@article{AIHPB_1991__27_2_215_0, author = {Evans, Steven N.}, title = {Trapping a measure-valued {Markov} branching process conditioned on non-extinction}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {215--220}, publisher = {Gauthier-Villars}, volume = {27}, number = {2}, year = {1991}, mrnumber = {1118935}, zbl = {0749.60078}, language = {en}, url = {http://www.numdam.org/item/AIHPB_1991__27_2_215_0/} }
TY - JOUR AU - Evans, Steven N. TI - Trapping a measure-valued Markov branching process conditioned on non-extinction JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1991 SP - 215 EP - 220 VL - 27 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPB_1991__27_2_215_0/ LA - en ID - AIHPB_1991__27_2_215_0 ER -
%0 Journal Article %A Evans, Steven N. %T Trapping a measure-valued Markov branching process conditioned on non-extinction %J Annales de l'I.H.P. Probabilités et statistiques %D 1991 %P 215-220 %V 27 %N 2 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPB_1991__27_2_215_0/ %G en %F AIHPB_1991__27_2_215_0
Evans, Steven N. Trapping a measure-valued Markov branching process conditioned on non-extinction. Annales de l'I.H.P. Probabilités et statistiques, Tome 27 (1991) no. 2, pp. 215-220. http://www.numdam.org/item/AIHPB_1991__27_2_215_0/
[1] Study of a General Class of Measure-Valued Branching Processes; a Lévy-Hinčin Representation, Preprint, Université de Paris-VI, Laboratoire de Calcul des Probabilités, 1987.
and ,[2] Measure-Valued Markov Branching Processes Conditioned on Non-Extinction, Israel J. Math., Vol. 71, 1990, pp. 329-337. | MR | Zbl
and ,[3] The Entrance Space of a Measure-Valued Markov Branching Process Conditioned on Non-Extinction, Canadian Math. Bull., 1989 (to appear). | MR | Zbl
,[4] Construction and Regularity of Measure-Valued Markov Branching Processes, Israel J. Math., Vol. 64, 1988, pp. 337-361. | MR | Zbl
,[5] Processus de Dawson-Watanabe conditionné par le futur lointain, C.R. Acad. Sci. Paris. T. 309, Séries I, 1989, pp. 867-872. | MR | Zbl
and