather than
just the one extremal predicted by classical mechanics: as a-~7/16 the
action is minimised while as a -~ 20149/16 the action is "maximised" ! Also,
from (5.5) we see that as a approaches the two critical values, the
drift (5.4) induced by Q is infinite at t=0. The explanation for this

unexpected behaviour lies in the observation that, as a - 7/16, the measure
Q "reweights" the sample paths of Z in favour of those paths which
achieve a small (i. e. very negative) action, while as a -~ 20149/16, 0 favours
those paths which achieve a large (i. e. very positive) action; in either case,
actions which are large in modulus are favoured. But from (3. 28), we see
that the classical least-action path for simple harmonic motion has zero
action over one period. Hamilton’s principle merely says that the classical
path is the one which achieves the extremal of the action, not necessarily
the minimum of the action.

In view of this observation, let us try to change the measure via the
modulus of the action. We define a measure  such that

where r03B1 is the functional

where S (T) is the action up to time T and ~c1 (T, z) is the action realised

by the classical path started at z up to time T. For T==2~, we have
Sc1 (~ ~~ z) = O.

First, a reminder of the following old trick. Let X be any random
variable and for r.t> 0, let cp (8a) _ IE be the characteristic function

of X. We can integrate p against the Cauchy density [~(1+9~)]~ to

obtain

,. ~... ~ , ’- /t-~ - 
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We can apply this and p = (t) = p (i t). This
gives, using (5 . 2) and (3 . 32) and putting u = 2 Jt - t,

As before, the new measure Q induces a drift given by

It is perhaps asking rather too much to expect to be able to calculate this
drift explicitly since it is difficult actually to perform the integration at
(5.7). We can however, show that the drift (5.8) has a finite limit as

00.

Differentiating the expression (5. 7) with respect to v under the integral
sign gives

where, from (5.4),

D (SrL, Xt, Vt, t) = (Xt sin t + Vt cos t) ( - 82 oc2 G (i 03B803B1, 2 x - t) cos t + i 8ac sin t).

The function G may be written (using the same notation as in Section 3)

Considering the real and imaginary parts of D separately, we see therefore
that asymptotically (as r.t --+ oo)

where A and B depend only on t and not on 9 or a; for example,
~
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By the Dominated Convergence Theorem, the integral (5.9) is then

asymptotically
"3~ ,,,

Consider now the second term in braces l J m (). 1 U), which is clearly
real (and finite). Observed that

r- ’~ ~.n__ .v f8 ’-- _/~’ ~B

and that also

a --+ 00. This shows that the drift iuciiaiai a finite limit of the form
as 03B1 ~ oo.

Although we shall not actually prove this here, it is reasonable to expect
that the corresponding processes with the additional drift (5 . 8) (under the
law Q) will converge weakly as a -~ oo to a process whose law induces an
additional drift equal to the limit of the drift at (5 . 8).

This idea of integrating the Fourier transform of the action against the
Cauchy density is very similar to a "method of stationary phase". Roughly
speaking, if we replace a by i e in (5 . 1 ) and let e --+ oo , then the dominant
contribution to the expectation will come those paths which achieve
extremals of the action. Of course, the main difficulty with this idea is

that if we were to change the measure directly via the Fourier transform
of the action, the resultant measure is complex-valued. What we have
done here is essentially to get around this by taking the Cauchy transform
of the complex-valued density to obtain one which is real-valued.

6. ANOTHER APPLICATION

We end with one final application of the techniques presented here for
calculating laws of quadratic functionals of Gaussian processes, which,
although very simple, is nevertheless interesting and has practical applica-
tions to polymer physics. The problem is to find the distribution of

r l / r l B2
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where B is a BM (!R). For a detailed discussion of how this problem arises
in applications to polymers in elongational flows, we refer the reader to
the work of Jansons, Chan and Rogers [7]. It is worth emphasising how-
ever that there again, it is the idea of change of measure to favour paths
of minimum energy that is the underlying theme of this work.
The functional (6 . 1 ) may be written as ( B, (I - M) B ) where M is the

operator on L2 ([0, 1]) defined by

The operator M is compact and selfadjoint, so we are in the situation of
Section 2. Furthermore, M has eigenvalues 0 and 1, so (I - M) is a positive
operator (but not positive-definite). The situation here is thus much easier
than that in the preceding sections. No doubt one can apply the techniques
from before directly to this problem, but the present situation admits one
further simplification: let us consider first the distribution of

The functional (6.2) is itself of interest in polymer physics and there is
even a physical interpretation to the value of p (see [7]). The operator
(I - p M) is then positive-definite with positive-definite inverse and we can
calculate the Laplace transform

using only standard Hilbert space theory.

THEOREM 6. l. - Let B be a real-valued Brownian motion. Then

Proof - Define a new inner product on L2 ([0, 1]) as follows:

where J 1= (i - p M) -1. Note that .., . ) 1 IS a true inner product In tne
Hilbert space sense. Define the covariance operator C via the covariance
kernel c (s, t) = s A t and define the operator K : = (I - p M) C which is an
integral operator with kernel k (s, ~)==(I2014pM)c(., t) (s) . Using the usual
standard arguments, we see that K is J1-positive-definite, J1-selfadjoint,
etc. and therefore it has a countable set of real positive eigenvalues Àn
with corresponding Ji-orthonormal eigenfunctions en and the kernel k (s, t)
admits the expansion
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Hence, as betore, the distribution ot (6.1) may be calculated as

anu all remains is Lu una me eigenvarues An’

Differentiating twice as in (3. 9)-(3 . 11) gives the following very simple
ODE

,. ,,., 

whence immediately where w~ = K§ ~ ’ ~ . it is

easy to deduce that

The boundary conditions (6.4) show (alter a tew easy calculations) that
the eigenvalues are given by Àn = 0); 2, where c~n are the positive solutions
to

An argument identical to that used in section 3 then gives the required
result. 0

Letting 1 in (6.3) gives the desired Laplace transform
/cinh h ~7 rv B - 1 1?

Notice also that letting p ~. 0 in (6.3) gives
*2014 r A ~ -~. 2014t _

and Martin [2].)
Just recently, Donati-Martin and Yor [3] have given a more elegant

non-computational approach to the law of (6 . 1 ), by exploiting links
between this problem and Levy’s famous stochastic area formula.
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