Annales de l'I. H. P., Section B

A. Rosenthal

On strictly ergodic models for commuting ergodic transformations

Annales de l'I. H. P., section B, tome 25, no 1 (1989), p. 73-92
http://www.numdam.org/item?id=AIHPB_1989__25_1_73_0
© Gauthier-Villars, 1989, tous droits réservés.
L'accès aux archives de la revue «Annales de l'I. H. P., section B » (http://www.elsevier.com/locate/anihpb) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

On strictly ergodic models for commuting ergodic transformations

by
A. ROSENTHAL
Laboratoire de Probabilités, Université de Paris-VI, Tour \mathbf{n}° 56, 4, place Jussieu, 75230 Paris, Cedex 05
and
Hebrew University,
Institute of Mathematics, Givat Ram, Jerusalem

Abstract. - B. Weiss [W] proved that every ergodic \mathbf{Z}^{2}-action has a strictly ergodic model. We strengthen this result in the following way: If the Z^{2}-action is ergodic and is generated by two commuting transformations S and T , there exists a strictly ergodic model in which every ergodic Zaction generated by some $S^{i} \mathbf{T}^{j}$ is itself strictly ergodic.

Key words: Strictly ergodic model - $\mathbf{Z}^{\mathbf{2}}$ action - Uniform partition.

Résumé. - B. Weiss [W] a démontré que toute action ergodique de Z^{2} possède un modèle strictement ergodique. Nous renforçons ce résultat de la façon suivante : Si l'action de Z^{2} est ergodique et est engendrée par deux transformations S et T qui commutent, nous construisons un modèle strictement ergodique dans lequel toute action de Z ergodique, engendrée par une transformation $S^{i} \mathrm{~T}^{j}$, est strictement ergodique.

I. INTRODUCTION

The action of a group G by homeomorphisms of a compact metric space Y is said to be strictly ergodic, if there is a unique Borel probability measure λ, fixed by the action and $v(\mathrm{U})>0$ for every non empty open set $\mathrm{U} \subset \mathrm{Y}$. In the case where $\mathrm{G}=\mathrm{Z}$, in 1969, R. Jewett[J] proved that every weakly mixing invertible transformation on a Lebesgue space is measure isomorphic to a strictly ergodic transformation and Krieger [K] proved it for every ergodic invertible transformation in 1970. In 1983, B. Weiss [W] extended this result to any commutative G-action. For $G=Z^{2}$, B. Weiss asked us the following: Suppose given an ergodic Z^{2}-action, does there exists a strictly ergodic model for this Z^{2}-action such that every ergodic element of this action (that generates a Z -action ergodic) is also strictly ergodic?

In this paper, we will give a positive answer to this question.
We point out the following two remarks that motivate our work (both of them are from B. Weiss):

Remark 1. - If $\mathrm{G}=\mathrm{Z}$ and (X,T) is strictly ergodic, then for every k, if T^{k} is ergodic, it is strictly ergodic. (The proof of this is easy: if $v=k$ is an invariant measure for T^{k} and λ is the only one for T , if $v^{\prime}=1 / k \sum_{i=0} \mathrm{~T}^{i} v$, v^{\prime} is invariant for T so that $v^{\prime}=\lambda$ and this implies that v is absolutely continuous with respect to $\lambda: d \nu=f d \lambda$, the fact that ν is T^{k} invariant then implies that f is T^{k} invariant, but T^{k} is ergodic so $f \equiv 1$ and $v=\lambda$.

Remark 2. - For $G=Z^{2}$, the situation is not the same as for Z, in fact B. Weiss has built (oral communication) an example of a Z^{2}-action (with generators S and T), strictly ergodic such that T is ergodic but not strictly ergodic.

Acknowledgement: Not only did B. Weiss introduce us to the subject, but he also helped us to solve many of the problems we encountered.

Let be given ($\mathrm{Y}, \rho, \mathrm{v}, \mathrm{S}, \mathrm{T}$) an ergodic Z^{2}-action with generators S and T. Most of this paper is devoted to a proof of the following theorem:

Theorem 3. - If $(\mathrm{Y}, \rho, v, \mathrm{~S}, \mathrm{~T})$ is an ergodic Z^{2}-action and the action of T alone is ergodic, then there exists a strictly ergodic system $(\mathrm{X}, \beta, \lambda, \mathrm{S}, \mathrm{T})$ such that $(\mathrm{X}, \beta, \lambda, \mathrm{T})$ is itself strictly ergodic and ($\mathrm{X}, \beta, \lambda, \mathrm{S}, \mathrm{T}$) is measure theoretically isomorphic to $(\mathrm{Y}, \rho, \mathrm{v}, \mathrm{S}, \mathrm{T})$.

The proof of this theorem will parallel Weiss's proof for a Z^{2}-action. In fact, one can reconstruct his proof along ours, with obvious simplifications. In the sequel, we will suppose that the Z^{2}-action is aperiodic. This will enable us to use Rohlin lemma. Otherwise, for a minimal $i, i>0 S^{i}=\mathrm{T}^{j}$
and we will indicate at the end of part III how to make our proof in that case.

II. CONSTRUCTION OF A UNIFORM TOWER

Definitions 4. - The M-T-name of x for a partition $\mathrm{P}=\left(p_{1}, \ldots, p_{k}\right)$ is the element of $\{1,2, \ldots, k\}^{\mathbf{M}}:\left(\alpha_{i}\right)$ such that $\mathrm{T}^{i} x \in p_{\alpha_{i}}$ for $1 \leqq i \leqq \mathrm{M}$. By extension, we will also mean the sequence $p_{\alpha_{1}}, p_{\alpha_{2}}, \ldots, p_{\alpha_{M}}$.

A Rohlin tower F with base B is said to be of shape D if $\mathrm{F}=\bigcup_{(i, j) \text { in } \mathrm{D}} \mathrm{S}^{i} \mathbf{T}^{j} \mathbf{B}$.

Let $\mathrm{D}_{n}=\left\{(i, j) \in \mathrm{Z}^{2} ; \max (|i|,|j|) \leqq n\right\}, \mathrm{C}_{n}=\{i \in \mathrm{Z} ;|i| \leqq n\}$.
Definition 5. - Let n and M be in N and $\delta>0$. A set B in ρ is the base of an ($n, \mathrm{M}, \delta, \mathrm{T}$) uniform Rohlin tower F if:
(i) $\mathrm{B} \cap \mathrm{S}^{i} \mathrm{~T}^{j} \mathrm{~B}=0$ for all (i, j) in $\mathrm{D}_{n}-\{0,0\}$ and $\mathrm{F}=\underset{(i, j) \text { in } \mathrm{D}_{n}}{\bigcup} \mathrm{~S}^{i} \mathrm{~T}^{j} \mathrm{~B}$.
(ii) For every p in C_{n}, for almost every y in Y , if:

$$
\beta_{p}^{\mathrm{M}}(y)=\mid\left\{0 \leqq i \leqq \mathrm{M}-1 ; \mathrm{T}^{i} y \text { is in } \mathrm{T}^{-n} \mathrm{~S}^{p} \mathbf{B}\right\} \mid
$$

then:

$$
\left|\beta_{p}^{\mathrm{M}}(y) / \mathrm{M}-1 /\left|\mathrm{D}_{n}\right|\right| \leqq \delta .
$$

We will suppose in the sequel that T is the action that moves points horizontally. Informally, this definition means that for almost every y in Y, in the M successive images of y under T one is most of the time in horizontal level from the tower \mathbf{F}, and every such horizontal level is seen with almost the same frequency.

The uniform ($n, \mathrm{M}, \delta, \mathrm{T}$) Rohlin tower will play a fundamental role in the sequel. Our first goal is to prove:

Theorem 6. - For every n_{0} and every $\delta>0$, if M is big enough, there exists a ($n_{0}, \mathrm{M}, \delta, \mathrm{T}$) uniform Rohlin tower.

The proof of this theorem depends only on the aperiodicity of the Z^{2}-action, it is independent of the ergodicity of T.

In order to prove theorem 6, we will first construct a sequence of wellnested (see definition below) ordinary Rohlin towers.

If D is in Z^{2} and y in Y , by Dy we will mean in the sequel: $\left\{\mathrm{S}^{i} \mathrm{~T}^{j} y ;(i, j) \in \mathrm{D}\right\}$.

Definition 7. - Let M and $\left(h_{n}\right)_{n \text { in } \mathrm{N}}$ be in N. A sequence of Rohlin towers $\left\{\mathrm{F}_{n}\right\}_{n \text { in } \mathrm{N}}$ with base B_{n} so that:
$F_{n}=\bigcup S^{i} T^{j} B_{n}$ is said to be M-well-nested if: (i, j) in $\mathrm{D}_{h_{n}}$
For every $p, q, p<q$, all y in $\mathrm{B}_{p}, y^{\prime}$ in B_{q} :
either
(a) $\mathrm{D}_{h_{p}+\mathrm{M}} y \subset \mathrm{D}_{h_{q}} y^{\prime}$ or
(b) $\mathrm{D}_{\boldsymbol{h}_{q}} y^{\prime} \cap \mathrm{D}_{\boldsymbol{h}_{\boldsymbol{p}}+\mathrm{M}} y=\varnothing$.

Lemma 8. - Given M in N and $\left(h_{n}\right)_{n_{\text {in }} \mathrm{N}}$, if M / h_{1} is small enough and h_{n} / h_{n+1} decreases sufficiently rapidly with n then:

There exists a sequence of M well-nested Rohlin towers $\left(\mathrm{F}_{n}\right)_{n \text { in } \mathrm{N}}$ with $\mathrm{F}_{n}=\bigcup_{(i, j) \text { in } \mathrm{D}_{h_{n}}} \mathrm{~S}^{i} \mathrm{~T}^{j} \mathrm{~B}_{n}$ and $v\left(\mathrm{~F}_{n}\right) \rightarrow 1$ as n tends to infinity.

Proof. - The construction is made by induction. We will suppose M / h_{1} very small. The induction will give us a sequence $\left(\mathrm{F}_{i}^{\prime}\right)_{i \text { in } \mathrm{N}}$ with base B_{n} so that $\mathrm{F}_{n}^{\prime}=\bigcup \quad \mathrm{S}^{i} \mathrm{~T}^{j} \mathrm{~B}_{n}$ satisfying:

$$
(i, j) \text { in } \mathrm{D}_{h_{n}}+\mathrm{M}
$$

(i) $v\left(\mathrm{~F}_{n}^{\prime}\right) \rightarrow 1$
(ii) For all $p<q$, for all y in $\mathrm{B}_{p}, y^{\prime}$ in B_{q} :
either

$$
\begin{equation*}
\mathrm{D}_{h_{q}} y^{\prime} \cap \mathrm{D}_{h_{p}+\mathrm{M}} y=0 \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{D}_{h_{p}+\mathrm{M}} y \subset \mathrm{D}_{h_{q}} y^{\prime} \tag{2}
\end{equation*}
$$

It is then clear that $\mathrm{F}_{n}=\bigcup_{(i, j) \text { in } \mathrm{D}_{h_{n}}} \mathrm{~S}^{i} \mathrm{~T}^{j} \mathrm{~B}_{n}$ will satisfy the conditions of the lemma [We replace F_{n}^{\prime} by F_{n} to add to (1) and (2) the case where $p=q$]. We are thus left to build the F_{i}^{\prime} by induction:

Let $\left(\delta_{i}\right)_{i \text { in } \mathrm{N}}$ be a given sequence of real decreasing to 0 .
Let $F_{1}^{(1)}=\underset{(i, j) \text { in } \mathrm{D}_{h_{1}+M}}{\cup} \mathrm{~S}^{i} \mathrm{~T}^{j} \mathrm{~B}_{1}^{(1)}$ be an ordinary Rohlin tower with
$v\left(\mathrm{~F}_{1}^{(1)}\right)>1-\delta_{1} / 2$. Let h_{2} be big enough relatively to h_{1} and let $F_{2}^{(2)}=\underset{(i, j) \text { in } D_{h_{2}+M}}{\bigcup} S^{i} \mathrm{~T}^{j} \mathrm{~B}_{2}^{(2)}$ be a Rohlin tower chosen with $v\left(F_{2}^{(2)}\right)>1-\delta_{2} / 2$. Now we change F_{1} and B_{1} into $F_{1}^{(2)}, B_{1}^{(2)}$ by erasing from B_{1} all the y not satisfying (ii) (1) or (2). If h_{1} / h_{2} was chosen small enough, we get $v\left(F_{1}^{(2)}\right)>1-\delta_{1} / 2-\delta_{1} / 4$. This process can be done inductively erasing a small portion from all the $\mathrm{F}_{i}^{(n-1)} i \leqq n-1$, at step n to get $\mathrm{F}_{i}^{(n)}$. It is clear that $\mathrm{F}_{i}^{\prime}=\lim \mathrm{F}_{i}^{(k)}$ will satisfy the required conditions and k this ends the proof of the lemma.

Proof of Theorem 6. - Let n_{0} and δ be fixed and M be such that: $n_{0} / \mathrm{M} \leqq \delta / 100$. We use lemma 8 to get a sequence of $100 \mathrm{M} n_{0}=\mathrm{M}^{\prime}$ wellnested towers $\left(F_{i}\right)_{i \in N}$ such that $F_{i}=\bigcup \quad S^{k} T^{l} \mathbf{B}_{i}$.
(k, l) in $D_{h_{i}}$

Let us first consider $F_{1}=\bigcup S^{k} \mathbf{T}^{l} \mathbf{B}_{1}$. In the sequel we will use (k, l) in $\mathrm{D}_{h_{1}}$
repeatedly the one to one correspondence between (k, l) in $D_{h_{1}}$ and the level $\mathrm{S}^{k} \mathrm{~T}^{l} \mathbf{B}_{1}$ of F_{1}. We want to define \mathbf{B} base of an ($n_{0}, \mathrm{M}, \delta, \mathrm{T}$) uniform Rohlin tower. We will pave $D_{h_{1}}$ as in figure 1 by squares of shape $D_{n_{0}}$ and put in B, all the levels that correspond (by the above natural correspondence) to centers of the squares that are translate of $D_{n_{0}}$ (that is the levels marked by $\mathrm{a} *$ on the picture). We recall that T is the action that moves points horizontally in the tower. The paving is done by first putting the square in the lower left corner, secondly paving all the column above it consecutively, (we suppose that $2 h_{1}+1$ was chosen to be a multiple of $2 n_{0}+1$), then in the second column, we put the square marked 2 on the figure, that is the translate of square 1 by $\left(2 n_{0}+1,1\right)$, it is one level upward relatively to square 1 and filling what we can of the second column above this square 2, then 3 is one level upward and so on with cycles of length $2 n_{0}+1$. This way in F_{1}, except near the boundary, in a T-name we see typically: level i of F (defined by its base B), level $i+1$ and so on, and this is what we were looking for.

Let us see, now how to go on this construction:
We want to fill F_{2} by towers of shape $D_{n_{0}}$. As a first approximation, one paves $D_{h_{2}}$ by $D_{n_{0}}$-squares the same way as we did for F_{1}.
Let us call base of a F_{1}-column in F_{2}, a subset B^{\prime} of B_{2} (the base of F_{2}) such that for any (x, y) in B^{\prime}, any (k, l) in $\mathrm{D}_{h_{2}}$ either ($\mathrm{S}^{k} \mathrm{~T}^{l} x \in \mathrm{~F}_{1}$ and $\mathrm{S}^{k} \mathrm{~T}^{l} y \in \mathrm{~F}_{1}$) or ($\mathrm{S}^{k} \mathrm{~T}^{l} x \notin \mathrm{~F}_{1}$ and $\mathrm{S}^{k} \mathrm{~T}^{l} y \notin \mathrm{~F}_{1}$). The corresponding column is
then $\cup \quad S^{k} T^{l} B^{\prime}$. Let us fix a F_{1}-column C in F_{2} with base B^{\prime}. This (k, l) in $\mathrm{D}_{\mathrm{h}_{2}}$
is a Rohlin tower with shape $D_{h_{2}}$. In this F_{1}-column, by definition, some of the levels ($\mathrm{S}^{k} \mathrm{~T}^{l} \mathrm{~B}^{\prime}$ for (k, l) in $\mathrm{D}_{h_{2}}$) are entirely in F_{1}. We can model this by saying that in $D_{h_{2}}$, there are translates of $D_{h_{1}}$ at some given places, corresponding to levels in $\mathrm{F}_{1} \cap \mathrm{C}$.

The problem we are facing is to match the approximative paving of F_{2} (and thus of C) with the already existing paving of F_{1}-towers. Through the above model this model can be translated into a geometrical problem in $D_{h_{2}}$: We want to match the approximative paving of $D_{h_{2}}$ with the already existing one of the translates of $D_{h_{1}}$ (corresponding to levels in F_{1}) that were paved in the first step.

We will first see how to localize the problem around some given image of the F_{1}-tower. Because the towers are M^{\prime} well-nested, around each F_{1} tower, we can find a "free zone" such that we thus obtain around each center of F_{1}-towers a square of size $2 h+1$ with $h=h_{1}+10 \mathrm{M} n_{0}$, and in this square there are no other F_{1}-tower. We now erase in these free zones the paving of $D_{h_{2}}$ we had (that is we erase all the $D_{n_{0}}$-squares intersecting these free zones).

Fig. 2
This way, we localize the problem:
We are now given a free zone around some F_{1}-tower that was paved in step 1, we want to see how to pave the free zone so as to match the paving both with the existing paving of the F_{1}-tower and the paving outside the free zone. This is a geometric combinatorial problem, our goal being to keep the uniformity property along every horizontal.

There are, inside the free zone, two matchings to achieve, one for the horizontal coordinate of the squares to be in phase with the already existing paving, the other for the vertical coordinate.

Fig. 3
In the free zone, we put two zigzags with period 2 M , and slope alternatively +1 and -1 , one at the bottom of the free zone, the other above it (see Fig. 3). To be more precise, such a zigzag begins at some point (k, l) on the left vertical boundary of the free zone and ends at (k^{\prime}, l^{\prime}) on the vertical right boundary of it. It is the set of points $(k+p, l+p)$ for $0 \leqq p \leqq \mathrm{M}-1$, then $(k+\mathrm{M}+p, k+\mathrm{M}-p)$ for $0 \leqq p \leqq \mathrm{M}-1$ (this will be called a basic zigzag) and then in a periodic way [with period ($2 \mathrm{M}, 0$)] starting from $(k+2 \mathrm{M}, l)$ another basic zigzag and so on until $\left(k^{\prime}, l^{\prime}\right)$ where we reach the right vertical boundary of the free zone (the last basic zigzag may not be complete). We put two such zigzags in a free zone, one beginning at the lower left corner of it, the other at the point $(k-(\mathrm{M}-1), l)$ if (k, l) is the highest left point of the free zone.

These zigzags will play a role of boundaries. We now extend the existing paving of F_{1} "naturally", that is the paving of vertical columns is extended by putting under it and above it translates of $D_{n_{0}}$, and for a given vertical column, in the next column the paving is the same but moved one level upwards. We so, extend the paving in all the vertical columns until we reach the zigzag boundaries so that there is no square like $D_{n_{0}}$ intersecting these zigzags, and in the other direction, we stop when we reach the vertical boundary of the free zone.

We similarly "naturally" extend the paving of $D_{h_{2}}$ from outside the free zone until we reach these zigzag boundaries. We thus obtain a paving of the F_{1}-column C . We do this successively for all the F_{1}-columns in F_{2}.

This way, it is easy to see that in a T - M-name inside F_{2}, we usually see level i of F then level $i+1$ and so on. The only time this is not true is when we are near the vertical boundaries of a given free zone or near the zigzags inside it.

For the vertical boundaries, the "holes" are at most of length $4 n_{0}$. Because zigzags are of period 2 M , in a T - M -name, "holes" because of the zigzags are of length at most $8 n_{0}$. It is easy to deduce that for a point inside F_{2} we have [see definition 5 (ii)]:

$$
\left|\beta_{p}^{\mathrm{M}}(y) / \mathbf{M}-1 /\left|\mathrm{D}_{n_{0}}\right|\right| \leqq 20 n_{0} / \mathbf{M} \leqq \delta
$$

by the choice of M. It is clear that this same construction can easily be done inductively (because the towers are M^{\prime} well-nested) and that almost every y will have a $T-M$-name inside some F_{i} [because $\left.v\left(F_{i}\right) \rightarrow 1\right]$. This ends the proof of Theorem 6.

III. CONSTRUCTION OF A UNIFORM PARTITION

Before proving the existence of uniform partitions, let us prove a technical lemma; for it we will need the following definition;

Definition 9. - Let $k, p, h, \quad l \in \mathbf{N}$. The (k, p) partition of $[0, h-1] \times[0, h-1]$ is the sequence of sets $\mathrm{P}_{1}, \mathrm{~K}_{1}, \mathrm{P}_{2}, \mathrm{~K}_{2}, \ldots, \mathrm{P}_{l}, \mathrm{~K}_{l}$, P_{l+1} where:

$$
\begin{aligned}
& \quad \mathbf{P}_{1}=[0, h-1] \times[0, p-1], \quad \mathbf{K}_{1}=[0, h-1] \times[p, p+k-1], \\
& \mathbf{P}_{2}=[0, h-1] \times[p+k, p+k+p-1], \quad \mathbf{K}_{2}=[0, h-1] \times\left[k_{2}+1, k_{2}+k\right] \\
& \text { (with } k_{2}=p+k+p-1 \text {) and so on until } \\
& \mathrm{P}_{l}=[0, h-1] \times\left[p_{l}, p_{l+p-1}\right], \quad \mathrm{K}_{l}=[0, h-1] \times\left[k_{l}, k_{l}+k-1\right], \\
& \mathbf{P}_{l+1}=[0, h-1] \times\left[k_{l}+k, h-1\right] .
\end{aligned}
$$

l was chosen so that for the last set, P_{l+1} we have $\left[h-1-\left(k_{l}+k\right)\right] \leqq k+p$. We will say that the P_{i} are p-bands and the $K_{1} k$-bands. See figure 4.

A special role will be assigned in the sequel to points $(0, s)$ with $0 \leqq s \leqq h-1$. We will call them points of the T-boundary. By extension, we will say that a point x in a Rohlin tower $\mathrm{F}=\underset{\substack{0 \leqq i \leq h-1 \\ 0 \leqq j \leqq h-1}}{\bigcup} S^{i} \mathrm{~T}^{j} \mathrm{~B}$, with base B is in the T -boundary of F if $x=\mathrm{S}^{s} y$ for y in B and $0 \leqq s \leqq h-1$.

Definition. - Let P be a partition of $\mathrm{Y}, \delta>0, k \in \mathrm{~N}$ and $p \in \mathrm{~N}$ satisfy: $p / k \leqq \delta / 10$. If F is a Rohlin tower with base $\mathrm{B}, \mathrm{F}=\underset{(i, j) \in \mathrm{D}_{n}}{\bigcup} \mathrm{~S}^{i} \mathrm{~T}^{j} \mathbf{B}$, we can consider the (k, p) partition of D_{n}. We will say that $x \in \mathrm{Y}$ is good

Fig. 4
(for $\mathrm{P}, \delta, k, p, n$) if:
(a) $x \in \mathrm{~F}, x=\mathrm{S}^{i_{1}} \mathrm{~T}^{j_{1}} b$ with $b \in \mathrm{~B}$ and $\left(i_{1}, j_{1}\right)$ is in a k-band K_{r} for some r.
(b) If $\mathrm{K}_{r}=[0, h-1] \times\left[k_{r}+1, k_{r}+k\right]$ for every $j_{0}, j_{0} \in\left[k_{r}+1, k_{r}+k\right]$ so that $\left(0, j_{\theta}\right)$ is in the T-boundary of K_{r}, we have:

$$
\sum_{p_{i} \in \mathrm{P}}\left|1 / n \sum_{j=0}^{j=n-1} 1_{p_{i}}\left(\mathrm{~T}^{j} \mathrm{~S}^{j_{0}} b\right)-v\left(p_{i}\right)\right| \leqq \delta .
$$

Lemma 10. - For every partition $\mathrm{P}, \delta>0, k \in \mathrm{~N}$ and $p \in \mathrm{~N}$ such that $p / k \leqq \delta / 10$, there exists n_{0} so that if $n \geqq n_{0}$:

If F a Rohlin tower with $\mathrm{F}=\bigcup \quad \mathrm{S}^{i} \mathrm{~T}^{j} \mathrm{~B}$ and $\nu(\mathrm{F}) \geqq 1-\delta / 4$, the set E (i, $j) \in \mathrm{D}_{n}$
of good points (for $\mathrm{P}, \delta, k, p, n)$ satisfies: $v(\mathrm{E}) \geqq 1-\delta$.
Proof. - Let $f_{n, p_{i}}(x)=1 / n \sum_{l=0}^{1=n-1} 1_{p_{i}}\left(\mathrm{~T}^{l} x\right)$.
Because of the mean ergodic theorem, we can choose n_{1} so that there exists D so that:

$$
\sum_{p_{i} \in \mathbf{P}}\left|f_{n_{1}, p_{i}}(x)-v\left(p_{i}\right)\right| \leqq \delta / 2
$$

for any x in D and $v(D) \geqq 1-\delta^{2} / 4 k$.
Let us consider now a tower $F, F=\bigcup S^{i} T^{j} B$ with $v(F) \geqq 1-\delta / 4$ (i, $)^{\prime} \in \mathrm{D}_{n}$
and $n_{1} / n \leqq \delta / 100$. Let us look at a sequence: x, $\mathrm{T} x, \ldots, \mathrm{~T}^{n-1} x$ for x in
the T-boundary. Let $\mathrm{T}^{i_{1}} x$ the first point in D in this sequence, we thus have a good n_{1}-block: $\mathrm{T}^{i_{1}} x, \mathrm{~T}^{i_{1}+1} x, \ldots, \mathrm{~T}^{i_{1}+n_{1}-1} x$. Starting from $\mathrm{T}^{i_{1}+n_{1}} x$ we can look at the next point in D , and going on this process, we filled part of our sequence by n_{1}-blocks, so that if $T^{j} x$ is the beginning of such an n_{1}-block, $\mathrm{T}^{j} x \in \mathrm{D}$ and the part not filled, is by those j so that $\mathrm{T}^{j} x \notin \mathrm{D}$. It is clear that if we filled this sequence in $(1-\delta / 2) n$ of the n spaces then:

$$
\begin{equation*}
\sum_{p_{i} \in \mathbf{P}}\left|f_{n, p_{i}}(x)-v\left(p_{i}\right)\right| \leqq \delta / 2 \tag{3}
\end{equation*}
$$

Thus if (3) is not true, more than $\delta n / 2$ of the $\left(\mathrm{T}^{j} x\right)_{0 \leqq j \leqq n}$ are not in D. It clearly follows that if x is in the set H of points in a k-band (more precisely $x=\mathbf{S}^{i} \mathrm{~T}^{j} b, b$ is in B and (i,j) is in a k-band) that are not good, at least $\delta n / 2$ images of x under T in the k-band are not in D . We point out the fact that for a given x in some k-band (with the same meaning as above) K_{r}, either x and all its images in the k-band (see above) are good or they all are not good, by definition. Thus:

$$
v(\mathrm{H}) \delta n / 2 k n \leqq v(\mathrm{X}-\mathrm{D}) \leqq \delta^{2} / 4 k
$$

From the choice of p and l and using the fact that the points not in k-bands have a measure smaller than $\delta / 2$, we conclude that $v(E) \geqq 1-\delta$. This ends our proof.

Definition. - Let P be a partition, $\mathrm{P}=\left(p_{1}, p_{2}, \ldots, p_{a}\right)$. For $\mathrm{D} \subset \mathrm{Z}^{2}$, $y \in \mathrm{Y}$, the $\mathrm{D}-\mathrm{P}$-name of y is the sequence $\left(i_{d}(x)\right) \in\{1,2, \ldots, a\}^{\mathrm{D}}$ such that for any $d \in \mathrm{D}, d=(i, j), \mathrm{S}^{i} \mathrm{~T}^{j} x \in p_{i_{d}(x)}$.

Definition. - A partition P is said to be T-uniform if:
For avery $n \in \mathrm{~N}$, for every $\varepsilon>0$, there exists $\mathrm{N}_{n} \in \mathrm{~N}$ such that for almost every y in Y :

For any atom $p_{i}^{(n)}$ in $\underset{(k, l) \in \mathrm{D}_{n}}{\vee} \mathrm{~S}^{k} \mathrm{~T}^{l} \mathrm{P}$:

$$
\begin{equation*}
\left|1 / \mathrm{N}_{n} \sum_{k=0}^{k=\mathrm{N}_{n}-1} 1_{p_{i}^{(n)}}\left(\mathrm{T}^{k} y\right)-v\left(p_{i}^{(n)}\right)\right| \leqq \varepsilon \tag{4}
\end{equation*}
$$

If (4) is true for a fixed n and for almost every y in Y, we will say that P is $\left(\mathrm{N}_{n}, \varepsilon, n\right)$ good.

Theorem 11. - For every partition P , and every $\delta>0$, there exists $\overline{\mathbf{P}}$ T-uniform such that: $d(\mathrm{P}, \overline{\mathrm{P}})<\delta$.

Proof. - We first fix a sequence $\left(\varepsilon_{n}\right)_{n \in N}$, such that $\sum_{n=0}^{+\infty} \varepsilon_{n}<\delta$ and we will build $\overline{\mathrm{P}}$ as a limit of a sequence of partition P_{n} such that $\mathrm{P}=\mathrm{P}_{0}$ and $d\left(\mathrm{P}_{n}, \mathrm{P}_{n+1}\right)<\varepsilon_{n}$. We will build the P_{n} by induction.

Step 1. - Let us apply Lemma 10 , for the partition $\mathrm{P}, \delta=\varepsilon_{1} / 3, k=1$, $p=0$ (so that there is no p-band) to find a tower T_{1} "good" for that lemma and so that T_{1} is ($n_{1}, \mathrm{M}_{1}, \delta_{1}, \mathrm{~T}$) uniform with $\delta_{1} \leqq \varepsilon_{1} / 3$ and $n_{1} / \mathbf{M}_{1} \leqq \varepsilon_{1} / 3$.

A base of a column of T_{1} for the partition P is a set of points in B_{1} (base of T_{1}) that have the same $D_{n_{1}}-P$-name. Because of Lemma 10 , most of the horizontal levels in those columns are good (up to $\varepsilon_{1} / 3$) for the ergodic theorem. In such a column, if some horizontal level is not good, we replace the P-name on this level, by the P-name of some good horizontal level (we fix such a good level for all the changes). Doing this for all the columns in T_{1}, we change P into P_{1} so that $d\left(P, P_{1}\right) \leqq \varepsilon_{1} / 3$ and now every horizontal level in T_{1} is "good" for P_{1}. Because of the uniform properties of T_{1}, for almost every y in Y, in the $T-P_{1}$-name of y of length M_{1}, we are at least $\left(1-\varepsilon_{1} / 3\right) M_{1}$ times in those "good horizontal levels" of T_{1}. It is then easy to conclude that P_{1} is $\left(M_{1}, \varepsilon_{1}, 1\right)$ good.

Step 2. - We now choose k_{2} with: $6 \mathrm{M}_{1} / k_{2} \leqq \delta / 10$ with $\delta=\varepsilon_{2} / 3$ and we apply lemma 10 with:

$$
\mathrm{P}=\underset{(i, j) \in \mathrm{D}_{2}}{\vee} \mathrm{STP}_{1}, \delta=\varepsilon_{2} / 3, k=k_{2} \text { and } p=6 \mathrm{M}_{1} \text { to find a tower } \mathrm{T}_{2} \text { that }
$$

is ($n_{2}, \mathrm{M}_{2}, \delta_{2}$) uniform with $\delta_{2} \leqq \varepsilon_{2} / 3$ (from now on we omit the argument T , according to definition $5, \mathrm{~T}$ is ($n_{2}, \mathrm{M}_{2}, \delta_{2}, \mathrm{~T}$) uniform). Let $p_{2}=6 \mathrm{M}_{1}$. Together with the tower, there is a $\left(k_{2}, p_{2}\right)$ partition of $\mathrm{D}_{n_{2}}$.

Let us focus now on a p_{2}-band.

Fig. 5
On these bands, we place 2 zigzags like the one we draw on the picture, the period of which is $2 \mathrm{M}_{1}$ (the lines are alternatively with slope +1 and -1), one at the bottom of the p_{2}-band, the other one at the top of it. Let us call $k_{2}-p_{2}$ zigzag band, a k_{2}-band to which we added 2 zigzags, one is the bottom zigzag in the p_{2}-band above it, the other is the top zigzag in the p_{2}-band under it.

Fig. 6
Let us first consider a fixed $T_{1} \vee P_{1}$ column C with base $B^{\prime}\left[T_{1}\right.$ being identified with the partition $\left(T_{1}, T_{1}^{c}\right)$] in the tower T_{2}. We first delete from T_{1}, all the towers "like T_{1} " in C that intersects $\mathrm{S}^{k} \mathrm{~T}^{l} \mathrm{~B}^{\prime}$ for (k, l) in the boundary of a $k_{2}-p_{2}$ zigzag-band [that is (k, l) is either in one of the 2 zigzags or in the vertical boundaries of the $k_{2}-p_{2}$ zigzag-band]. We change then, the P_{1}-name in those "deleted towers" and give to the points in it their original P-name. Because of Lemma 10, all the x in C , except a set of measure $\varepsilon_{2} / 3$ (for all the columns), are in a level $S^{k} \mathbf{T}^{1} \mathbf{B}^{\prime}$, for (k, l) in a k_{2}-band and are good. If some x in C is in a k_{2}-band but is not good, by definition, all the images of x in this k_{2}-band are not good and we replace the ($\mathrm{P}_{1} \vee \mathrm{~T}_{1}$)-name of x in the entire $k_{2}-p_{2}$ zigzag band, x belongs to, by the $\left(\mathrm{P}_{1} \vee \mathrm{~T}_{1}\right)$-name of some y in a good k_{2}-band, such that all the points in the k_{2}-band are now good. Doing so, we change T_{1}. Having done this in all the $\mathrm{P}_{1} \vee \mathrm{~T}_{1}$-column we obtain P_{2} with $d\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right) \leqq \varepsilon_{2} / 2$ and $T_{1}^{(2)}$. The $D_{n_{1}}-P_{2}$-names of points in $B_{1}^{(2)}$ (base of $T_{1}^{(2)}$) are $D_{n_{1}}-P_{2}$-names of points in B_{1}. This crucial fact comes from our construction: we erased towers that were on the boundaries of $k_{2}-p_{2}$ zigzagbands.

It is now easy to see that, because of the T-uniform property of T_{2} : For almost every y in Y, if we look at the $T-\underset{(i, j) \in D_{2}}{V} S^{i} T^{j} \mathbf{P}_{2}$ name of y of length \mathbf{M}_{2}, because of property (ii) in definition 5 of T_{2}, we are $\left(1-\varepsilon_{2} / 3\right) \mathrm{M}_{2}$ times in k_{2}-bands of T_{2}. All these k_{2}-bands are good so that
this name is " $\left(\varepsilon_{2}, 2\right)$-good" for P . For almost every y in Y , the $\mathrm{T}-\mathrm{P}_{2^{-}}$ name of y length M_{1} is still " $\left(2 \varepsilon_{1}, 1\right)$ " good for P_{2} because the only change we made in the property of such a name, going from P_{1} to P_{2} is that we may have erased at most $2 \mathrm{~T}_{1}$-towers (that were on the boundary of some $k_{2}-p_{2}$ zigzag-band) and because $n_{1} / M_{1} \leqq \varepsilon_{1} / 3$. Another change, but we will absorb it in the other errors, is the difference in the measure of atoms of P_{1} and P_{2}.

Step q. - By induction, we have:
(a) a sequence $\left(\mathrm{T}_{i}^{j}\right)_{1 \leqq i \leqq q-1}, 1 \leqq j \leqq q-1$ of $\left(n_{i}, \mathrm{M}_{i}, \varepsilon_{i} / 3\right)$ uniform towers, $\left(p_{i}\right)_{1 \leqq i \leqq q-1}$ and $\left(k_{i}\right)_{1 \leqq i \leqq q-1}$ in N.
(b) a partition P_{q-1} that is $\left(\mathrm{M}_{i}, 2 \varepsilon_{i}, i\right)$ good for $i \leqq q-2$ and $\left(\mathrm{M}_{q-1}, \varepsilon_{q-1}, q-1\right)$ good.
(c) in fact \mathbf{P}_{q-1} is $\left(\mathrm{M}_{i}, 2 \varepsilon_{i}, i\right)$ good because at step i for almost every y in Y , the $\mathrm{M}_{i}-\mathrm{T}$-name of y is at least $\left(1-\varepsilon_{i} / 3\right) \mathrm{M}_{i}$ times in good k_{i}-bands that are in T_{i} (see step 2) and in further steps $j>i$, when obtaining P_{j}, the M_{i}-T-name of y (for P_{j}) has almost the same property as the $\mathrm{M}_{i}-\mathrm{T}$ name of y (for P_{i}) except that we may have erased at most $2 \mathrm{~T}_{i}$-towers (see again step 2) because they were on the boundary of zigzag-bands from some tower $\mathrm{T}_{l}: i<l<j$, for a given l. The fact that l is unique is fondamental and (c) is made clearer in our construction below.

Let us construct P_{q} :
Choose k_{q} much bigger than sup \mathbf{M}_{i} so that we can apply lemma 10 $i \leqq q-1$
with:

$$
\mathrm{P}=\underset{(i, j) \in \mathrm{D}_{q}}{\vee} \mathrm{~S}^{i} \mathrm{~T}^{j} \mathrm{P}_{q}, \quad \delta=\varepsilon_{q} / 3, \quad k=k_{q}, \quad p=6 \mathrm{M}_{q-1}
$$

to find a tower T_{q} that is $\left(n_{q}, \mathrm{M}_{q}, \delta_{q}\right)$ uniform with $\delta_{q} \leqq \varepsilon_{q} / 3$. Together with this tower we have the $k_{q}-p_{q}$ partition, for $p_{q}=6 \mathrm{M}_{q-1}$. As in step 2 , we construct $k_{q}-p_{q}$ zigzag-bands.

We first consider a given $\vee \mathrm{P}_{i} \vee \mathrm{~T}_{i}^{q-1}$ column in the tower T_{q}, where $i \leqq q-1$
the partition T_{i}^{q-1} is in fact $\left(\mathrm{T}_{i}^{q-1}, \mathrm{~T}_{i}^{q-1}\right)^{c}$. We will delete from T_{q-1}, the part that intersects or is at most $2 \mathrm{M}_{q-2}$ apart from the boundary of some $k_{q}-p_{q}$ zigzag-band (see step 2). In the following construction, we want to keep our uniform properties from prior steps. To do so, we have to be sure that property (c) of the induction remains true. For that, we will do the following (by "picture" of the given column, we will mean a picture of $\mathrm{D}_{n_{q}}$ covered in some part by squares $\mathrm{D}_{n_{j}} j \leqq q-1$, the places of these squares corresponding to T_{j}^{q-1}-towers in the given column): We give to the parts we delete their previous P_{q-2}-name. Now, by erasing $\mathrm{T}_{q-1^{-}}$ towers, we may see again in the picture, towers like T_{j}^{q-2} for $j \leqq q-2$ that were erased at step $q-1$. We now consider T_{q-2}-towers, both the ones existing before and the ones that "came back" above.

We erase from them all the T_{q-2}-towers that are at most $2 \mathrm{M}_{q-3}$-apart from the boundary of a $k_{q}-p_{q}$ zigzag-band. We give to the part we delete its previous P_{q-3}-name. We thus, may see again in our picture towers like T_{j}^{q-3} for $j \leqq q-3$ that were erased at step $q-2$. We go on until we look at the T_{1}-towers in our picture after all this process of "putting on and off towers" and erase these towers that intersect the boundary of a $k_{q}-p_{q}$ zigzag-band. We give to the deleted part its previous P-name. We do this for all the columns. Now as in step $2,1-\varepsilon_{q} / 3$ of the x in k_{q}-bands are good.

If some x in a k_{q}-band is not good, we replace its P_{q-1}-name (or more precisely its $\widetilde{\mathbf{P}}_{q-1}$-name, $\tilde{\mathbf{P}}_{q-1}$ being the partition that we obtained above after the above deletion and rebirth process) in the $k_{q}-p_{q}$ zigzag-band by one so that the names in the k_{q}-band are now good.

We thus obtain P_{q} with $d\left(\mathrm{P}_{q-1}, \mathrm{P}_{q}\right)<\varepsilon_{q}$.
As in step 2, it is easy to see that P_{q} is $\left(M_{q}, \varepsilon_{q}, q\right)$ good. Let us check that we can go on the induction:

Let us fix $j<q$ and y in Y . The M_{j}-name of y, for P_{j}, was $\left(1-\varepsilon_{j} / 3\right)$ times in good k_{j}-bands. Suppose we made some change in this property. This means that we are at most $2 \mathrm{M}_{\boldsymbol{j}-1}$ apart from the boundary of a $k_{1}-p_{1}$ zigzag-band (in a tower T_{l}, for $l>j$). Let us suppose, now, that we made another change because we were closer than $2 \mathrm{M}_{j-1}$ from the boundary of a $k_{n}-p_{n}$ zigzag-band (in a tower T_{n}), for $j<l<m \leqq q$.

Fig. 7
This would mean that some part of a tower T_{l} would be closer than $2 \mathrm{M}_{j-1}+2 \mathrm{M}_{j-1}+\mathrm{M}_{j}<2 \mathrm{M}_{l-1}$ from the boundary of a $k_{n}-p_{n}$ zigzag-band of T_{n}. This cannot be, by construction. Thus, if we "erased" towers, this happens at most twice in some $\mathbf{T}-\mathbf{M}_{j_{+\infty}}$-name and this proves that the induction can be pursued. Now, because $\sum_{i=1} \varepsilon_{i}<+\infty$, if the k_{i} were chosen so that $\sum_{i=0}^{+\infty} 10 \mathrm{M}_{i-1} / k_{i}<+\infty$, for almost every y in Y and any i, because of the Borel-Cantelli lemma, there is an index j so that we do not change the labelling of the $\mathbf{T}-\mathbf{M}_{i}$-name of y after step j. This proves then, that the limiting $\overline{\mathrm{P}}$ is $\left(\mathrm{M}_{i}, 2 \varepsilon_{i}, i\right)$ good for any i and finishes our proof.

Corollary 12. - There exists a sequence $\overline{\mathrm{Q}}_{1} \subset \overline{\mathrm{Q}}_{2} \subset \ldots \subset \overline{\mathrm{Q}}_{n} \subset \ldots$ such that $\vee \overline{\mathrm{Q}}_{n}=\rho$ (the entire σ-algebra) and the $\overline{\mathrm{Q}}_{\mathrm{n}}$ are all T -uniform. $n \in \mathbb{N}$

Proof. - Let $\mathrm{Q}_{1} \subset \mathrm{Q}_{2} \ldots \subset \mathrm{Q}_{n} \ldots$ be a sequence of partitions such that $\underset{n \in \mathrm{~N}}{\vee} \mathrm{Q}_{n}=\rho$. Let $\left(\varepsilon_{i}\right)_{i \text { in } \mathrm{N}}$ be given with $\sum_{i=1}^{+\infty} \varepsilon_{i}<+\infty$. Using step 1 of Theorem 11, we can find $\mathrm{Q}_{1}^{(1)}$ such that $d\left(\mathrm{Q}_{1}, \mathrm{Q}_{1}^{(1)}\right)<\varepsilon_{1}$ and $\mathrm{Q}_{1}^{(1)}$ is ($M_{1}, \varepsilon_{1}, 1$) good for some M_{1}.

We can replace Q_{2} by $\mathrm{Q}_{2} \vee \mathrm{Q}_{1}^{(1)}$ to have $\mathrm{Q}_{1}^{(1)} \subset \mathrm{Q}_{2}$. Using now step 2 of Theorem 11 we find $\mathrm{Q}_{2}^{(2)}$ such that $d\left(\mathrm{Q}_{2}, \mathrm{Q}_{2}^{(2)}\right)<\varepsilon_{2}$ and $\mathrm{Q}_{2}^{(2)}$ is $\left(\mathrm{M}_{2}, \varepsilon_{2}, 2\right)$ good. Furthermore, because $Q_{1}^{(1)} \subset Q_{2}$, to every atom of Q_{2} is corresponding an atom of $Q_{1}^{(1)}$ and every atom of $Q_{1}^{(1)}$ is a union of atoms of Q_{2}. Now using this correspondence $Q_{2}^{(2)}$ defines $Q_{1}^{(2)}$ so that $Q_{1}^{(2)} \subset Q_{2}^{(2)}$ (For instance if the first atom of $Q_{1}^{(1)}$ was the union of the second and fourth atom of Q_{2}, the first atom of $Q_{1}^{(2)}$ will be the union of the second and fourth atom of $Q_{2}^{(2)} . \mathbf{Q}_{1}^{(2)}$ satisfies:

$$
d\left(\mathrm{Q}_{1}^{(1)}, \mathrm{Q}_{1}^{(2)}\right)<\varepsilon_{2} \text { and } \mathrm{Q}_{1}^{(2)}
$$

is $\left(\mathrm{M}_{2}, \varepsilon_{2}, 2\right)$ good as well as $\left(\mathrm{M}_{1}, 2 \varepsilon_{1}, 1\right)$ good (see step 2 of Theorem 11). Continuing this process inductively gives us at step n :

$$
\mathrm{Q}_{j}^{(n)} \text { for } j \leqq n \text { such that: } \quad \mathrm{Q}_{1}^{(n)} \subset \mathrm{Q}_{2}^{(n)} \subset \ldots \subset \mathrm{Q}_{n}^{(n)} .
$$

$d\left(\mathrm{Q}_{j}^{(n)}, \mathrm{Q}_{j}^{(n-1)}\right)<\varepsilon_{n}$ for $j<n$ and $d\left(\mathrm{Q}_{n}, \mathrm{Q}_{n}^{(n)}\right)<\varepsilon_{n} . \mathrm{Q}_{j}^{(n)}$ is $\left(\mathrm{M}_{k}, 2 \varepsilon_{k}, k\right)$ good for any $k, j \leqq k \leqq n$ and $\mathrm{Q}_{j}^{(n)}$ is $\left(\mathrm{M}_{n}, \varepsilon_{n}, n\right)$ good for $j \leqq n$. Now defining, $\overline{\mathrm{Q}}_{j}=\lim _{n \rightarrow+\infty} \mathrm{Q}_{j}^{(n)}$, as in Theorem 11, we prove that $\overline{\mathrm{Q}}_{j}$ is T-uniform
., $\overline{\mathrm{Q}}_{1} \subset \overline{\mathrm{Q}}_{2} \subset \ldots \subset \overline{\mathrm{Q}}_{j} \subset \ldots$, finally because $d\left(\overline{\mathrm{Q}}_{j}, \mathrm{Q}_{j}\right)<\sum_{i=j}^{+\infty} \varepsilon_{i}$, we get $\underset{n \in N}{\vee} \overline{\mathrm{Q}}_{n}=\rho$.

Sketch of the proof in the non aperiodic case. - In the non aperiodic case it is easy to see that, by if necessary changing the generators of the action, we can suppose that $\sigma^{n}=\mathrm{Id},(\sigma, \tau)$ being the generators. Then if we have a uniquely ergodic action for (σ, τ), it has to be uniquely ergodic for any $\sigma^{i} \tau^{j}$ (if the action of $\sigma^{i} \tau^{j}$ is ergodic). This comes as in Remark 1 (see introduction) considering v such that $\sigma^{i} \tau^{j} v=v$ and

$$
\begin{aligned}
& v^{\prime}=1 / n j\left(v+\sigma v+\ldots \sigma^{n-1} v\right)+\left(\tau v+\sigma \tau v+\ldots \sigma^{n-1} \tau v\right)+\ldots \\
& \quad\left(\tau^{j-1} v+\sigma \tau^{j-1} v+\ldots \sigma^{n-1} \tau^{j-1} v\right),
\end{aligned}
$$

v^{\prime} is invariant under σ and τ and the rest of the proof is similar to that of Remark 1.

IV. PROOF OF THEOREM 3

This part is completely due to G. Hansel and J. P. Raoult [H-R], it is just a translation of Corollary 12 :

If $\mathrm{P}_{1}=\left(p_{1}, p_{2}, \ldots, p_{a}\right)$ is T-uniform, one can associate to it $\Omega\left(P_{1}\right) \subset\{1,2, \ldots, a\}^{z^{2}}$, with the shifts S_{1}, T_{1} and a measure given by the measure of the cylinder sets in P_{1}. It is clear that $\mathrm{P}_{\mathbf{1}} \mathrm{T}$-uniform is equivalent to $\left(\Omega\left(P_{1}\right), S_{1}, T_{1}\right)$ uniquely ergodic and also the action of T_{1} alone is uniquely ergodic, with unique invariant measure λ_{1}. Because of Corollary 12 we can construct, this way:
$\left(\Omega\left(\overline{\mathrm{Q}}_{1}\right), \mathrm{S}_{1}, \mathrm{~T}_{1}, \lambda_{1}\right) \stackrel{\pi_{1}}{\leftarrow}\left(\Omega\left(\overline{\mathrm{Q}}_{2}\right), \mathrm{S}_{2}, \mathrm{~T}_{2}, \lambda_{2}\right) \ldots \stackrel{\pi_{n}}{\leftarrow}\left(\Omega\left(\overline{\mathrm{Q}}_{n+1}\right), \mathrm{S}_{n+1}, \mathrm{~T}_{n+1}, \lambda_{n+1}\right)$.
The π_{i} being the projections coming from $\overline{\mathrm{Q}}_{i} \subset \overline{\mathrm{Q}}_{i+1}, \lambda_{i}$ being the invariant measure of $\overline{\mathrm{Q}}_{i}$.

We also have:

$$
\mathrm{S}_{n} \pi_{n+1}=\pi_{n+1} \mathrm{~S}_{n+1} \quad \text { and } \quad \mathrm{T}_{n} \pi_{n+1}=\pi_{n+1} \mathrm{~T}_{n+1}
$$

Let us consider the inverse limit of this diagram $\Omega_{\infty}=\left\{\left(x_{n}\right)_{n \in \mathbb{N}}\right.$; $x_{n} \in \Omega\left(\overline{\mathrm{Q}}_{n}\right)$ and $\left.\pi_{n}\left(x_{n+1}\right)=x_{n}\right\}$. This Ω_{∞} is compact. Let λ be an ergodic invariant measure for the transformation $\mathrm{T}:\left(x_{n}\right) \rightarrow\left(\mathrm{T}_{n} x_{n}\right)$. It is clear that projecting λ on the first n components of Ω_{∞}, that this projection must be λ_{n}. Because of the definition of the topology of Ω_{∞}, this shows that λ is unique and finally shows that $\left(\Omega_{\infty}, T\right)$ is uniquely ergodic. The fact that $\underset{i \in \mathbb{N}}{\vee} \overline{\mathrm{Q}}_{i}=\rho$ implies that if, β is the Borel σ-algebra and S is: $\left(x_{n}\right) \rightarrow\left(S_{n} x_{n}\right),\left(\Omega_{\infty}, \beta, \lambda, S, T\right)$ is isomorphic to (Y, ρ, v, S, T) and this ends the proof of Theorem 3.

V. GENERALIZATION OF THEOREM 3

Theorem 13. - Let $(\mathrm{X}, \mu, \mathrm{S}, \mathrm{T})$ an ergodic Z^{2}-action, there exists a strictly ergodic model for this action that satisfies:

For any (i, j) such that the Z-action generated by $\mathrm{S}^{i} \mathrm{~T}^{j}$ on X is ergodic, the Z-action generated by the transformation corresponding to $\mathrm{S}^{i} \mathrm{~T}^{j}$ in the model, is strictly ergodic.

Remark. - We will suppose that the action is aperiodic, otherwise, see above, the proof is trivial.

Proof. - Let $\left(\mathrm{S}_{i}\right)_{i \in J}$ (J is finite or countable) be a sequence of all the ergodic \mathbf{Z}-actions of the \mathbf{Z}^{2}-action. We will first prove the theorem in the

Fig. 8
special case where $|\mathrm{J}|=2, \mathrm{~S}_{1}=\mathrm{T}, \mathrm{S}_{2}=\mathrm{S}$:
The proof of theorem 3 can easily be adapted to this case. Theorem 6 remains unchanged. The uniformity for both S and T is obtained, as in Theorem 11 apart from the fact that the proof is done step by step, one step of the induction being to improve the uniformity for S, the next step being then, to improve the uniformity with respect to T . The only real difference is that a zigzag-band for S (or for T) has both an horizontal and vertical boundary that are zigzags (see Fig.).

Now for the general case:
Let us see, given a list $\mathrm{S}=\mathrm{S}^{k(i)} \mathrm{T}^{l(i)}$, for $i \in \mathrm{~J}$, of ergodic Z-actions, how to adapt the proof of Theorem 11 to get from P , a partition $\overline{\mathrm{P}}$, close to P and so that $\overline{\mathbf{P}}$ is uniform for every $\mathrm{S}_{i}, i \in \mathrm{~J}$. Doing afterwards, the same kind of proof as in Corollary 12 finishes then, the proof of theorem 13. The proof is, as usual, done by induction. Suppose $\mathbf{J}=\mathbf{N}$. The first step uses S_{1}-uniform towers G_{1} (we will indicate how to obtain them below), we get from $P_{0}=P$, a new partition P_{1} that is good (we will also indicate below what this means) in G_{1} for P_{1} and S_{1}. Then, the same way as in theorem 11, we find M_{1} so that for S_{1}, P_{1} is $\left(M_{1}, \varepsilon_{1}, 1\right)$ good.

In step 2 , we construct P_{2} such that: P_{2} is $\left(M_{1}, 2 \varepsilon_{1}, 1\right)$ and $\left(M_{2}, \varepsilon_{2}, 2\right)$ good for S_{1}.

In step 3, we construct P_{3} such that: P_{3} is $\left(M_{1}, 2 \varepsilon_{1}, 1\right)$ and $\left(M_{2}, 2 \varepsilon_{2}, 2\right)$ good for S_{1} and P_{3} is also $\left(M_{3}, \varepsilon_{3}, 3\right)$ good for S_{2}.

We can then, in the same way, go on the induction and obtain $\overline{\mathrm{P}}$.
We have to make two things precise:
(a) How to build S_{1}-uniform towers (and what does S_{1}-uniform tower mean).
(b) What does it mean that P_{1} is good for the tower G_{1} and the action S_{1}. We will first explain (b), because this will indicate the property we need in (a). By (b), we will mean as in the proof of Theorem 11: Suppose that we have a Rohlin tower G_{1}, whose shape is a rectangle, suppose also

Fig. 9
that we are given a $k-p$ partition in the following sense (see Fig.):
Except the two bands on the corner, C_{1} and C_{2}, that are a very small portion of the tower, we divide the points of the lattice corresponding to the tower into successive k_{1}-bands and p_{1}-bands. The direction of these bands is parallel to S_{1}, and in each band we include the points of the lattice that belongs to it.

We also want that in a k_{1}-band, if we look at the orbit of a point under S_{1}, we stay longer than a given n_{1} in this band (n_{1} is choosen to enable us to apply the ergodic theorem to S_{1} in those bands). Now P_{1}-good for S_{1} and this partition of G_{1}, means as before:

All the S_{1}-names for P_{1} along a k_{1}-band are good for the ergodic theorem (for the atoms of P_{1}). In the transition from P_{0} to P_{1} (or from P_{n} to P_{n+1}), we have to change entire "zigzag-bands". If $S_{k}=S^{i_{k}} T^{j_{k}}$, suppose at step n :
$\mathrm{I}_{n}=\underset{k \leqq n}{\operatorname{Max}}\left|i_{k}\right|, \mathrm{J}_{n}=\underset{k \leqq n}{\operatorname{Max}}\left|j_{k}\right|$. Our zigzag-bands have thus, zigzags with slope bigger than $\operatorname{Max}\left(2 \mathrm{I}_{n}, 2 \mathrm{~J}_{n}\right)=\mathrm{K}_{n}$, that is a zigzag-band looks like see figure 10 :

The period of these zigzags being bigger than \mathbf{M}_{n-1}. The slope of these zigzags will ensure that we can do the induction:

If P_{n-1} was $\left(\mathrm{M}_{i}, \varepsilon_{i}, i\right)$ good for the action $\mathrm{S}_{k}, \mathrm{P}_{n}$ will remain good because in a name of length $\mathrm{M}_{i}(i \leqq n-1)$ for S_{k}, we see at most twice, towers near the boundary of a zigzag.

Fig. 10
Now, to ensure that P_{1} is $\left(M_{1}, \varepsilon_{1}, 1\right)$ good for S_{1}, we have to obtain our towers in such a way that:

For almost every y in Y, if we look at a P_{1}-name of length M_{1}, for the action of S_{1}, we are most of the time in k_{1}-bands. In the general case, this is what we meant before by a S_{1}-uniform tower. Let us see now, how to obtain them, that is, we will explain what are the modifications necessary in the proof of Theorem 6 to obtain these towers:

In the proof of Theorem 6, in the first step, we paved $D_{h_{1}}$ by squares like $D_{n_{0}}$. Now, we will pave $D_{h_{1}}$ by rectangles (thus the uniform Rohlin towers will have a rectangular shape, we suppose $S_{1} \neq S, S_{1} \neq T$). Every column in the paving will now look the same (there is no moving upwards of the "next" column as in the case where $\mathrm{S}_{1}=\mathrm{T}$, see Fig. 1). The width p and the length q of the rectangle will be chosen to be prime together and both of them are prime with respect to i_{0} and to j_{0}, if $S_{1}=S_{0}^{i} T_{0}^{j}$. Now, inside F_{1}, we can look at the orbit of a point x under $S_{1} . x$ is in some position in one of the rectangles. For $S_{1}^{k} x$ to be in the same position in another rectangle we have to have: For the horizontal coordinate: $i_{0} k=p k^{\prime}$ for some k^{\prime}, so that k is a multiple of p, the same way, k is a multiple of q so that the minimal k is $k=p q$. This way the $p q$ images of x under \mathbf{S}_{1}^{j} : $S_{1}^{j} x$ for $j \leqq p q$ are going through all the levels in the rectangle and this exactly once. We are thus in a similar situation as in Theorem 6, for step 1. To go then from the paving of F_{1} to one of F_{2}, we simply pave F_{2}, by little rectangles as we did in step 1 and remove the ones that intersect F_{1} (we do this successively for all the different F_{1}-column in F_{2}). It is easy to see (because $i_{0} \neq 0$ and $j_{0} \neq 0$) that the uniform properties can be obtained this way.

This ends the proof of Theorem 13.

REFERENCES

[H-R] G. Hansel and J. P. Raoult, Ergodicity, uniformity and unique ergodicity, Indiana Univ. Math J., Vol. 23, 1974, pp. 221-237.
[J] R. I. Jewett, The prevalence of uniquely ergodic systems, J. Math. Mech., Vol. 19, 1970, pp. 717-729.
[K] W. Krieger, On unique ergodicity, Proc. Sixth Berkeley Symposium on Math. Stat. and Prob., 1970, pp. 327-346.
[W] B. Weiss, Strictly ergodic models for dynamical systems, Bulletin of the A.M.S., Vol. 13, Number 2, 1985, pp. 143-146.
(Manuscrit reçu le 13 août 1987.)

