@article{AIHPB_1988__24_3_319_0, author = {Nappo, G. and Orlandi, E.}, title = {Limit laws for a coagulation model of interacting random particles}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {319--344}, publisher = {Gauthier-Villars}, volume = {24}, number = {3}, year = {1988}, mrnumber = {971097}, zbl = {0655.60106}, language = {en}, url = {http://www.numdam.org/item/AIHPB_1988__24_3_319_0/} }
TY - JOUR AU - Nappo, G. AU - Orlandi, E. TI - Limit laws for a coagulation model of interacting random particles JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1988 SP - 319 EP - 344 VL - 24 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPB_1988__24_3_319_0/ LA - en ID - AIHPB_1988__24_3_319_0 ER -
%0 Journal Article %A Nappo, G. %A Orlandi, E. %T Limit laws for a coagulation model of interacting random particles %J Annales de l'I.H.P. Probabilités et statistiques %D 1988 %P 319-344 %V 24 %N 3 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPB_1988__24_3_319_0/ %G en %F AIHPB_1988__24_3_319_0
Nappo, G.; Orlandi, E. Limit laws for a coagulation model of interacting random particles. Annales de l'I.H.P. Probabilités et statistiques, Tome 24 (1988) no. 3, pp. 319-344. http://www.numdam.org/item/AIHPB_1988__24_3_319_0/
[1] Sobolev Spaces, Academic Press, 1975. | MR | Zbl
,[2] École d'Été de Probabilités de Saint-Flour XIII, 1983, Lectures Notes, No. 1117, Springer Verlag, 1985.
, and ,[3] The Vlasov Dynamics and its Fluctuations in the Limit of Interacting Classical Particles, Comm. Math. Phys., Vol. 56, 1977, pp. 101-117. | MR | Zbl
and ,[4] Propagation of Chaos for Burgers' Equation, Ann. Inst. Henri Poincaré, sect. A, Phys. theor., Vol. XXXIX, No. 1, 1983, pp. 85-97. | EuDML | Numdam | MR | Zbl
and ,[5] Critical Dynamics and Fluctuations for a Mean Field Model of Cooperative Behaviour, J. of Soc. Physic., Vol. 31, No. 1, 1983, pp. 29-85. | MR
,[6] Vlasov Equations, Fund. Anal. and Applied, 1979, pp. 13-115. | MR | Zbl
,[7] Markov Processes: Characterization and Convergence (to appear). | MR
and ,[8] Generalized Orstein-Uhlenbeck Processes and Infinite Particle branching Brownian Motions, Publ. Res. Inst. Math. Sc. Kyoto, Vol. 14, 1979, pp. 741-788. | MR | Zbl
and ,[9] Weak Convergence of Sequences of Semimartingales with Applications to Multiple Branching Processes, Univ. de Montréal, rapport interne, 1982.
and ,[10] Foundations of Kinetic Theory, Proceedings of 3rd Berkley Simposium on Math. Stat. and Prob., Vol. 3, 1956, pp. 171-179. | MR | Zbl
,[11] Aspects of the Boltzmann Equation, Acta Phys. Austrica, suppl. X, Springer Verlag, 1973, pp. 379-400.
,[12] Smoluchovski's Theory of Coagulations in Colloids Holds Rigorously in the Boltzmann-Grad Limit, Z. W. V.G., Vol. 54, 1980, pp. 227-280. | MR | Zbl
and ,[13] Thèse 3e Cycle, Univ. Paris-XI, 1984.
,[14] Propagation of Chaos for a Class of Non Linear Parabolic Equations, Lecture series in Diff. Eq. Catholic Univ., 1967, pp. 41-57. | MR
,[15] A Class of Markov Processes Associated with Non Linear Parabolic Equations, Proc. Nat. Acad. Sci., Vol. 56, 1966, pp. 1907-1911. | MR | Zbl
,[16] Convergence faible et principe d'invariance pour des martingales à valeurs dans des espaces de Sobolev, Ann. Inst. H. Poincaré, Prob. et Stat., Vol. 20, No. 4, 1984, pp. 329-348. | Numdam | MR | Zbl
,[17] Quelques problèmes liés aux systèmes infinis de particules et leurs limites, Centre Math. Appl., École Polytechnique, 91128 Palaiseau Cedex, 1984.
,[18] Tightness of Probabilities on C([0, 1]; S') and D([0, 1]; S'), Ann. Prob., Vol. 11, 1983, pp. 989-999. | MR | Zbl
,[19] A Martingale Approach to the Law of Large Numbers for Weakly Interacting Stochastic Processes, Ann. Prob., Vol. 12, 1984, pp. 458-479. | MR | Zbl
,[20] A Law of Large Numbers for Moderately Interacting Diffusion Processes, Z.W.v.G., Vol. 69, 1985, pp. 279-322. | MR | Zbl
,[21] Non Linear Reflecting Diffusion Process and the Propagation of Chaos and Fluctuations Associated, J. Funct. Anal., Vol. 56, 1984, pp. 311-336. | Zbl
,[22] Équations de type Boltzmann spatialement homogènes, Z.W.v.G., Vol. 66, 1984, pp. 559-592. | MR | Zbl
,[23] Propagation of Chaos for a System of Annihilating Brownian Spheres, Comm. Pure Appl. Math., Vol. 40, 1987, pp. 663-690 | MR | Zbl
,