@article{AIHPB_1990__26_3_461_0, author = {Williams, R. J. and Zheng, W. A.}, title = {On reflecting brownian motion - a weak convergence approach}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {461--488}, publisher = {Gauthier-Villars}, volume = {26}, number = {3}, year = {1990}, zbl = {0704.60081}, language = {en}, url = {http://www.numdam.org/item/AIHPB_1990__26_3_461_0/} }
TY - JOUR AU - Williams, R. J. AU - Zheng, W. A. TI - On reflecting brownian motion - a weak convergence approach JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1990 SP - 461 EP - 488 VL - 26 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPB_1990__26_3_461_0/ LA - en ID - AIHPB_1990__26_3_461_0 ER -
%0 Journal Article %A Williams, R. J. %A Zheng, W. A. %T On reflecting brownian motion - a weak convergence approach %J Annales de l'I.H.P. Probabilités et statistiques %D 1990 %P 461-488 %V 26 %N 3 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPB_1990__26_3_461_0/ %G en %F AIHPB_1990__26_3_461_0
Williams, R. J.; Zheng, W. A. On reflecting brownian motion - a weak convergence approach. Annales de l'I.H.P. Probabilités et statistiques, Tome 26 (1990) no. 3, pp. 461-488. http://www.numdam.org/item/AIHPB_1990__26_3_461_0/
[1] Some potential theory for reflecting Brownian motion in Hölder and Lipschitz domains, to appear in Ann. Prob.. | Zbl
, ,[2] The semimartingale structure of reflecting Brownian motion, to appear in Proc. Am. Math. Soc. | MR | Zbl
, ,[3] Convergence of Probability Measures, John Wiley and Sons, new York, 1968. | MR | Zbl
,[4] Conservative diffusions, Comm. Math. Phys. 94, 293-316. | MR | Zbl
,[5] Geometric Measure Theory, Springer-Verlag, New York, 1969. | MR | Zbl
,[6] A construction of reflecting barrier Brownian motions for bounded domains, Osaka J. Math. 4 (1967), 183-215. | MR | Zbl
,[7] Dirichlet forms and Markov Processes, North-Holland, 1980. | MR | Zbl
,[8] Real and Abstract Analysis, Springer-Verlag, New York, 1965. | MR | Zbl
, ,[9] Reflecting Brownian Motion, Boundary Local Time, and the Neumann Boundary Value Problem, Ph.D. Dissertation, Stanford, 1984.
,[10] Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math. 37 (1984), 511-537. | MR | Zbl
, ,[11] A crossing estimate for the canonical process on a Dirichlet space and a tightness result, Colloque Paul Levy sur les Processus Stochastiques, Asterisque, 157-158 (1988), 249-271. | Numdam | Zbl
, ,[12] Tightness criteria for laws of semimartingales, Ann. Inst. Henri Poincaré, 20 (1984), N°4, 357-372. | Numdam | MR | Zbl
, ,[13] Stochastic differential equations for multi-dimensional domain with reflecting boundary, Prob. Theor. Rel. Fields, 74 (1987), 455-477. | MR | Zbl
,[14] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970. | MR | Zbl
,[15] Diffusion processes with boundary conditions, Comm. Pure Appl. Math. 24 (1971), 147-225. | MR | Zbl
, ,[16] Stochastic differential equations with reflecting boundary conditions in convex regions, Hiroshima Math. J. 9 (1979), 163-177. | MR | Zbl
,[17] Tightness results for laws of diffusion processes, Application to stochastic mechaniscs, Ann. Inst. Henri Poincaré 21 (1985), 103-124. | Numdam | MR | Zbl
,[18] Semimartingales in predictable random open sets, Séminaire de Probabilités XVI, Lect. Notes Math. 920 (1982), Springer-Verlag, 370-379. | Numdam | MR | Zbl
,