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ABSTRACT. - We obtain upper and lower inequalities relating capacity
and energy for multiparameter processes whose components are indepen-
dent (one parameter) Markov processes. We apply our results to the
resolution of a conjecture of Hendricks and Taylor on multiple points of
Levy processes.

Key words : Capacity, energy, additive functionals, Kuznetsov measures, multiparameter
processes, Levy processes, path intersections.

RESUME. - Nous obtenons des inégalités supérieures et inférieures entre
la capacité et Fenergie des processus à deux indices multiples, dont les
.composantes sont des processus de Markov indépendants (a un seul
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326 P. J. FITZSIMMONS AND T. S. SALISBURY

indice). Ces résultats servent à résoudre une conjecture de Hendricks et
Taylor, concernant les points multiples des processus de Levy.

1. INTRODUCTION

Part of the usefulness of probabilistic potential theory is that it allows
one to compute probabilistic quantities in analytic ways. We are interested
in generalizing a classical computation relating capacity and energy. Recall
that for Brownian motion in ~d, d >_ 3, one defines the capacity r (B) of a
set B to be the probability of hitting B, "starting from infinity." More
precisely, if m denotes Lebesgue measure, and if U (x, dy) = u (x, y) m (dy)
is the Brownian potential kernel, then one chooses measures v~ such that
v~ and one sets

This probabilistic quantity can be computed analytically as follows: set

I ( B) = inf ~ e ( ~,); ~, is a probability measure on B}.
Then

One obstruction to the study of multiparameter Markov processes is

that such exact computations seem to be impossible. Our object in this
paper is to show that for a large class of multiparameter processes the
functionals r ( . ) and 1 /I ( . ) are equivalent; that is, r lies within constant
multiples of 1/I ( . ). Such a relation is good enough to determine whether
a given set B is polar. We use this result to verify a conjecture of Hendricks
and Taylor concerning multiple points of Levy processes. There are several
previous results along these lines (Dynkin [D81], Evans [E87 a]), to the
effect that F(B) > 0 if I (B)  oo.

More precisely, for a class of multiparameter processes (including those
of the form

where the X’ ‘ are independent Borel right processes), we exhibit a pair
of elementary inequalities relating "capacity" to the energy of additive
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327CAPACITY AND ENERGY

functionals (more properly, homogeneous random measures). The capacity
used here is defined in terms of Kuznetsov measures, and our arguments
are adaptations of ones used for 1-parameter processes by K. M. Rao,
P.-A. Meyer, and J. Azema. For processes X of the form (1.3) the
"Kuznetsov capacity" can be identified with a more classical capacity
analogous to (1.1). Under additional hypotheses on the Xi we can identify
the additive functional energy with the analogue of being the
Revuz measure of the additive functional in question. We thereby obtain
the inequalities

We make use of a construction of E. B. Dynkin [D81], which associates
an additive functional with each measure of finite energy. (As noted
above, Dynkin’s construction directly yields a weak form of the left hand
inequality in (1.4).) For one-parameter results on capacity and energy,
without symmetry assumptions, see [H79], [P-SR85], or the survey in

[P-S87].
Our principal results are Theorem (2.12) (Kuznetsov capacity vs. addi-

tive functional energy), Corollary (3.5) (classical capacity vs. additive
functional energy), and Theorem (4.16) (classical capacity vs. classical

energy).
It is possible to give an analytic expression for additive functional

energies under broader conditions than those imposed here. This gain in
generality comes at considerable technical cost and requires a deeper
development of multiparameter potential theory. Also, our arguments
apply to other processes; for example, the Ornstein-Uhlenbeck sheet. We
hope to address these issues in subsequent papers.
We would like to thank Ed Perkins for suggesting several applications

of our methods.

2. THE BASIC INEQUALITIES

In this paper we are chiefly interested in processes of the form (1.3),
but in this section we develop capacity/energy inequalities in a wider

setting, with an eye to future applications.
We begin by describing a canonical setting for stationary multiparameter

processes with random birth and death times. Let E be a Lusin metrizable

space with Borel sets lff. Let W be the space of paths w: E U { A }
which are E-valued and right continuous on some nonempty open rectangle
]a {w), ~ (w)[, taking the value A off this rectangle. Here is fixed

throughout the paper, and A  E serves as cemetery. We let ]s, t[ denote
the set of r E [R" such that Si  ti, V i, with a similar convention for s  t.

Vol. 25, n° 3-1989.



328 P. J. FITZSIMMONS AND T. S. SALISBURY

The symbols 0,1,00 denote the vectors whose components are all 0,1,aJ
respectively. Let (Yt; t e be the coordinate process on W and put
~° _ ~~ Yt; t E Define a family of shift operators on W by

Throughout this section we fix a a-finite measure Q on (W, ~°) that is
stationary: {Q) = Q, ’d t E ~". Let % denote the Q-completion of ~°, and
J~ the class of Q-null sets in ~.
For an arbitrary cr-field ~ , we will denote the set of positive (resp.

bounded, resp. bounded and positive) ~ -measurable random variables by
(resp. resp. bp 

A %-measurable random time S: W --~ i~n = [ - oo, is homogeneous
provided t+S 0 crt(w) = S (w), V t e (l~n, V w e W. We assume that Q is dissipa-
tive in the sense of [Fi88 a]: there is a homogeneous time S such that
Q (S ~ ~n) = o. Let dO denote the class of (crj-invariant events in ~, and
put v ~1r’. As in [Fi88 a], if S and T are homogeneous times,
A Ed, and (the Borel sets in then

This allows us to define a measure P on (W, ~/) by

where S is any homogeneous time such that Q (S ~ = o. Formula (2.1)
makes it clear that the R. H. S. of (2. 2) doesn’t depend on the choice
of S. One can invert (2.2) as follows. Given define

F = F03BF03C3tdt~p A; then as in [Fi88 a],

In particular, P is a-finite. Fubini’s theorem and a completion argument
show that if F EP Cd then F is well-defined a. s. Q and (up to P-null sets)
determines a unique element of j~. Moreover, (2.3) remains valid for

This observation will be used frequently in the sequel without
special mention. The following consequence of (2.3) will also be used later.

(2.4) LEMMA. - There is a sequence (Sk) of homogeneous times such
that, a. s. Q, d k ? l, and a.

Proof - Q being a-finite we can choose with

~ F > 0 ~ _ ~ a  0  ~i ~ and Q(F)oo. By (2. 3), Foo a. s. P. But from

(2.2) we deduce that ~ ~ ~ has the same null sets as hence F  oo a. s.

Q. Thus

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



329CAPACITY AND ENERGY

since Put and

define S~, i = 2, ..., n analogously. The homogeneous times

Sk, ..., fit the bill. D
Motivated by Getoor and Steffens [GSt87], we define a capacity r by

Here {Y hits B ~ _ ~ Yt E B for some t e ]x, ~[ ~. Set

observing the usual convention, inf 0= 00.

Proof - The stated equality is trivial if I-’ ( B) = o. If put
H = 1( Y hits B} and note that

If r (B) = oo choose indicators Hk ~ H with 0  P (Hk)  oo, replace H/r ( B)
by (Hk) in (2.6) and let k ~ oo to reach the same conclusion.
The reverse inequality was suggested by an argument of Rao [Ra87].

Fix Z~p A with P(Z)=1 and Z=0 off {Y hits B}. Using the Cauchy-
Schwarz inequality,

hence D
Relation (2.5) yields useful inequalities for a modification of Iraw which

we now describe. Define cr-fields

so that (git) is a filtration when Rn carries its natural partial order, and
(~t) is a "reverse filtration" in the obvious sense. Let J denote the class
of Q-evanescent subsets of and put 

Associated with (git) [resp. (it)] is the i-optional (resp. i-

copredictable) cy-field (resp. on W x R. For instance, (91 (resp. 1)
is spanned by J and the class of processes of the form

..., tn), where (resp. bp ~t ), 
and is right continuous on R, VweW. For example, if f~P 
then ‘ for all i. (As usual, f ( 0) = o. ) However fo Y need not i-

copredictable ; see (2.8) below concerning these matters.
A random measure ( R M) is a kernel B) from ( W, ~) to ( (l~n, ~n).

An RM K is i-optional (resp. i-copredictable) if there is a strictly positive

Vol. 25, n° 3-1989.



330 P. J. FITZSIMMONS AND T. S. SALISBURY

V in (!Jl (resp. such that the process

is finite a.s. Q and in i). If K is an RM and

Q K (d t)  oo for some strictly positive v E (~~ then we can define
the i-optional dual projection of x: this is the unique i-optional RM oi ~
such that

The i-optional projection of a process V is then defined as the unique
process Oi V E such that

for every RM K such that is finite. The i-copredictable projection
(and dual projection) operator pi is defined similarly; it produces predict-
able (dual) projections with respect to the reverse filtration (~t). If 
and (resp. then (resp. Z. pi V) up to Q-
evanescence, and the dual results are equally valid. Implicit in the above
discussion are the section theorems: if V is a process in (resp. p U‘,

such that for all RM’s (resp. i-optional

R M’s, resp. i-copredictable R M’s) K with then V Ef. The
details of the construction of the operators oi and pi are the same as those
of the optional and predictable projections found in [B81], [MZ80] and
especially [M78]. (Trivial modifications are needed to cope with I~n as

parameter set instead of !R~, while the a-finiteness of Q can be handled
by using the techniques of [D77].) Our operators differ from those of

[D77] and [Fi87] in that these sources impose additional structure on the
behavior of processes and R M’s off the set 

We will assume the following regularity hypothesis (and in paragraph 4
will impose conditions that guarantee that it holds)

(The reader will note that we are suppressing "Q-a. s." statements when
no confusion can arise.) Note that E U~ for all i, so (2.7) always holds
if pi is replaced by oi. The most important consequence of (2.7) is contained
in the following

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



331CAPACITY AND ENERGY

(2.8) LEMMA. - If then fo Y E for all i. If, in addition, (2.~)
holds then

Proof - It is enough to prove this for i = 1 and f bounded, positive,
and continuous. To see that f03BFY~O1 let where si is as
in the proof of Lemma (2.4), and define, f or e N and j = { j 2, ..., jn) E ~n -1,

Note that since Clearly

and so Zk E (~ 1. Since Vt a. s. Q, we 
To prove the second assertion note that by the section theorem it

suffices to show that

for every RM K carried by ]a, ~i[ and such that Q(K([Rn))  oo. Define

Arguing as in the 1-optional case we see that and, since f is
continuous, 1](X, Thus, using (2.7) for the first equality,

and the lemma is proved. 0
A raw homogeneous random measure (RHRM) is a B)

from (W, ~) to ( f~n, ~n) such that

(2.9) (i) K (W, . ) is carried by for Q a.e. W e W;
(ii) there is an fe ~, f> 0 with

Vol. 25. n’ 3-1989.
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In fact, our K’s will usually satisfy a condition stronger than (ii), namely
P(K  oo. We drop the pejorative "raw" and speak of a homogeneous
random measure (HRM) if K satisfies (2.9) (i)-(iii) and

(iv) up to Q-indistinguishability, d i =1, ..., n.

Note that the existence of these projections is guaranteed by (ii) above.
In the sequel1t is a generic symbol representing any of the 2 n projections
o , p, x = I, ..., n.

(2.10) LEMMA. - Let K be an RHRM. Then

(b) 03C003BA is an

(C) P([7rK(~)]~)~4[P([K(~)]~).
Proof - Point (a) follows from a "perfection" result (A.5) found in

the appendix, and guarantees that ~ (K ( f~’~)) is well defined.
By virtue of (2.7), ~ ( l~a, = 1 on Thus if V e p C~‘ or p ~‘ according

as x = Oi or pi,

since K is carried by ]x, ~[ a. s. Q. It follows that xK satisfies (2.9) (i).
Next, using the invariance of Q and the fact that ~n is countably generated,
we see that xK inherits property (2.9) (iii) from K. Finally, note that if

because of (2.8). By (2.3) and the
homogeneity of K and xK,

This yields the second assertion in (b) (take/= 1 E) as well as the fact that
~c~ satisfies (2.9) (ii). Point (b) is therefore proved.

Point (c) is Meyer’s energy inequality adapted to the present context
(see [M78] or VI (95.3) of [DM80]). We adapt his argument and, since
some care is required, give a complete proof. First note that it suffices to
prove (c) under the auxiliary For if f is as in
(ii) of (2.9), then the RHRM satisfies

~ { Kk { f~n))  oo, A [because of ( 2. 8) ]. Once (c)
is proved for each Kk we can let k T oo to obtain the desired result. Our

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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proof requires the following lemma which will also prove useful later. It
is an immediate consequence of (2. 3).

{2.11) LEMMA. - Let K and y be RHRM’s. Given define

g (b) = r a + b) d a, Then
~n

Proceeding with the proof of ( 2.10) (c), let K be an RHRM and set
K = ?LK. We consider only the case ~c = 01, the other cases being similar.
Note that if s and t in f~n have the same first coordinate, then ~s = 
Thus the cr-field ~ (t 1 ) _ ~t , t = ( t 1, t 1, ... , t 1 ), is well-defined and

(~ (t); t E ~) is a filtration. Put H (t) _ ~ s ~ ~n; sl _ t ~. Evidently the

increasing process Bt: = K (H (t)) has (~ ( . ), Q)-dual optional projection
This implies that the processes and

(A ~ - At) + (A ~ - At _ ) have the same (iF ( . ), ~-optional projection.
Using (2.11) with cp (s, where with

r Bj/ (t) d t = 1, we compute
~)R"

where we have used (2.3) for the last equality. Invoking the Cauchy-
Schwarz inequality we obtain

whence the desired inequality If f~ (K ( Il~n) 2) - oo,
replace A~ by A~ A k in the above to obtain

Once more Cauchy-Schwarz yields

and the result obtains upon letting k T oo. [

Vol. 25, n° 3-1989.
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We say that two projections 1t2 commute on ]oc, ~[ if

We say that Q is 03C0-Markov if the 2 n projections oi, p‘, i = l, ..., n

commute on ]x, ~[.
In this case the dual projections commute when applied to RHRM’s. We
modify Iraw by defining

~ ( K ( fl~’~) 2); K is an HR M
carried by {t; 

Proof - The lower bound follows from Lemma (2.5) and part (a) of
(2.10), and the upper bound is trivial if r(B)=0. To prove the upper
bound in case r (B) > 0, we construct a suitable HRM, adapting a device
of Azema [A72]. First we construct a homogeneous time T such that

and

To this end recall the sequence (Sk) of Lemma (2.4). By a standard
selection argument there are times

such that (2 . 13) holds with T replaced by Tk : and such

that

Note that each Tk is a homogeneous time; hence so is the time T defined
by

where K = inf ~ k ; Sx E ]a, j3[, Yt E B for some t > Evidently T satisfies
(2 . 13) and (2 . 14). If r’ (B)  oo then Ko : 
K : -(ol 02 . , , on pl...pn)Ko is an HRM [(iv) of (2. 9) holds because of
the x-Markov property of Q]. Moreover,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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[see Lemma (2 . 10)]. In view of (2. 8), K is carried by {t; since Ko
is so carried. Thus, provided 0  I-’ (B)  oo,

as required. If I-’ ( B) = oo then by the o-finiteness of P we can choose
with 0Fk~1 and P(Fk) oo . Then Kk : =Fk.Ko is an RHRM

with and Kk i Ko. By the previous argument, since

03BAk(Rn)2~03BAk(Rn)~1,

as k - 00. D
Remark. - In Dynkin [D81], ol .. , is called the central

projection.

3. KUZNETSOV MEASURES AND CAPACITY

In this section we describe the specific measure Q to which Theorem
(2 . 12) will be applied, and we obtain a classical expression for r(B).
For i =1, ..., n, let (X;, be Borel right Markov processes with

Lusin state spaces ( Ei, semigroups ( Pt), and resolvents (Ui, ~). We
assume that the Xi are transient in the sense that there exist f i E f > 0
such that On the product of the underlying probability spaces
define

so that the X’ i are independent processes under each 1~"‘. The semigroup
and resolvent of X are

where t, 
Given (P;)-excessive measures mi, form the product m = m 1 Q ... (x) m n,

and note that m is an excessive measure for (Pt). By a theorem of
Kuznetsov [K74], for each i there is a stationary measure Qi on Wi (the
space of paths w : ~ -~ E~ ~ ~ ~ ~ as in paragraph 2 with n =1 ) such that

(i) 
(3 . 1) (ii) (V;; t E IR) is Markov under Qi with semigroup and random

"life interval" 
The product measure Q~ (8)... @ Qn on W~ x ... x Wn can be carried

to the space W of paragraph 2 via the natural map W~ x ... x Wn  W.

Vol. 25, n° 3-1989.
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Note the identification of ]x(w), p(w)[ with x ~ii Since each
~=1

Xi is transient, the Q~ are dissipative (see [Fi88a]), hence Q is dissipative.
Owing to the strong Markov property of Xl, the projections oi and pI
commute on ]a, ~[ for i = l, ..., n (The one-parameter version of this
result (with slightly different definitions) is proved in [D77], and in (4.12)
of [Fi87]. The n-parameter version, for processes of the form

Vt 1 (vv 1 ) Vt2 (w2) ... V~n (wn), then follows by independence, and the general
case in turn by monotone class arguments.) As noted by Dynkin [D81]
the independence of yi and implies that Oi and p.ï commute, as
do oi and pi, Thus Q is x-Markov.

Define

where Q ... Q v~.
Remark. - It is not true that for general v (not necessarily a product

measure), for some 

Proof - We prove that using Skorokhod embedding. Let

t > 0 ~. Here

is taken to be the sample space of Xi. Let it be the birthed shift operator
on W:

It follows from Theorem 3 . 1 of [Fi88b] that if then there exists
a of homogeneous (~t) stopping times such that
cri  T‘ (u)  (3i if T~ (u)  o and

Applying [FM86, (2 . 4)] we obtain, for s > 0,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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A comparison of finite dimensional distributions now reveals that

for Let it be the operator on W analogous to the ’t;i, and consider
the homogeneous time T ( u) _ ( T 1 ( u 1 ), ... , Tn {u")). By (2.1), if

n

provided It follows from the last display that if where
~* denotes the universal completion of ~°, then 19 F is measurable over

n

the P"-completion of 0 Q’) and the asserted equalities hold. Taking

for F the indicator of {Yt E B for some we have

for some } and  fi. Thus
for some hence On the other hand,

by (4. 6) of [FM86] we can find homogeneous times S~ on W, oc‘,
and a sequence such that ~.k Ut T m‘ and

Taking hits B} we have

since Consequently P~‘k (X hits B) T h {B), so h (B) > F (B), and (a)
is proved.
To show ( b), observe that we have just shown the conclusion for the

particular sequence Ilk. Let v~ be as in the statement of the lemma. The

function for some t > 0) is easily seen to be separately
excessive in each component x~ of x. If we fix i and ... , h, j ~ i,
then

Vol. 25, n~ 3-1989.
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(These assertions follow immediately if x~ ~ f (x) takes the form UI g, and
because of our transience hypothesis any excessive function (of Xi) is the
increasing limit of such functions: see [DM87, XII. T17].) By (3.3),
Vll Q ... is increasing in each of kB ..., k", and therefore its
limit does not depend on how we take the ki to infinity. If we let them

~~ in turn, then (3.4) shows that each vki may be replaced by without

affecting the limit. Thus, if we let k 1 = ... = k~ = k -~ ~o then

showing (b). ©
Finally, by Theorem (2. 12) we have the following

( 3 . 5) COROLLARY. - Let the X i be transient Borel right processes, and
assume (2. 7). Then

(In the next section we shall impose additional hypotheses ensuring that
condition (2. 7) is met.)

4. CLASSICAL ENERGY

We maintain the hypotheses and notation of paragraph 3, so that the
X are independent transient Borel right processes.

Given an RHRM K define a measure Jlx on (E, f) by

Applying (2 . 3) with F = g (t, Yt) K(dt) we find that for Q ~),
~n

We call ~,x the Revuz measure of K (Dynkin [D81] calls it the "characteristic
measure" of K). Note that is a-finite by (ii) of (2. 9), and if (2. 7) holds
then _ ~,x for any RHRM.
Our goal in this section is to express the "energy" 2 - n f~ (K ( (F~n)2) of an

HRMK as a classical energy integral of relative to the appropriate
kernel function. To do this with minimal preliminary work we assume
fairly stringent conditions on the Xi.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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We assume that, relative to mi, Xi has a transient Borel right strong
dual process Xi (with semigroup Pt and resolvent (x, dy)). Thus m‘ is
assumed to be a reference measure, and

In particular there are kernel functions such that ut’q (., y) is q-excessive
(for ( Pt)), u‘~q (x, . ) is q-coexcessive ( i. e., q-excessive for ( Pt)), and

See Chapter VI of [BG68]. Because X’ and X’ are transient, the above
discussion is valid even when q = 0, and we write M’ for 
The symmetrized potential density us is defined on E x E by

where the sum extends over all sets 1, 2, ..., n ~, and

Xi) if _ (x‘, iJ. For any positive measure u on
(E, ~) we have the energy integral

(Note that if n = 1 then e (u) is unchanged if US is replaced by u ; if n > 1
then this is true for all p, only if u is symmetric.)
Our final hypothesis on the processes X’ is of a technical nature. We

assume that X~ and X ‘ are special standard processes, i = l, ..., n. The
reader is referred to paragraph 16 of [GSh84] for a precise definition of
this term; roughly speaking, a special standard process is a standard

process that is quasi-lef t-continuous in its Ray topology. In particular, X ~
and Xi have left limits up to (but not necessarily at) their lifetimes. For
example (because of strong duality), if X is symmetric ( i. e., X = then

hypothesis (H) holds (semipolars are polar) in which case results from

paragraph 16 of [GSh84] imply that Xi is special standard. This hypothesis
has two important consequences, which we collect in the following

(4.4) LEMMA. - (a) (2.7) holds.
(b) If K is an HRM then K is 
Proof - To preserve the usual order of time, we argue first with

predictable projections. Let p; be the Qi-predictable projection on Wi x [R.
Without loss of generality, we take i == 1. By Theorem 4 of [WM71], we
see that the Q1-predictable projection of f03BFY1t is Here the left
limit Y~ _ is taken in the Ray topology, and pi is the extension of the

semigroup of X 1 to a Ray-Knight compactification of E U {A}. By
(16.18) of [GSh84], for all B1[, a. s. QB Taking f =1E and

Vol. 25, n° 3-1989.
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noting that x E E, we obtain p 1 ( 1 ~a 1, ~ 1 [) =1 on
[31[. The same argument works in reversed time as well, so

on ]a 1, [31 [ also. By independence,

showing (a).
To show (b), first "perfect" K as in Proposition (A. 5) of the appendix.

Again take i =1. Then for a. e. fixed w2, ..., wn,

is an RHRM on W1. and put 
For ..., set

Then pl A = B, so

hence Q~  /r bt Kl (dt) for a. e. w2, ..., wn. Letting a

range through a countable sequence generating 03C3{Y1t; t~R} ~R we see
that K 1 is Q1-copredictable for a. e. w2, ..., wn. Similarly Kl 1 is

Q1-optional. Thus by (5. 3) of [GSh84], 03BA1 is a. s. carried by
Yt _ = Yt ~, so that K is a. s. carried 

Since this is true for i ~ 1 as well, (b) must hold. 0
A measure on (~n is projectively continuous if each of its I-dimensional

marginals is diffuse. Following Dynkin [D81] we say that an HRM is
continuous if K (w, . ) is projectively continuous for Q-a. e. w. The following
evaluation is the key result of this section.

(4. 5) THEOREM. - Let K be an HRM with Revuz measure ~,. Then

(i) 2 ‘~ ~ (K (~‘~)2) ~ e (!~)~
(ii) 2 - n P (K ([Rn)2) = e (~,) if and only if K is continuous.
The proof of (4. 5) requires a number of preliminary lemmas. To begin

let D= {(s, t) E si = ti for some i ~. Given an HRM K let ~2 (w, . ) be
the measure K (w, . ) Q K (w, . ) on Clearly K is continuous if and

only if K2 (w, D) = 0 for Q-a. e. w. For J c { 1, 2, ..., n ~ define a partial
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order  J on [Rn by sJt if and only if V I e J. Let

R J = ~ t E [R"; 0  denote the positive orthant of ~n in the order  j. If

K is any HRM then

Thus to prove (4. 5) we must check that for each J c ~ l, ... , n ~,

where

In fact we prove (4.6) only for J=0 and J = ~ 1, ..., n ~. Of course,
(4.6) for J is equivalent to (4. 6) for JC, but giving both arguments
allows us to keep track of the roles of right limits (J=0) and left limits
(J== {1, ... , n ~). The general case falls to the same methods, but a mixture
of right limits and left limits would be required, leading to an even more
intricate notation.

The following simple consequence of (2. 11) is valid for arbitrary J.

To evaluate the Q-expectation in (4. 7) explicity we need an expression
for the "optional projection" of To this end it is convenient
to transfer the laws Px and Px = p1, xl Q . - - (8) to subsets of W.
Define

Let ~ ° and ffo denote the respective traces of ~° on Q and Q. Without
changing notation we carry Px and Px to (Q, ~ °) and (Q, ~ °) in such a
way that the coordinate processes
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under Px and Px are realizations of X and =(Xt’~, X~, ..., Xtn)
respectively. Let o=o1...on and =1...n, where the i are now co-
optional projections (i. e. optional projections relative to the reverse filtra-
tions ~t). Since the Xi are independent, the next result follows by standard
monotone class arguments (cf Dynkin [D81]). We omit the proof.

up to Q-evanescence.
Given an HRM K, let Ht be the modification of + t) constructed

in (A. 6). Let Ht be the dual object, corresponding to K (R{ 1, ..., " ~ + t) .
Define

Note that if K has the special form then 

and ~,x=f. m.

(4.9) LEMMA. - Let K and y be HRM’s with vx and v,~ as described
above. Then

Proof. - Apply Lemma (2 . 11) with cp (s, t) =1R~ (t - s) ~ (s), where

~ E p ~n with ~ (s) ds = I . Then
~n

We have used the "perfect homogeneity" given by (A. 6) for the second
equality, (4. 8) (with r = 0) and the "optionality" of y for the third equality,
and (4.2) for the fourth. This establishes the second equality in (4. 10).
Using the "co-optionality" of K, a similar argument shows that the L.H. S.
of (4. 10) is equal to
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But (4.4) allows another appeal to (4.2), hence (4.11) equals as

required. D

(4. 12) COROLLARY. - Let K be an HRM with Revuz measure Then

Proof - Take y in (4. 9) to have the form g (Yt) dt. Varying g gives
the conclusion. Q

(4. 13) LEMMA. - Let K, y be as before. Then

Proof - U ~ ~.x is excessive, in the sense that

Since dy)  m (dy), we conclude from Corollary (4 . 12) that

q ... qn uq (vx) i as each qi i oo . Thus, by the argument of (4 . 9),

In the proof of Lemma (4. 9), we showed that this equaled ~Y (vx). The
second equality follows similarly. D

(4 . 14) COROLLARY. - Formula (4 . f ) holds if J = QS or ~ 1, ... , n ~ .
Proof - Take K=y in (4.9) and use (4. 13). D
As noted previously, entirely analogous arguments yield (4.6) for arbi-

trary J c ~ 1, ... , n ~ . Thus the proof of Theorem (4. 5) is complete. D
See Dynkin [D 81] for the following result. (Dynkin assumes

Pt (x, . )  m, but this is implied by our hypotheses (Fukushima’s
theorem) ; see [Fu 76, Thm. 4 . 3 . 4] or [FG 88].)
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(4. 15) PROPOSITION. - In addition to the other hypotheses of this section,
assume that the Xi are symmetric (i. e., If ~, is a cr-finite measure on
(E, G) with e (~)  00, then there exists a unique (up to Q-indistinguishability)
continuous HRM K with Revuz measure In particular
e (N~) = 2 n ~ (K ( ~n)2).
Now define for 

is a probability measure on ( E, G) with ~, ( E ~ B) = 0 ~ .
Combining (4. 5) with (4. 15) and (3. 5) we arrive at our principal result:

(4.16) THEOREM. - Let the Xi be as above (transient and special standard
with transient special standard strong duals). Then

(i) I-’ (B)  23 n/I (B), 
(ii) if each X is symmetric, 2-n/I (B)  r (B), ‘d 
We conjecture that (4. 16) (ii) is valid in much greater generality ; it

seems likely that Dynkin’s result (4.15) is valid without symmetry provided
each Xi satisfies Hunt’s hypothesis (H) (semipolars are polar), and has
lower semi-continuous excessive functions. In the symmetric case we have
a different argument [not based on (2. 12)] yielding (4 . 16) (ii) with 2 - n

replaced by 21- ~‘. Simple examples show that an inequality of the type
(4. 16) (ii) cannot be valid in the general (i. e., nonsymmetric) case, unless
the constant is at most 2 - n: We do not believe that 21- n is best possible
in the symmetric case of (4.16) (ii) (except when n =1 ). We have a
somewhat fanciful conjecture that in this case the best constant when n = 2
is ^-_, . 8043.

5. APPLICATIONS

We content ourselves with giving the converses to two results of S. Evans
[E 87 a]. In both cases, Evans supplied a sufficient condition that we show
to be necessary. His first result improved a result of Tongring [To 84]
(Tongring obtained the same improvement in [To 88] together with a
weaker necessary condition), and his second refined a result of LeGall,
Rosen and Shieh [LRS 89]. Theorem (5. 4) below resolves a conjecture of
Hendricks and Taylor [HT 76] concerning necessary and sufficient condi-
tions for a class of Levy processes to have n-multiple points. See

paragraph 7 of Taylor [Ta 86] and also Hawkes [H 78]. Let

(5. 1) THEOREM. - A necessary and sufficient condition for a Borel subset
B of R2 to contain n-multiple points of 2-dimensional Brownian motion is

that In (B)  oo.
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Proof - Let (Zt) be a two dimensional Brownian motion started from
the origin. Let S1’ ..., Sn, T 1, ..., T~ be exponential random variables
of mean 1, independent of Z and of each other. Set

Write D for the diagonal ~ (x, ..., x); By a simple reduc-
tion, it will be enough to show that if diameter ( B) _ 1/2 then P(Z hits
Bn U D) > 0 if and only if In (B)  oo .

Let X~ be independent Brownian motions killed at rate 1, mi = Lebesgue
measure on R~, i = l, ..., n. Let Q be the Kuznetsov measure associated
to (X i, ..., Xn) and m 1 Q ... Qmn. Explicitly, under Q the yi are indepen-
dent Brownian motions, killed at rate 1, but started homogeneously in
time and space: if Po denotes the common law of the X’ 

‘ (started at x),
then

(If the killing were at rate q, then the R. H. S. above would need an
additional factor of q.) It is easily seen that the law of Z has the same
null sets as the Q-law of Yo c~. Thus by Theorem (4 . 16),

Let x’) be the symmetric resolvent density for X 1. Then there are
constants c, C such that

We now turn to the Hendricks-Taylor conjecture concerning n-multiple
points for Levy processes. Let Zt be a Levy process taking values in I~d.
Assume that it has q-resolvent densities, for Let U1 (x, (y-x)
be the 1-resolvent density. Let B be the unit ball in We will use the

following conditions:
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(5.4) THEOREM. - Let (Zt) be a Lévy process with q-resolvent densities,
q > 0. Assume (5. 2). Then in order that Z has n-multiple points it is necessary
and sufficient that (5. 3) holds.
Remark. - Rogers [Ro89] also discusses the "sufficient" direction, and

gives a number of equivalents to (5. 3).
Proof - We have not shown (4. 15) in enough generality to give the

sufficiency, so for that direction we appeal to Evans [E87b]. Thus we will
concern ourselves with necessity. It turns out that ( 5 . 2) is not needed for
this (in proving sufficiency, it is used to rule out examples such as

subordinators).
Let D={(x, ..., x); be the diagonal in and let Xs be

independent copies of Z, killed at rate one. Let m be Lebesgue measure
on i = l, ..., n, and let Q be the Kuznetsov measure associated to
(X;1, ..., and m 1 Q ... By assumption, the Xi are transient,
special standard, and in strong duality with respect to mi and Xt : _ -X~.
Thus Theorem (4. 16) applies.
Choose Si, Ti, Zi, Z as in the proof of (5.1). Assume that Z has

n-multiple points with positive probability, so that P(2 hits D) >0. By
assumption, Zo +1- has a density with respect to Lebesgue measure
(namelyv1) so that once more the law of Z is absolutely continuous with
respect to the Q-law of Y o [The equivalence of these laws would follow
from (5.2).] Thus Q(Y hits D»O, and so Let v be the unique
measure on D, all of whose marginals are Lebesgue measure. By (4. 16)
(i), there is a probability ~, on D with e  oo. Theorem (8. 1) of [E87a]
contains an argument that in this case e (v In fact, we can see
this directly from the proof of (2.12); that proof produced an HRM K from
a homogeneous time T. Let (t) = w (t) + x. We can easily construct T
such that YTED and VxeD. Then the Revuz
measure of K will be invariant under translations by xED, and hence will
equal ~,v for some oo [. The homogeneous time

will in turn give rise to an HRM KB having Revuz measure and

satisfying

By (4. 5), we therefore have e (v  oo, from which it is a simple matter

to obtain that (x))n dx  oo (note that us dominates 2-n 0

Finally, Jay Rosen has pointed out to us that when the X are planar
Brownian motions (killed at rate q > o, with each mi being Lebesgue
measure), then the HR M of ( 5 . 4) is a multiple of the "intersection local
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time" of Geman, Horowitz, and Rosen [GHR84]. (In [GHR84] this local
time was obtained as a derivative of occupation time.) To see this note
that an HRM is characterized by its Revuz measure, and the intersection
local time of [GHR84] has Revuz measure v while our HRM has Revuz
measure Àv for some ~, > 0. In fact, Brownian scaling shows that 
which - 0 0. This reflects the fact that when q = 0, Q is conservative
and hence admits no homogeneous times that are finite a. s.

It would be interesting to know if some form of "central projection"
could be used to construct the renormalized self intersection local time of
Varadhan [V69] and Le Gall [L85].

APPENDIX

This section contains several elementary perfection results concerning
homogeneous processes and random measures. We use these results in
section 2 [point (a) of Lemma (2. 10)], and in section 4 [Lemmas (4.4),
(4.9), and (4. 13)]. In the latter case we must have perfection, both to
allow us to fix the values of the wi, and also to permit an explicit
computation of optional and cooptional projections. In the former, we
need perfection only because we chose (for simplicity) to use a "perfect"
form of the invariant c-field j~.
The setting and notation is that of sections 2 and 3. We say that a

process is per fectly hom ogeneous if identically
in t, s~Rn and w E W.

(A . 1) PROPOSITION. - Let Z~p M be right continuous and homogeneous
Then there exists a Z E p that

is perfectly homogeneous and Q-indistinguishable from Z.

Proof - We assume without loss of generality that Define

Then and a Fubini argument shows that

Q(WBG.)=Q(WBG)=0.

v

Note that Z~ is Q-indistinguishable from Z. Clearly and it is

easy to check that for all w E G, (p e ~,
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where -r). Integrating (A. 3) against ~ (r) dr we find that

Set Z =1 G ZW where cp is arbitrary. Since Zi w) = (w) identically,
it follows from (A. 4) and the invariance of G that Z has the required
properties. D
The following variant of (A. 1) was used in section 4.

(A. 5) PROPOSITION. - Let K be an RHRM. There exists a kernel Ko
from (W, such that K° (w, . ) _ ~ (w, . ) for Q-a. e. w, and
t ~ Ko (w, B + t) is perfectly homogeneous for each B E ~n.
Proof - By a standard result on the regularization of kernels [G75]

we can assume that K itself is a kernel from (W, ~°) to (IRn, ~n). Define

and let G be as in (A. 2). The argument used in the proof of (A. 1) shows
that Ko : =1 G K~ is as required, where

and cp e C is arbitrary. D
Write p = p 1 p2 ... pn.

(A. 6) PROPOSITION. - Let K be an RHRM such that $K= K up to Q-
evanescence. Let 0t+=03C3{Ys; ts}. Then there exists a process 
Q-indistinguishable from t ~ K (R ~ + t), and a Q- full set such that

(a) t - Ht (w) is decreasing and right continuous on ~n, V w E W;
(b) 1GH is perfectly homogeneous;
tO 
Proo, f : - Let Kt = K ( R ~ + t), so that and t H Kt is decreasing

and right continuous on Rn. Since /? K = K, Kt is t-measurable for each
Thus there exist random variables and Q-full events

Bt e ~° such that Bt = K° ~, V t e Define

and

Evidently Z is Q-indistinguishable from K, is decreasing and
right continuous, and Zt E ~°+, V t E If we now let Z~ and G be as in
the proof of (A. 1), then H = Z~ and G have the desired properties. Q
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