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ABSTRACT. - We investigate kneading sequences for expansive unimodal
maps of the interval with constant slopes. We prove in particular monoton-
icity of the kneading sequence and thus of the topological entropy.

RESUME. - Nous étudions les itineraires des applications unimodales
expansives a pentes constantes. Nous montrons en particulier la croissance
de l’itinéraire (et donc de l’entropie topologique) en fonction des pentes.

1. INTRODUCTION

We investigate unimodal maps with slopes constant to the left and to
the right of the turning point. Let these slopes be À and - ~ (a~, ~ > 0).
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126 M. MISIUREWICZ AND E. VISINESCU

The choice of À and  determines such map up to an affine conjugacy
(and up to a choice of a smaller or larger interval). We choose the

representation in which the map has the maximum at 0 and the image of
0 is 1. Then it is given by the formula

We shall call these maps the skevv tent maps (the tent maps are F~, ~).
We shall investigate the dependence of the kneading sequence and

topological entropy of F~, ~ on the parameters. We choose them from the
region

The main result of the paper is that both kneading sequence and topologi-
cal entropy are strictly increasing functions of À and ~. The set of (À, ~,)
where the kneading invariant attains any given value M is a graph of a
decreasing function À= j3~ (~.). The kneading invariant for our maps is

determined by the topological entropy.
The discussion why we choose the region D, as well as the precise

statement of the results, we postpone until the next section. Here we would
like to discuss the relation of our results to the results of Helmberg [H].
The question of the monotonicity of the entropy for various classes of

maps of the interval is very natural and appeared as soon as people started
to think about the entropy of these maps. For the tent maps F~, ~ the
answer is simple - the entropy is log p (see [MS]) and therefore it is an

increasing function ofp. The answer for the skew tent maps was stated
by Helmberg [H]. He also described the curves like our (3M (he worked
with different parametrization and only with entropy, not with the knead-
ing sequences). However, his proof of monotonicity of the entropy with
respect to À (Korollar 3 . 2 of [H]) contains a serious error. Namely, in the
proof of Korollar 3 . 1 (from which Korollar 3 . 2 follows), on page 246,
lines 9-10, he apparently uses already this monotonicity. Otherwise state-
ment that there exists such that P (s3, s5) ~ C (2i h), is unjustified. In
view of this, the proof of the monotonicity of the entropy with respect to
À" is de facto absent in [H]. We should remark also that the Helmberg’s
proof of the monotonicity of the entropy with respect to 1.1 (see p. ?24-
235 of [H]) is much more complicated than ours (Lemma 3 . 3).

After this paper was written, we learned that a result equivalent to

our Theorem C has been obtained independently by W. F. Darsow and
M. J. Frank. They are using completely different methods than ours.

AMrlaIes de l’Institut Henri Poincaré - Probabilités et Statistiques



127KNEADING SEQUENCES OF SKEW TENT MAPS

This paper was written during the visits of the first author to the

University of Dijon and Sonderforschungsbereich 170 at Gottingen in

1987. He acknowledges both institutions for hospitality and support.

2. STATEMENT OF RESULTS

We start by discussing why we choose (À, ~) from D. Since we want to
have a unimodal map of an interval into itself, we have to make the

assumption that 1 03BB + 1  ~ 1 (see Lemma 3.1). If 1 then there exists an

attracting fixed point which attracts everything (except perhaps one point)
and the kneading sequence is R °° . If ~, =1 then there exists a whole interval
of periodic points of period 2 (except one which has period 1) and the
kneading sequence is RC. We want to avoid such situations, which are
quite different from what happens for other parameters. Therefore we
shall assume ~, > 1. The only assumption made for technical reasons is

~, >__ 1. However, some regions where ~,  1 can be studied also by the
methods of this paper (see Remark 5.4).
We shall use the kneading theory. We shall keep more or less to the

notations of [CE]. A reader not familiar with the basic notions and facts
of the kneading theory can find them in [CE].
We shall denote by ~~ the class of sequences M which occur as kneading

sequences of F~~ ~ for 1  ~, _ 2. They can be characterized by the following
properties:

(i) M is a maximal admissible sequence,
(ii) 
(iii) if M = A * B with A ~ 0, B ~ C then A = R*m for some m.
We should call them probably primary sequences, but the use of this

notion in [CE] is very unclear (are the primary sequences of [CE] only
finite?, are they maximal?).

It is known that for each h E (0, log 2] there is a unique :. ~~ with the

entropy equal to h (i. e. the topological entropy of a map with the

kneading sequence M is equal to h). Since one of the results of this

paper (Theorem B) is that all kneading sequences of the maps under
consideration belong to ~~, in the other results (Theorems A and C) one
can replace kneading sequences by topological entropy.

27. n° I-~~g~.



128 M. MISIUREWICZ AND E. VISINESCU

We shall write (i~’, > (~,, ~) if ~,‘ > ~,, ~‘ ~ p and at least one of these
inequalities is sharp. The kneading sequence of a map F will be denoted
by K (F) and its topological entropy by h (F). However, to simplify
notations we shall write K (~, ~) for K ~) and h (~., ~.) for h ~).
Now we state the main results of the paper.
In fact, Theorem C contains Theorems A and B, but it is useful to have

the explicit statements of Theorems A and B separated from the whole
description given in Theorem C.

THEOREM A. - If (a, , E D and (~,’, > ~,) then

K (~‘~ > K ~~~ N~)-

THEOREM B. - If (~,, ~) E D then K (X, ~.) E ~~-

COROLLARY. - If (~,‘, E D and (~,‘, > (~,, ~) then
h (~‘~ > h (~, !~)-

THEOREM C. - For each M ~ M there exists a number y (M) and a
continuous decreasing function ~3M : ( 1, ~ (M)] ~ [ 1, oo ) one exception
M = RL °° when y (M) = oo and the domain o. f ’ (3M is ( 1, oo )] such that

for (~,, ~.) E D we have K (~,, ~,) = M if and only if ~ = ~3M (~,). The function y
is increasing. The graphs of the functions ~3~ fill up the whole set D.

Moreover, ive have:

and J is given by

In Theorem C, if we replace sequences M E by numbers
s E (0, log 2~ and K {a~, ~.) by h (À, ~.~ then the theorem remains true.

Their paper is organized as follows. In Sections 3 and 4 we investigate
the skew tent maps with the kneading sequences larger than RLR x. In
Section 5 we extend the previous results to all kneading sequences and
prove Theorem A. In Section 6 we prove Theorems B and C.

de l’Institut Henri Poincaré - Probabilités et Statistiques



KNEADING SEQUENCES OF SKEW TENT MAPS

The curves on which K (À, Jl) = M for the following values of M : RL~’, RL 2 C, RL 2 
RLR ,J = R * RL~, RLRS C = R * RL~ C and RLR2 (RL) 00 = R ~ R * RL~. Above the 
~ == I they are the graphs of the functions ~i~.

3. ESTIMATES OF PARTIAL DERIVATIVES

Since in this section we will mainly work with one map Fj., }t (althou
we will compute some derivatives with respect to À and ~,), we will wr
simply F for F~. ~.

By an invariant interval we will understand an interval I such t

F(I)cI.

Voi. 27.n° 1.~~9~.



130 M. MISIUREWICZ AND E. VISINESCU

LEMMA 3. 1. - Assume that À, ~. > 0. There exists an interval containing
0 in its interio; and invariant for F if and only. if

Proof - Let c, d > o. The interval invariant for F if and only
if F ( - c) ~ - c, F (o) _ d and F (c~ >__ - c. These inequalities are equivalent
to

respectively.
If (3 . 2) is satisfied then

so (3.1) is also satisfied.
If (3.1) is satisfied then in the case Jl> 1 (3 . 2) holds with c = d = 1

and in the case ~. _ 1 (3 . 2) holds with d=1 and any c sufficiently small..
In the above lemma we required that the invariant interval contains 0

in its interior because we are interested here only in unimodal maps (not
homeomorphisms).
From now on we shall consider only F = F~, ~ with (À, Denote

the kneading sequence of F by ... For b >_- 0 we set

Then we have An=L, C or R when or xn>O
respectively (of course unless x~ = 0 for some i  n, in which case An is not
defined).

LEMMA 3 . 2. - For (À, have K (F) > RLR~ if and only if

. > ~ . .

Proof - The map F has a fixed point z>O. We have i. e.

. Then K(F)>RLR~ if and only if (notice that Xo= 1 >0

and x = 1 -   0). Since x2 = 1 + À (1 - ), the inequality x2  z is equiva-

lent to ~, > ~ . ..
~-1 I

We consider first only these 03BB,  for which K (F) > RLR~. We define

Annales de I’In.stitut Henri Poincaré - Probabilités et Statistiques



131KNEADING SEQUENCES OF SKEW TENT MAPS

We shall estimate the partial derivatives of xn with respect to À and p.
To simplify the notation, we set

They do exist if for all We have the recursive formulas:

It is important to keep track of the number of R’s in the kneading
sequence. For this we define 8 (n) and ~n as follows. If xt = 0 for some

then we do not define 8 (n) and we set En = 0. Otherwise, we define
8 (n) as the number of R’s among Ao, ... , A _ i and we set En = ( -1 )8 cn~.
Now we estimate an and bn. It is easier to do this for bn.

LEMMA 3 . 3. - Assume that (03BB, ) E Do. Set c = 03BB -  2-1. Then c > 0

and M’~ 

Proof. - The inequality c>0 follows from the assumption that

(X, The statement {i) follows from the equalities xl = I - ~. and
Ao = R.
We prove (ii) by induction. For n = 2 we have 9(2) ==1 1 and E2 = -1

because Ao = R and Ai =L. We have also x2 =1 + ~, { 1- ~.) and hence

~2= "~= ~( ~ + e Therefore (ii) holds for n = 2.
Assume that (it) holds for some n and prove it for n + 1 replacing n.

Assume that If then 8 (n + 1 ) = 8 (n), and
since ~, >__ l, we are done. If we distinguish two cases.

vol. 27. n° 1-199I.



132 M. MISIUREWICZ AND E. VISINESCU

Case 1. - + 1. Then En + ~ _ - 1, 1 ) = 8 ~n) + 1,

and we are done.

Case 2. - ~n = -1. Then En + 1= + 1, o (n + ~ ) 
= 8 (n) + 1, and we get since

xn  1 :
,

and we are also done.

If xn = 0 or En = 0 then En +1 = 0 and there is nothing to prove..
The estimates for an are more complicated.

LEMMA 3 . 4. - Assume that (~,, ~j e Do and K (F) = R ... for some

m ~ 1. Set a = ~ am + 2 and d - am + 2 - oc. d > o and we have
~ 

~.2 ?~ - 1

~ + 1 then a,~ ~ ~,~ a + ak + 1 + dN~e ~’~j 2 > o, where ..., 

such that = R and Ai = L for h -- k _ i  n.

Proof - Since K (F) = RLm R..., by the maximality of the kneading
sequence there cannot be more than m consecutive L’s in K (F). Therefore
the definition of k in (ii) is correct.
We start by proving (i). We have xl =1- ~,, so 

Then for ~== 1, ..., m we have x~  o, and we get by induction

a~ + I = xz + ~, at  ai  (1 (induction is necessary to know that a~  0, so that
we can use the inequality We have 

Since Ao = R and ... = A,~ = L, then ~1= ~2 = ... _ ~~+ ~ _ -1.
Hence, (i) is proved.
Now the inequality a > o follows from (i) and the assumptions

~, >_ l, ~, > 1. By the definition of Do, we have ~.2 ~, - ~, > ~. Since ~, >_- l , we

get >~, i. e. 1- ~ > o. Hence, 
~.2 ?~ -1

We prove (ii) by induction. For n = m + 2 we have 8 (n) = 2 and ~,t = + 1.
We have also k=0 and Therefore (ii) holds for
n = m + 2.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Assume that (ii) holds for some n and prove it for n + 1 replacing n.
Assume that We distinguish four cases:

Case 1. - Then ~n+1 = -1, 8 (n + 1 ) = 8 (n), and

Case 2. - En = -1, Then + 1, 8 (n + I ) = 8 (n) + 1, k = 0 and

Case 3. - En= + 1, Then + 1, 8 (n + 1 ) = 8 (n), and if we
replace n by n + 1 then we have to replace also k by k + 1. We have

We have and then we get consecutively

Therefore

(remeber that we have 1 _ k + 1 _ m, so x~ + 1 ~ 0). Hence, taking into

account that ~, >_ 1, we obtain

Case 4 . - En = + 1, xn > 0 . Then £n + 1- - 1, 8 (n + 1 ) = 8 (h) + 1, and

By (i), we have ak+1~am+1 = -1  am+2. Therefore, if k> 1 then

Since

we get

If k=0, then

?7. n° 1-1991.



134 M. MISIUREWICZ AND E. VISINESCU

In all 4 cases we have obtained the required estimates of The

inequality

(Cases 1 and 4) holds because el, d, ~. > o, and so does the inequality

(Case 2). The inequality

(Case 3) holds because

and d, 
If x~ = 0 or ~" = 0 then En + 1 = 0 and there is nothing to prove. This

completes the proof of (ii)..
Remark 3. 5. - If K (F) = RLm C then clearly {i) of Lemma 3 . 4 also

holds, except the inequality (since am+2 is not well defined).

PROPOSITION 3 . 6. - Assume that (X, ~.) E Do. Then for n >_ 2 we have
either ~n = 0 or an 0 and bn o. Moreover, if ~n ~ o for all n >_ 2 then

Proof. - This follows immediately from Lemmas 3.3 and 3.4 and
Remark 3 . 5 (notice that in Lemma 3.4 (ii) k is .bounded by m), except one
case not considered in Lemma 3. 4 and Remark 3. 5, namely K (F) = RL ~° .

If then ~n = -1 for all n >_-1 and a 1= ©, an + for

Notice that in this case all xn (n > 1) are negative and ~, > 1. Then
1 and for all n ~ 2. Therefore for all n >__ 2 and

lim = 

n - oo

4. MONOTONICITY OF THE KNEADING SEQUENCES FOR
(À, N~) E Do

Assume that (À, (~.’, E Do and (X, ~)  (~,’, ~’). Set

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques
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Since the functions s H s and s ~--~ 1 are decreasing for s > 1, we
s2-1 1-1/s 

.

have Ft ~ Do for all t E [0, 1]. We have FQ = F03BB,  and FI = ’.

Denote xn (t) = Ft (1) and let K (Ft) = Ao (t) A (t) ... We have

With the above assumptions and notations we prove two lemmas.

LEMMA 4 . 1. - Assume that 0 __ v  w _ 1 and Then

Proof - Take the largest n such that Ao, ..., 1 are defined and

constant on the whole [v, w]. Since such n exists. If

(t) = C on [v, w] then K (F) is constant on [v, w], a contradiction.
Therefore An is defined on the whole [v, w], and it is not constant there.
Since Ao (t) = R and Al (t) = L for all t, we have n >__ 2.

By proposition 3.6, is positive if the number of R’s among

Ao (t), ..., 1 {t) is even and negative if it is odd. In the first case we
have An (v)  A~ (w) and in the second case An (v) > A~ (~-v). By the definition
of the ordering of kneading sequences, we get in both cases

N

LEMMA 4 . 2. - The function K (F) cannot be constant on [o, 1].

Proof - Suppose -that it is constant. Assume first that k (Ft) is infinite.

By Proposition 3 . 6, for each n > 2 the function has a constant sign.

All xn (t) are contained in the interval [1- ’, 1]. Therefore
1 

’ 

for all n >_ 2. However, by Proposition 3 . 6, for each t

we have lim 
00 

= oo . In view of Fatou’s Lemma, we get a contradic-

tion.

If K (Ft) is finite then there is n >__ 2 such that xn (t) = 0 but x~ (t) ~ 0 for

all By Proposition 3 . 5, 
dxn ( t) 

~ 0, and therefore that cannot happen
dt

Now we can easily prove the monotonicity of the kneading sequences
for (h, 

Vol. 27, n° 1-I99l.
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PROPOSITION 4 . 3. - Assuyne that (X, (?~’, ~.‘) E Do and (X, ~)  (~,‘, ~,~).
Then K (?~, ~.) c K (~,‘, ~‘)-

Let F~ be given by (4.1). Then by Lemma 4.1,
K (F©) __ for all t E [o, I]. If K (Fo) = K (F i) then K (Ft)
is constant, which is impossible by Lemma 4.2. Therefore

K (F1) > K (Fo). N

5. RENORMALIZATION

We shall use the well known renormalization method for the unimodal

maps with the kneading sequence smaller or equal to RLR 00. It is known
that for such map G one has K (G) = R * K (H), where H equals to G~
restricted to the interval [G2 (0), G4 (o)]. The map H is also unimodal, but
with a minimum instead of the maximum at 0, and when writing the
kneading sequence for H, we have to replace R by L and vice versa. Then
we can rescale H linearily by taking

Since H(0)0, the map H has again a maximum at 0. Clearly,
K (H) = K (H). If we start with G = F~, ~ then we end up with H = F~~, ~~.
Denote cp (~,, ~.) = (~.2, Then the construction described above gives

the following result.

LEMMA 5 . 1. - If (03BB, J.l) E DBDo then K (X, ) = R * K (03C6 (X, )). []
To be able to use Lemma 5.1, we have to know that cp (~,, 

LEMMA 5 . 2. - If (h, ~,) E then cp (X, ~,) E D.

Proof - 

~~2014’2014 and then
~-1 1

If F is unimodal, its topological entropy satisfies the inequality

h (F)  log 2. We know that K (F) > RLR~ is equivalent to h (F) > 2 1 log 2.
We know also that the renormalization procedure doubles the entropy of

Annales clP l’Institut Henri Poincaré - Probabilités et Statistiques
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the map: ~~ (H) = h (H) = 2 h (G). Therefore if (?~, ~.) E D then

LEMMA 5.3. - 7/"(~ u) E D /7(~, ~)>0.

Proof. - If (03BB, ) ~ Do then it follows from (5.2) that h(03BB, )>0.
Assume that (~, ~) e DBDo. Then the map F~ ~ ~ = F~2 ~ has both slopes
with absolute values at least u. Therefore the variation of F"...., on the
interval [1-03BB , 1] is at least 03BB . n for all n~1, and by [MS] we have

h ((p (03BB, )) ~ log . Then by (5.3), h (03BB, ) ~ 1 2 log . []
Proof of Theorem A. 2014 Assume that (03BB, u), (03BB’, ’)~D arid

(~ ~)>(~ u) but K(~, ~)~K(~ u). By Lemma5.3 and (5.1), we have

for some integer m >__ o. In view of (5 . 2), (5 . 3) and Lemma 5 . 2, we can
apply Lemma 5 .1 m times and we get

Since we assumed that K (~,’,  K (X, we have

and therefore

From the definition of cp it follows that it preserves the "  " relation.

Therefore (X, ~,)  (~,’, ~.’). Since the function s ~ s is decreasing
s2-1

for s > l, we get from the definition of Do that tpm (?~’, By
Proposition 4 . 3 we obtain K (~,’, ~,‘)) > K (X, ~.)). In view of (5 . 4)
and (5 . 5) it follows that K (?~’, > K (~,, 
Remark 5 . 4. - If  > 1 but 03BB  1 then if K (X, )  RLR ’ then we can

also use the renormalization procedure to get F~ ~~, ~~ = F~2, ~~. If then

1, we can apply Theorem A to it. If  1 then we get for a

periodic orbit of period 2, attracting or indifferent. For example, if we

Vol. 27. n° 1-1991.



138 M. MISIUREWICZ AND E. VISINESCU

study the one-parameter family of maps F~, 2 (see [BGG]) then our methods

work for 1 203BB~2 and we get strict monotonicity of the kneading invariant

(and therefore topological entropy) there. For 03BB~12 we get a very simple
behaviour and topological entropy zero.

6. PROOFS OF THEOREMS BAND C

Proof of Theorem B. - Assume first that {~,, ~.) E Do. Let F = F~, ~ and
suppose that K {F) ~ ~~. Then K (F) = A * B for some sequences A and B
and the length p of A is finite and larger than 0. In this case there exist
intervals Io, ..., Ip with disjoint interiors and such that F ~ Ii+ 1 for

i= 0, ... , p -1; F (Ip) c Io and 0 ~ int {Io). The map Fp + 1 ~ Io is linearily
conjugated to the restriction of some F;~, ,, to some invariant interval. If k
of the intervals Ii, ..., Ip are to the right of 0 then:

and 1 if k is even;
1 and if k is odd.

Since F (0) = 1 > 0, the interval 11 is to the right of 0 and consequently k >_-1.
Therefore K, v > 1. Since has an invariant interval, by Lemma 1 . 1 we

have 1 + 1 >__ 1. Hence
K V

Since p >_ 1 and 1 _ l~  p, ~ve have ~,p + 
I - k ~k > ~~ and 1 > ~2 . There-

fore

which is equivalent to

This contradicts the assumption that (X, p) G DO. Hence, if (X, p) e Do then
K (X, p) G :/f.

If (X, p)GD then we have (5.4) for some m>0 and since
K (X, p)) G /£Y, then K (X, p) G 

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



139KNEADING SEQUENCES OF SKEW TENT MAPS

We shall use a theorem of [M] saying that if a one-parameter family Gt
of continuous unimodal maps depends continuously on t and h (Gt) > 0
for all t then if K (Gto)  K  K and K E then there exists t between

to and ti with K (Gt) = K. We shall refer to this result as the intermediate
value theorem. We can use it for our maps in view of Theorem B. Clearly,
the dependence of F~, ~ on À and Jl is continuous (even if we rescale 
to get the same invariant interval for all (7~, 

LEMMA 6 . 1. - For each except RL~ there exists a unique
y (M) > 1 such that K ( 1, y(M))=M.

Proof - If ~, = 1 then F~, ~ (x) = x + 1 for xo. Therefore if 
then F 1, ~ ( 1 )  - h and K (1, ... Therefore, lim K (1, ~,) = RL °° .

On the other hand, by Theorem A, and since

limK(Jl, we have also lim K ( I , Hence, by the inter-
~B i ~~i 1

mediate value theorem, if M ~ RL~ and M E then there exists y (M) > 1
with K (l, y (M)) = M. The uniqueness of y (M) follows from Theo-
rem A ..

Proof of Theorem C. - Let The function y is given by
Lemma 6 . 1. If 1  ~.  y (M) then we have by Theorem A,

and

(because F~~~~ _ 1 ~, ~, ( 1- ~) =1- ~,). Therefore, by the intermediate value

theorem, there exists ~iM with K (~.), ~,) = M. Its uniqueness follows
from Theorem A. then there is no ~ with K(X, by
Theorem A (we have (~, ~) > (l, y (M))). Hence, K(X, if and only
if ~, _ ~iM {~.). Moreover, is a function from { 1, y(M)] into ( 1, oo ). In
the exceptional case K = F~,, ~, the function (3M has the domain (1, ~ ) and

is given by the formula (Jl) .

The functions 03B2M are decreasing by Theorem A. Their graphs fill up the
set D by Theorem B.

Since is decreasing, to prove that it is continuous it is enough to
show that if ~.’  ~" are in the domain of ~3~ and (3M > ~. > ~3M 
then there exists ~. E {~’, ~") such that ~3M {~.) = ?~. For ~." and ~, as above
we have by Theorem A, K (~,, Jl/)  M  K (À, ~"), and the existence of u
with the required properties follows from the intermediate value theorem.
Hence. ~3~ is continuous.

n° M991.
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The function y is increasing by Theorem A. Since its inverse ~. ~--~ K {l, ~,)
is defined on (1, ex)), we get

If M = RLR~ then ( ) =   (see Lemma 3.2) and we get
- ~ -1

Then by Theorem A, this limit is infinite also for all M > RLR~ . If
M  RLR~ then we perform the renormalization construction of Section 5
and we get M = R * J for J = K (~,~, ~c . ~i~ (~.)). We have 
and hence 

~ ~ ~

Since Pj is continuous and decreasing and ~3 J (y (J)) =1, we get

Clearly, if M ~ RL °° then ~3M (y (M)) = 1. If M = RL ~° then ~M M == ~
- _ 

~_1 I
and therefore
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