
ANNALES DE L’I. H. P., SECTION B

A. ROSENTHAL
On strictly ergodic models for commuting
ergodic transformations
Annales de l’I. H. P., section B, tome 25, no 1 (1989), p. 73-92
<http://www.numdam.org/item?id=AIHPB_1989__25_1_73_0>

© Gauthier-Villars, 1989, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section B »
(http://www.elsevier.com/locate/anihpb) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPB_1989__25_1_73_0
http://www.elsevier.com/locate/anihpb
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


On strictly ergodic models for commuting ergodic
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ABSTRACT. - B. Weiss [W] proved that every ergodic Z2-action has a
strictly ergodic model. We strengthen this result in the following way: If the
Z2-action is ergodic and is generated by two commuting transformations S
and T, there exists a strictly ergodic model in which every ergodic Z-
action generated by some Si Tl is itself strictly ergodic.

Key words : Strictly ergodic model - Z2 action - Uniform partition.

RESUME. - B. Weiss [W] a demontre que toute action ergodique de Z~
possède un modele strictement ergodique. Nous renforçons ce resultat de
la façon suivante : Si l’action de Z2 est ergodique et est engendrée par
deux transformations S et T qui commutent, nous construisons un modele
strictement ergodique dans lequel toute action de Z ergodique, engendree
par une transformation S~ T’, est strictement ergodique.
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74 A. ROSENTHAL

The action of a group G by homeomorphisms of a compact metric
space Y is said to be strictly ergodic, if there is a unique Borel probability
measure À, fixed by the action and v (U) > 0 for every non empty open set
U c Y. In the case where G = Z, in 1969, R. Jewett[J] proved that every
weakly mixing invertible transformation on a Lebesgue space is measure
isomorphic to a strictly ergodic transformation and Krieger [K] proved it
for every ergodic invertible transformation in 1970. In 1983, B. Weiss [W]
extended this result to any commutative G-action. For G=Z2, B. Weiss
asked us the following: Suppose given an ergodic Z2-action, does there
exists a strictly ergodic model for this Z2-action such that every ergodic
element of this action (that generates a Z-action ergodic) is also strictly
ergodic?

In this paper, we will give a positive answer to this question.
We point out the following two remarks that motivate our work (both

of them are from B. Weiss):
Remark 1. - If G = Z and (X, T) is strictly ergodic, then for every k, if

Tk is ergodic, it is strictly ergodic. (The proof of this is easy: if v is an
. i=tC-1

invariant measure for Tk and X is the only one for T, if L T’v,
i=o

v’ is invariant for T so that v’ _ ~, and this implies that v is absolutely
continuous with respect to ~, : dv the fact that v is Tk invariant then
implies that f is Tk invariant, but Tk is ergodic so f - 1 and v = ~,.

Remark 2. - For G = Z2, the situation is not the same as for Z, in fact
B. Weiss has built (oral communication) an example of a Z2-action (with
generators S and T), strictly ergodic such that T is ergodic but not strictly
ergodic.

Acknowledgement: Not only did B. Weiss introduce us to the subject,
but he also helped us to solve many of the problems we encountered.

Let be given (Y, p, v, S, T) an ergodic Z2-action with generators S
and T. Most of this paper is devoted to a proof of the following theorem:

THEOREM 3. - If (Y, p, v, S, T) is an ergodic Z2-action and the action
of T alone is ergodic, then there exists a strictly ergodic system
(X, P, À, S, T) such that (X, P, À, T) is itself strictly ergodic and

(X, fi, À, S, T) is measure theoretically isomorphic to (Y, p, v, S, T).
The proof of this theorem will parallel Weiss’s proof for a Z~-action.

In fact, one can reconstruct his proof along ours, with obvious simplifica-
tions. In the sequel, we will suppose that the Z2-action is aperiodic. This
will enable us to use Rohlin lemma. Otherwise, for a minimal i, 

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



75COMMUTING ERGODIC MODELS

and we will indicate at the end of part III how to make our proof in that
case.

II. CONSTRUCTION OF A UNIFORM TOWER

DEFINITIONS 4. - The M-T-name of x for a partition ..., pk)
is the element of {1, 2, ..., k}M: (oci) such that for 1 - i - M. By
extension, we will also mean the sequence p«2~ ..., p«M°
A Rohlin tower F with base B is said to be of shape D if

F= U 

DEFINITION 5. - Let n and M be in N and 03B4>0. A set B in p is the
base of an (n, M, ~, T) uniform Rohlin tower F if:

(i) B n for all (i, j) in Dn-{ and F= U 
(i, J) in Dn

(ii) For every p in Cn, for almost every y in Y, if:

then:

We will suppose in the sequel that T is the action that moves points
horizontally. Informally, this definition means that for almost every y in
Y, in the M successive images of y under T one is most of the time in
horizontal level from the tower F, and every such horizontal level is seen
with almost the same frequency.
The uniform ( n, M, ~, T) Rohlin tower will play a fundamental role in

the sequel. Our first goal is to prove:

THEOREM 6. - For every no and every b > o, if M is big enough, there
exists a (no, M, ~, T) uniform Rohlin tower.
The proof of this theorem depends only on the aperiodicity of the

Z2-action, it is independent of the ergodicity of T.
In order to prove theorem 6, we will first construct a sequence of well-

nested (see definition below) ordinary Rohlin towers.
If D is in Z2 and y in Y, by Dy we will mean in the sequel:

Vol. 25, n° 1-1989.



76 A. ROSENTHAL

DEFINITION 7. - Let M and (hn)ninN be in N. A sequence of Rohlin
with base Bn so that:

Fn = U Si T j B~ is said to be M-well-nested if:

For every p, q, p  q, all y in Bp, y’ in Bq :
either

LEMMA 8. - Given M in N and (hn)n in N~ if M/hl is small enough and
decreases sufficiently rapidly with n then:

There exists a sequence of M well-nested Rohlin towers (Fn)n in N with
Fn= U SiTjBn and v (Fn) --;1 as n tends to infinity.

(i~ l) in Dhn

Proo_f. - The construction is made by induction. We will suppose M/hl
very small. The induction will give us a sequence (FI)i in N with base B" so
that Fn = U Si T’ B" satisfying:

(i, j) in + M

(i) v ~ 1

(it) For all p  q, for all y in Bp, y’ in Bq :
either

or

It is then clear that F,~ = U will satisfy the conditions of the
(I, J~ in Dhn

lemma [We replace F;, by Fn to add to ( 1) and (2) the case where p = q].
We are thus left to build the Fi by induction:

Let be a given sequence of real decreasing to 0.
Let F il ~ _ U be an ordinary Rohlin tower with

v { F 11 ~) > 1- ~ 1 /2. Let h 2 be big enough relatively to hi and let
F~2~ = U be a Rohlin tower chosen with

v ( F22~) > 1- ~2/2. Now we change Fi and Bi into F 12~, B 1~~ by erasing
from Bi all the y not satisfying (ii) (1) or (2). If was chosen small
enough, we get v ( F 1~~) > 1- ~ 1 /2 - ~ 1 ~4. This process can be done induc-
tively erasing a small portion from all the at step n to get
FI’~~. It is clear that will satisfy the required conditions and

k

this ends the proof of the lemma.
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77COMMUTING ERGODIC MODELS

Proof of Theorem 6. - Let n0 and 8 be fixed and M be such that:

6/100. We use lemma 8 to get a sequence of well-

nested towers such that F, = U S~ T~ Bj.

Let us first consider F 1 = U Sk T’ B1. In the sequel we will use
(k, I) in I3h 1

repeatedly the one to one correspondence between (k, 1) in D~~ and the
level SkTlB1 of F1. We want to define B base of an (no, M, 03B4, T) uniform
Rohlin tower. We will pave Dhl as in figure 1 by squares of shape Dno
and put in B, all the levels that correspond (by the above natural correspon-
dence) to centers of the squares that are translate of Dno (that is the levels
marked by a * on the picture). We recall that T is the action that moves
points horizontally in the tower. The paving is done by first putting the
square in the lower left corner, secondly paving all the column above it
consecutively, (we suppose that 2 hl + 1 was chosen to be a multiple of

2 no + 1 ), then in the second column, we put the square marked 2 on the
figure, that is the translate of square 1 by (2 no -~-1, 1), it is one level

upward relatively to square 1 and filling what we can of the second column
above this square 2, then 3 is one level upward and so on with cycles of
length 2 no + 1. This way in F1, except near the boundary, in a T-name
we see typically: level of F (defined by its baseB), level i + 1 and so on,
and this is what we were looking for.

Let us see, now how to go on this construction:
We want to fill F2 by towers of shape Dno. As a first approximation,

one paves Dhz by Dno- squares the same way as we did for F 1.
Let us call base of a F~column in F 2, a subset B’ of B~ (the base of

F~) such that for any (x, y) in B’, any (k, f) in Dh2 either and
or and The corresponding column is

Vol. 25, n° 1-1989.



78 A. ROSENTHAL

then U Sk TI B’. Let us fix a F1-column C in F2 with base B’. This
(k, 1) in Dh2

is a Rohlin tower with shape Dh2. In this Fi-column, by definition, some
of the levels (Sk TI B’ for (k, l) in Dh2) are entirely in F1. We can model
this by saying that in Dh2, there are translates of Dhl at some given places,
corresponding to levels in F1 ~ C.
The problem we are facing is to match the approximative paving of F~

(and thus of C) with the already existing paving of F1-towers. Through
the above model this model can be translated into a geometrical problem
in Dh2: We want to match the approximative paving of Dh2 with the
already existing one of the translates of Dhl (corresponding to levels in
F 1) that were paved in the first step.
We will first see how to localize the problem around some given image

of the Fi-tower. Because the towers are M’ well-nested, around each F1-
tower, we can find a "free zone" such that we thus obtain around each
center of F1-towers a square of size 2 h + 1 with and in
this square there are no other F1-tower. We now erase in these free zones
the paving of Dh2 we had (that is we erase all the Dno-squares intersecting
these free zones).

This way, we localize the problem:
We are now given a free zone around some F1-tower that was paved in

step 1, we want to see how to pave the free zone so as to match the
paving both with the existing paving of the F1-tower and the paving
outside the free zone. This is a geometric combinatorial problem, our goal
being to keep the uniformity property along every horizontal.

Annales de l’lnstitut Henri Poincaré - Probabilites et Statistiques



79COMMUTING ERGODIC MODELS

There are, inside the free zone, two matchings to achieve, one for the
horizontal coordinate of the squares to be in phase with the already
existing paving, the other for the vertical coordinate.

In the free zone, we put two zigzags with period 2 M, and slope
alternatively + 1 and -1, one at the bottom of the free zone, the other
above it (see Fig. 3). To be more precise, such a zigzag begins at some
point (k, f) on the left vertical boundary of the free zone and ends at
(k’, r) on the vertical right boundary of it. It is the set of points (k +p, 1+ p)
for 0 _p _ M -1, then (k + M +p, k + M -p) for (this will be
called a basic zigzag) and then in a periodic way [with period (2 M, 0)]
starting from (k + 2 M, l) another basic zigzag and so on until (k’, 1’) where
we reach the right vertical boundary of the free zone (the last basic zigzag
may not be complete). We put two such zigzags in a free zone, one
beginning at the lower left corner of it, the other at the point ( k - ( M -1 ), f)
if (k, 1) is the highest left point of the free zone.
These zigzags will play a role of boundaries. We now extend the existing

paving of F 1 "naturally", that is the paving of vertical columns is extended
by putting under it and above it translates of Dno, and for a given vertical
column, in the next column the paving is the same but moved one level
upwards. We so, extend the paving in all the vertical columns until we
reach the zigzag boundaries so that there is no square like Dno intersecting
these zigzags, and in the other direction, we stop when we reach the
vertical boundary of the free zone.

We similarly "naturally" extend the paving of Dh2 from outside the free
zone until we reach these zigzag boundaries. We thus obtain a paving of
the F1-column C. We do this successively for all the Fi-columns in F2.

Vol. 25, n° 1-1989.
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This way, it is easy to see that in a T - M-name inside F2, we usually see
level i of F then level i + 1 and so on. The only time this is not true is

when we are near the vertical boundaries of a given free zone or near the
zigzags inside it.
For the vertical boundaries, the "holes" are at most of length 4 no.

Because zigzags are of period 2M, in a T - M-name, "holes" because of
the zigzags are of length at most 8 no. It is easy to deduce that for a point
inside F2 we have [see definition 5 (ii)]:

by the choice of M. It is clear that this same construction can easily be
done inductively (because the towers are M’ well-nested) and that almost
every y will have a T - M-name inside some Ft [because 1]. This
ends the proof of Theorem 6.

III. CONSTRUCTION OF A UNIFORM PARTITION

Before proving the existence of uniform partitions, let us prove a
technical lemma; for it we will need the following definition;

DEFINITION 9. - Let k, p, h, The (k, ~~ partition of

[0, h - I ] x [©, h - I ] is the sequence of sets Pl, K1, P2, K2, ..., P~, Kl,
where:

I was chosen so that for the last set, we have [h -1- (kt + k)] _ k + p.
We will say that the P~ are p-bands and the K1 k-bands. See figure 4.
A special role will be assigned in the sequel to points (0, s) with

0  s _ h -1. We will call them points of the T-boundary. By extension,
we will say that a point x in a Rohlin tower F = U Si T’ B, with base

B is in the T-boundary of F if x = SS y for y in B and 

DEFINITION. - Let P be a partition of Y, ~ > U, k E N and p E N satisfy:
p/k  ~/ 10. If F is a Rohlin tower with base B, F = U we can

(i, j) E Dn

consider the (k, p) partition of Dn. We will say that xeY is good

Annales de l’Institut Henri Poincaré - Probabilites et Statistiques



81COMMUTING ERGODIC MODELS

(for P, ~, k, p, n) if:

(a) xEF, with be B and (ii, jl) is in a k-band Kr for
some r.

(b) If h-l] x [kr+ 1, kr+k] for every jo, so

that (0, j~) is in the T-boundary of Kr, we have:

LEMMA 10. - For every partition P, ~ > 0, kEN and pEN such that
there exists no so that ifn>no:

If F a Rohlin tower with SiTjB and the set E
(i, j) E Dn

of good points (for P, 03B4, k, p, n) satisfies: v (E) > 1-b.

Because of the mean ergodic theorem, we can choose n i so that there
exists D so that:

for any x in D and v (D) >_ 1- ~2/4 l~.
Let us consider now a tower F, F= U with v (F) >_ 1-8/4

(i, j) E Dn

and n1/n  Let us look at a sequence: x, T x, ..., x for x in

Vol. 25, n° 1-1989.
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the T-boundary. Let Ti1 x the first point in D in this sequence, we thus
have a good n1-block: Ti1 x, T~ 1 + 1 x, . _ . , T~ 1 + n 1-1 x. Starting from

we can look at the next point in D, and going on this process,
we filled part of our sequence by nl-blocks, so that if T’ x is the beginning
of such an nl-block, Tj XED and the part not filled, is by those j so that
T’ x ~ D. It is clear that if we filled this sequence in ( 1- ~/2) n of the n
spaces then:

a

Thus if (3) is not true, more than ~n/2 of the are not in D. It

clearly follows that if x is in the set H of points in a k-band (more
precisely is in B and (i, j) is in a k-band) that are not good,
at least ~n/2 images of x under T in the k-band are not in D. We point
out the fact that for a given x in some k-band (with the same meaning as
above) Kr, either x and all its images in the k-band (see above) are good
or they all are not good, by definition. Thus:

From the choice of p and and using the fact that the points not in
k-bands have a measure smaller than ~/2, we conclude that v (E) >_ 1- ~.
This ends our proof.

DEFINITION. - Let P be a partition, p~, ... , For DcZ2,
y E Y, the D - P-name of y is the sequence 2, ..., such
that for any d E D, d = (i, j), S~ T’ x E pid (x).

DEFINITION. - A partition P is said to be T-uniform if:
For avery nEN, for every s > o, there exists Nn E N such that for almost

every y in Y:
For any atom in v Sk TI P:

(k, I) E Dn

If (4) is true for a fixed n and for almost every y in Y, we will say that P
is (Nn, E, n) good.

THEOREM 1 l. - For every partition P, and every S > o, there exists P
T -uniform such that: d ( P, P)  ~.

+00

Proof. - We first fix a sequence (En)neN, such that L and we
n-o

will build P as a limit of a sequence of partition Pn such that P=Po and
We will build the Pn by induction.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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step 1. - Let us apply Lemma 10, for the partition P, b = E 1 /3, k =1,
p=O (so that there is no p-band) to find a tower Ti "good" for that
lemma and so that T 1 is (ni, M 1, ~ 1, T) uniform with ~ 1 _ E 1 /3 and
n1/M1~ £1/3.
A base of a column of T 1 for the partition P is a set of points in Bi

(base of that have the same Dnl - P-name. Because of Lemma 10,
most of the horizontal levels in those columns are good (up to E1/3) for
the ergodic theorem. In such a column, if some horizontal level is not

good, we replace the P-name on this level, by the P-name of some good
horizontal level (we fix such a good level for all the changes). Doing this
for all the columns in we change P into Pi so that d (P, Pi) __ E1/3
and now every horizontal level in Ti is "good" for Pi. Because of the
uniform properties of Ti, for almost every y in Y, in the T - Pi-name of
y of length Mi, we are at least ( 1- E ~ /3) M 1 times in those "good horizontal
levels" of Ti. It is then easy to conclude that Pi is (Mi, 81, 1) good.

Step 2. - We now choose k2 with: 6 M 1 /k 2 _ b/ 10 with 03B4 = ~2/3 and we
apply lemma 10 with:
P= v STP1, 8=82/3, k = k2 and p = 6 M1 to find a tower T2 that

~i~ j) e D2

is (n2, M2, S~) uniform with ~2 _ E2/3 (from now on we omit the argument
T, according to definition 5, T is (n2, M2, ~~, T) uniform). Letp2=6M1.
Together with the tower, there is a (k2, p2) partition of D"2.

Let us focus now on a P2-band.

On these bands, we place 2 zigzags like the one we draw on the picture,
the period of which is 2 M1 (the lines are alternatively with slope + 1 and
-1), one at the bottom of the p2-band, the other one at the top of it. Let
us call k ~ -p2 zigzag band, a k2-band to which we added 2 zigzags, one
is the bottom zigzag in the p2-band above it, the other is the top zigzag
in the p2-band under it.

Vol. 25, n° 1-1989.
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Let us first consider a fixed Ti v PI column C with base B’ [T1 being
identified with the partition (Ti, in the tower T2. We first delete from
T 1, all the towers "like T 1" in C that intersects S~ Tl B’ for ( k, l) in the
boundary of a k 2 - p2 zigzag-band [that is ( k, l) is either in one of the 2
zigzags or in the vertical boundaries of the k 2 -p~, zigzag-band]. We change
then, the P1-name in those "deleted towers" and give to the points in it
their original P-name. Because of Lemma 10, all the x in C, except a set
of measure (for all the columns), are in a level Sk T1 B’, for (k, ~ in a
k2-band and are good. If some x in C is in a k2-band but is not good, by
definition, all the images of x in this k2-band are not good and we replace
the (PI v of x in the entire k2 - P2 zigzag band, x belongs to,
by the v TB)-name of some y in a good k2-band, such that all the

points in the k2-band are now good. Doing so, we change T1. Having
done this in all the Pi v T1-column we obtain P2 with d(Pi, Pz) _ E2/2
and T(2)1. The Dn1 2014 P2-names of points in B(2)1 (base of T(2)1) are

of points in Bi. This crucial fact comes from our construc-
tion : we erased towers that were on the boundaries of k 2 - p2 zigzag-
bands.

It is now easy to see that, because of the T-uniform property of T2:
For almost every y in Y, if we look at the T - v SiTjp2 name of y

(i, D2

of length M2, because of property (ii) in definition 5 of T2, we are
( 1- E~/3) M2 times in k2-bands of T2. All these k2-bands are good so that

Annales de l’Institut Henri Poincaré - Probabilites et Statistiques
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this name is "(~2, 2)-good" for P. For almost every y in Y, the T-P2-
name of y length Mi is still "(2 E1, 1)" good for P2 because the only
change we made in the property of such a name, going from Pi to P 2 is
that we may have erased at most 2 Ti-towers (that were on the boundary
of some k 2 - p 2 zigzag-band) and because Another change,
but we will absorb it in the other errors, is the difference in the measure
of atoms of Pi and P2.

Step q. - By induction, we have:

(a) a sequence (T~)1  i  q -1, : 1 s_~  q -1 of (ni, Mi, Ei/3) uniform towers,
and in N.

(b) a partition Pq -1 that is (Mi, 2 Ei, i) good for i - q - 2 and

Eq- i, q - I) good.
(c) in fact is (Mi, 2 Ei, i) good because at step i for almost every y

in Y, the Mi- T-name of y is at least ( 1- Ei/3) Mi times in good ki-bands
that are in Ti (see step 2) and in further stepsj>i, when obtaining PJ, the
Mi - T-name of y (for Pj) has almost the same property as the Mi - T-
name of y (for Pi) except that we may have erased at most 2 Ti-towers
(see again step 2) because they were on the boundary of zigzag-bands
from some tower T l : i  l  j, for a given 1. The fact that 1 is unique is
fondamental and (c) is made clearer in our construction below.

Let us construct Pq: .

Choose kq much bigger than sup Mi so that we can apply lemma 10

with :

to find a tower Tq that is (nq, Mq, ~~) uniform with ~~  sq/3. Together
with this tower we have the partition, for As in

step 2, we construct kq-pq zigzag-bands.
We first consider a given v Pi v T~= 1 column in the tower Tq, where

isq-1

the partition is in fact We will delete from the

part that intersects or is at most 2 Mq _ 2 apart from the boundary of some
kq-pq zigzag-band (see step 2). In the following construction, we want to
keep our uniform properties from prior steps. To do so, we have to be
sure that property (c) of the induction remains true. For that, we will do
the following (by "picture" of the given column, we will mean a picture
of Dnq covered in some part by squares the places of these
squares corresponding to Tq-1j-towers in the given column): We give to
the parts we delete their previous Pq-2-name. Now, by erasing Tq-l-
towers, we may see again in the picture, towers like f or j -_ q - 2 that
were erased at step q -1. We now consider Tq_2-towers, both the ones
existing before and the ones that "came back" above.
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We erase from them all the 2-towers that are at most 2Mq-3-apart
from the boundary of a zigzag-band. We give to the part we delete
its previous Pq-3-name. We thus, may see again in our picture towers
like Tj-3 f or j  q - 3 that were erased at step q - 2. We go on until we
look at the T1-towers in our picture after all this process of "putting on
and off towers" and erase these towers that intersect the boundary of a

zigzag-band. We give to the deleted part its previous P-name. We
do this for all the columns. Now as in step 2, of the x in kq-bands
are good.

If some x in a kq-band is not good, we replace its (or more
precisely its being the partition that we obtained above
after the above deletion and rebirth process) in the kq-pq zigzag-band by
one so that the names in the kq-band are now good.
We thus obtain Pq with Pq)Eq.
As in step 2, it is easy to see that P~ is ( Mq, e~, q) good. Let us check

that we can go on the induction:
Let us fix j  q and y in Y. The Mj-name of y, for PJ, was ( 1- EJ/3)

times in good k rbands. Suppose we made some change in this property.
This means that we are at most 2Mj-1, apart from the boundary of a

zigzag-band (in a tower Tl, for l ~ j). Let us suppose, now, that we
made another change because we were closer than from the

boundary of a zigzag-band (in a tower T), 

This would mean that some part of a tower T’~ would be closer than
from the boundary of zigzag-band

of Tn. This cannot be, by construction. Thus, if we "erased" towers, this
happens at most twice in some T -~-~ M~,-name and this proves that the

+ 00

induction can be pursued. Now, because £ e;  + oo, if the ki were chosen

so that £ +00, for almost every y in Y and any i, because
i=O

of the Borel-Cantelli lemma, there is an index j so that we do not change
the labelling of the T- M=-naxne of y after step j. This proves then, that
the limiting P is (M~, ~ E~, x) good for any i and finishes our proof.

COROLLARY 12. - 7here exists a sequence ~~ c Q~ c ... c ~ c ...
such that v Qn = p (the entire 03C3-algebra) and the Qn are all T -uniform.

n e N
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Proof - Let Q1 c Q2 ... c Q" ... be a sequence of partitions such
+00

that v Q,=p. Let (Ei)i in N be given with L Ei  + 00. Using step 1 of
neN t=l

Theorem 11, we can find such that d(Qi, and is

(M1, 61’ 1) good for some Mi.
We can replace Q2 by Q2 v to have c Q2. Using now step 2 of

Theorem 11 we find Q22~ such that d (Q2,  E2 and Q22~ is {M2, E2, 2)
good. Furthermore, because Q2, to every atom of Q2 is correspond-
ing an atom of and every atom of is a union of atoms of Q2.
Now using this correspondence Q22~ defines Q12~ so that Q12~ (For
instance if the first atom of was the union of the second and fourth

atom of Q2, the first atom of Q12~ will be the union of the second and
fourth atom of Q22~ . Q12~ satisfies:

is ( M 2, E2, 2) good as well as (M1, 2 81, 1) good ( see step 2 of Theorem 11).
Continuing this process inductively gives us at step n:

Q~n -1 ))  En and is ( Mk, Z Ek, k) good
for and is En, n) good Now defining,
Q~= lim Q~n), as in Theorem 1 l, we prove that Q~ is T-unif orm

n -~ + ~o

Sketch of the proof in the non aperiodic case. - In the non aperiodic
case it is easy to see that, by if necessary changing the generators of the
action, we can suppose that (o, r) being the generators. Then if
we have a uniquely ergodic action for (c, r), it has to be uniquely ergodic
for any (if the action of is ergodic). This comes as in Remark 1
(see introduction) considering v such that and

v’ is invariant under c and i and the rest of the proof is similar to that of
Remark 1.
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IV. PROOF OF THEOREM 3

This part is completely due to G. Hansel and J. P. Raoult [H-R], it is
just a translation of Corollary 12:

If Pl =(pl, p2, ...,~a) is T-uniform, one can associate to it

SZ ( P1 ) c ~ 1, 2, ..., a ~ Z , with the shifts Si, T 1 and a measure given by
the measure of the cylinder sets in Pi. It is clear that Pi T-uniform is
equivalent to {SZ (Pl), Si, T1) uniquely ergodic and also the action of T1
alone is uniquely ergodic, with unique invariant measure Because of

Corollary 12 we can construct, this way:

~- {~ (Q2)~ ’-~2, T2,Å2)... ~- t~ {‘.Crt+ 1~~ Sn+ 1~ 

The x; being the projections coming from being the

invariant measure of Qi.
We also have:

Let us consider the inverse limit of this diagram S~~ _ ~ (xn)" E N;
and This S~~ is compact. Let ~, be an ergodic

invariant measure for the transformation T : (xn) -~ (Tn It is clear that

projecting À on the first n components of that this projection must
be Àn. Because of the definition of the topology of this shows that X
is unique and finally shows that (Q~, T) is uniquely ergodic. The fact
that v Qi = p implies that if, p is the Borel c-algebra and S is:

i e N

(xn) ~ (Sn xn), (~~, ~, ~i,, S, T) is isomorphic to (Y, p, v, S, T) and this
ends the proof of Theorem 3.

V. GENERALIZATION OF THEOREM 3

THEOREM 13. - Let (X, p, S, T) an ergodic Z2-action, there exists a

strictly ergodic model for this action that satisfies:
For any (i, j) such that the Z-action generated by SiTj on X is ergodic,

the Z-action generated by the transformation corresponding to S‘ T’ in the
model, is strictly ergodic.

Remark. - We will suppose that the action is aperiodic, otherwise, see
above, the proof is trivial.

Proof - Let (J is finite or countable) be a sequence of all the
ergodic Z-actions of the Z2-action. We will first prove the theorem in the
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special case where J I = 2, Si == T, S2 = S:
The proof of theorem 3 can easily be adapted to this case. Theorem 6

remains unchanged. The uniformity for both S and T is obtained, as in
Theorem 11 apart from the fact that the proof is done step by step, one
step of the induction being to improve the uniformity for S, the next step
being then, to improve the uniformity with respect to T. The only real
difference is that a zigzag-band for S (or for T) has both an horizontal
and vertical boundary that are zigzags (see Fig.).
Now for the general case:
Let us see, given a list for i E J, of ergodic Z-actions, how

to adapt the proof of Theorem 11 to get from P, a partition P, close to P
and so that P is uniform for every Si, i E J. Doing afterwards, the same
kind of proof as in Corollary 12 finishes then, the proof of theorem 13.
The proof is, as usual, done by induction. Suppose J = N. The first step
uses Si-uniform towers Gi (we will indicate how to obtain them below),
we get from Po = P, a new partition Pi that is good (we will also indicate
below what this means) in Gi for Pi and Si. Then, the same way as in
theorem 11, we find Mi so that for Si, Pi is (M1, Si, 1) good.

In step 2, we construct P2 such that: P2 is (M1, 2ei, 1) and (M~, E2, 2)
good for Si.

In step 3, we construct P3 such that: P3 is (M1, 2 81, 1) and (M~, 2 c2, 2)
good for Si and P3 is also (M3’ E3, 3) good for S2.
We can then, in the same way, go on the induction and obtain P.
We have to make two things precise:
(a) How to build Si-uniform towers (and what does Si-uniform tower

mean).
(b) What does it mean that Pi is good for the tower Gi and the action

S1. We will first explain (b), because this will indicate the property we
need in (a). By (b), we will mean as in the proof of Theorem 11: Suppose
that we have a Rohlin tower Gi, whose shape is a rectangle, suppose also
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that we are given a k -p partition in the following sense (see Fig. ) :
Except the two bands on the corner, C1 and C2, that are a very small

portion of the tower, we divide the points of the lattice corresponding to
the tower into successive k1-bands and pi-bands. The direction of these
bands is parallel to S i, and in each band we include the points of the
lattice that belongs to it.
We also want that in a k1-band, if we look at the orbit of a point under

Si, we stay longer than a given ni in this band (ni is choosen to enable
us to apply the ergodic theorem to Si in those bands). Now Pi-good for
S i and this partition of Gi, means as before:

All the Si-names for Pi along a ki-band are good for the ergodic
theorem (for the atoms of Pi). In the transition from Po to Pi (or from
Pn to P~+i), we have to change entire "zigzag-bands". If 

suppose at step n:

I = Max I ik I, In = Max Ijk I. Our zigzag-bands have thus, zigzags with
kn k_n

slope bigger than Max (2 In, 2 J,~ = Km that is a zigzag-band looks like see
figure 10:
The period of these zigzags being bigger than Mn _ 1. The slope of these

zigzags will ensure that we can do the induction:
If Pn-l was (Mi, ~~, i) good for the action Sk, Pn will remain good

because in a name of length Mi (i  n -1) for Sk, we see at most twice,
towers near the boundary of a zigzag.
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Now, to ensure that Pi is (M1, 81, 1) good for S 1, we have to obtain
our towers in such a way that:
For almost every y in Y, if we look at a Pi-name of length Mi, for the

action of Si, we are most of the time in ki-bands. In the general case,
this is what we meant before by a Si-uniform tower. Let us see now, how
to obtain them, that is, we will explain what are the modifications necessary
in the proof of Theorem 6 to obtain these towers:

In the proof of Theorem 6, in the first step, we paved Dhl by squares
like Dno. Now, we will pave Dhl by rectangles (thus the uniform Rohlin
towers will have a rectangular shape, we suppose Every
column in the paving will now look the same (there is no moving upwards
of the "next" column as in the case where 81 =T, see Fig. 1). The width p
and the length q of the rectangle will be chosen to be prime together and
both of them are prime with respect to io and to jo, if Now,
inside F1, we can look at the orbit of a point x under Si. x is in some
position in one of the rectangles. For S i x to be in the same position in
another rectangle we have to have: For the horizontal coordinate: io k =pk’
for some k’, so that k is a multiple of p, the same way, k is a multiple of
q so that the minimal k is k = pq. This way the pq images of x under S i:

for j __ pq are going through all the levels in the rectangle and this
exactly once. We are thus in a similar situation as in Theorem 6, for

step 1. To go then from the paving of Fi to one of F2, we simply pave
F2, by little rectangles as we did in step 1 and remove the ones that
intersect Fi (we do this successively for all the different Fi-column in F2).
It is easy to see (because that the uniform properties can
be obtained this way.
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This ends the proof of Theorem 13.
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