DÃO QUANG TUYÊN

On the asymptotic behaviour of sequences of random variables and of their previsible compensators

Annales de l'I. H. P., section B, tome 17, nº 1 (1981), p. 63-73 http://www.numdam.org/item?id=AIHPB 1981 17 1 63 0>

© Gauthier-Villars, 1981, tous droits réservés.

L'accès aux archives de la revue « Annales de l'I. H. P., section B » (http://www.elsevier.com/locate/anihpb) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On the asymptotic behaviour of sequences of random variables and of their previsible compensators

by

DÃO QUANG TUYÊN Institut de mathématiques, 208 D Dòi Can, Hanoi, Vietnam

INTRODUCTION

This paper is divided into two parts: the first part deals with the comparison or the sets of convergence of two sequences (V_n) and (h_n) of random variables adapted to an increasing family of σ -fields (\mathcal{F}_n) and satisfying the inequality $E(V_{n+1}/\mathcal{F}_n) \leq V_n + h_n$. One of the corollaries of our main theorem of this part is a generalisation of a result of Robbins and Siegmund [8]. The second part deals with C-sequences, i. e. sequences of random variables whose previsible predictor do not oscillate. We give a number of conditions for the convergence of such sequences, conditions which include the classical supermartingale convergence theorems. We end by giving simple examples of amarts which are not C-sequences and of C-sequences which are not amarts.

It is known that the convergence theorem for L_1 -bounded asymptotic martingales cannot be generalized to the cases of infinite dimensional Banach space valued variables (see [2] (a) and (b)). We hope that our theorem 4 can be generalized in such directions.

NOTATIONS AND CONVENTIONS. — In this paper, (Ω, \mathcal{F}, P) is a fixed probability space, $(\mathcal{F}_n)_{n \ge 1}$ is a fixed family of increasing σ -algebras contained in \mathcal{F} . A sequence (X_n) of random variables will be said to be *adapted* if

for each n, X_n is \mathscr{F}_n -measurable. Unless otherwise stated, convergence means almost sure (a. s.) convergence to *finite* valued random variables. If \mathscr{P} is a property, $\{\mathscr{P}\}$ will denote the set

$$\{\omega: \omega \in \Omega, \quad \omega \text{ verifies } \mathcal{P}\}.$$

↑ (resp. ↓) indicates « increasing » (resp. decreasing) to. For $A \in \mathscr{F}$, 1_A will denote the characteristic function of A. Finally \mathbb{R} will denote the extended real line.

I. SOME RESULTS ON THE CONVERGENCE OF SEQUENCES OF RANDOM VARIABLES

THEOREM 1. — Let $(h_n)_{n \ge 1}$ and $(V_n)_{n \ge 1}$ be two adapted sequences of real random variables such that

1) for every *n*, V_n and h_n are integrable and $E(V_{n+1}/\mathscr{F}_n) \leq V_n + h_n$ 2) $\sup_n E\left[\left(V_n - \sum_{j=1}^{n-1} h_j\right)^{-1}\right] < \infty.$

Then the set on which (V_n) convergences is almost surely equal to the set on which Σh_n convergences.

Proof. — Setting $b_n = \sum_{j=1}^{n} h_j$, $W_n = V_n - b_{n-1}$, it is easily seen that

 $(W_n)_{n \ge 2}$ is a supermartingale. The condition 2) then implies that (W_n) convergences a. s. [6]. The statement of the theorem then follows immediately.

THEOREM 2. — Let $(h_n)_{n \ge 1}$ and $(V_n)_{n \ge 1}$ be two adapted sequences of real random variables such that

- 1) For every *n*, h_n and V_n are integrable and $V_n \ge 0$ a. s.
- 2) $E(V_{n+1}/\mathscr{F}_n) \leq V_n + h_n$.

Set $\mathbf{B} = \left\{ \omega : \sup_{n} \sum_{1}^{n} h_{n}(\omega) < \infty \right\}.$

Then on B, the set on which (V_n) converges is a. s. equal to the set on which Σh_i convergences.

Annales de l'Institut Henri Poincaré-Section B

Proof. — Setting again $b_n = \sum_{i=1}^n h_i$, $1_n^a = 1_n \sup_{\substack{i \leq a \\ i \leq a \\ i \leq a}}$ we obtain since (1_n^a) is

decreasing for all a:

$$i) \quad \mathbf{E}(\mathbf{V}_{n+1}\mathbf{1}_{n+1}^{a}/\mathscr{F}_{n}) \leq \mathbf{E}(\mathbf{V}_{n+1}\mathbf{1}_{n}^{a}/\mathscr{F}_{n}) \leq (\mathbf{V}_{n}+h_{n})\mathbf{1}_{n}^{a}$$
$$ii) \quad \sum_{1}^{n} h_{j}(\omega)\mathbf{1}_{j}^{a}(\omega) = \sum_{1}^{k(\omega)} h_{j}(\omega) = \left(\sum_{1}^{k(\omega)} h_{j}(\omega)\right)\mathbf{1}_{k(\omega)}^{a} = b_{k(\omega)}\mathbf{1}_{k(\omega)}^{a}$$

where

$$k(\omega) = \sup \left\{ i \leq n : 1_i^a(\omega) = 1 \right\}.$$

Therefore, since $V_n \ge 0$,

$$\sup_{n} \mathbb{E}\left[\left(\mathbf{V}_{n}\mathbf{1}_{n}^{a} - \sum_{1}^{n-1} h_{j}\mathbf{1}_{n}^{a}\right)^{-}\right] \leq \sup_{n} \mathbb{E}\left[\left(\sum_{1}^{n-1} h_{j}\mathbf{1}_{j}^{a}\right)^{-}\right] < a$$

and theorem 1, applied to the sequences $(V_n 1_n^a)$ and $(h_n 1_n^a)$, allows us to state that:

 $\{ (V_n 1_n^a) \text{ convergences} \} = \{ \Sigma h_n 1_n^a \text{ converges} \}, \text{ and therefore using the} \}$ definition of 1_n^a

$$\bigcap_{1}^{\infty} \{ b_n < a \} \cap \{ \mathbf{V}_n \mathbf{1}_n^a \text{ converges } \} = \bigcap_{1}^{\infty} \{ b_n < a \} \cap \{ \Sigma h_n \mathbf{1}_n^a \text{ converges } \}$$

and the theorem follows by letting a go to $+\infty$.

We now give a few corollaries to theorems 1 and 2.

COROLLARY I.1. — Let (h_n) , (V_n) be as in theorem 1. Let (g_n) be an adapted sequences of strictly positive random variables such that:

1)
$$\mathbb{E}[V_{n+1}/\mathscr{F}_n] \leq g_n V_n + h_n \text{ for all } n$$

2) $\sup_n \mathbb{E}\left[\left(a_{n-1}V_n - \sum_{j=1}^{n-1} h_j a_j\right)^{-j}\right] < \infty$, where $a_n = \frac{1}{\prod_{j=1}^{n} g_j}$
then

Then

$$\left\{ \left(\frac{1}{a_n}\right) \text{ converges} \right\} \cap \left\{ (\mathbf{V}_n) \text{ converges} \right\}$$
$$\stackrel{\text{a.s.}}{=} \left\{ \left(\frac{1}{a_n}\right) \text{ converges} \right\} \cap \left\{ \left(\frac{1}{a_n}\sum_{j=1}^n a_j h_j\right) \text{ converges} \right\}$$

Vol. XVII, nº 1-1981.

Moreover on the set $\left\{\frac{1}{a_n} \rightarrow 0\right\}$, the sequence

$$\left(\mathbf{V}_n - \frac{1}{a_{n-1}}\sum_{j=1}^{n-1}h_ja_j\right) \to 0$$
 a.s.

Proof. — Apply theorem 1 to the sequences $(V'_n = a_{n-1}V_n)$, $(h'_n = a_nh_n)$.

COROLLARY I.2. — Let (X_n) be an adapted sequence of real integrable random variables. If

1) $\sup_{n} E(X_{n}^{-}) < \infty$ 2) $\sup_{n} E\left(\left[\sum_{j=1}^{n} E(X_{j+1}/\mathscr{F}_{j}) - X_{j}\right)\right]^{+} < \infty$

then $\sum X_n$ converges a. s. if and only if $\sum E(X_{n+1}/\mathscr{F}_n)$ converges a. s.

Proof. — Apply theorem 1 by setting
$$V_n = \sum_{1}^{n} X_j$$
, $h_n = E(X_{n+1}/\mathscr{F}_n)$.

COROLLARY I.3. — Let (X_n) be as in corollary I.2. Let (a_n) be a sequence of real numbers tending to ∞ . Then:

$$\left|\frac{1}{a_n}\sum_{1}^{n} \mathbf{X}_i - \frac{1}{a_n}\sum_{1}^{n} \mathbf{E}(\mathbf{X}_{i+1}/\mathscr{F}_i)\right| \to 0 \qquad \text{a. s}$$

In particular, secting $a_n = n$, (X_n) verifies the law of large numbers if and only if the sequence $(E(X_{n+1}/\mathcal{F}_n))$ does.

Proof. — Set
$$V_n = \frac{1}{a_n} \sum_{i=1}^n X_i$$
, $h_n = E(X_{n+1}/\mathcal{F}_n)$, $g_n = \frac{a_n}{a_{n+1}}$ and apply

corollary 1.1.

The following generalises slightly a result of Robbins and Siegmund.

COROLLARY I.4. — Let $(V_n)(\xi_n)(g_n)$ be adapted sequences. We suppose $V_n \ge 0$, $\xi_n \ge 0$, $\eta_n \ge 0$, $g_n > 0$ and that

$$\mathbb{E}\left[\mathbf{V}_{n+1}/\mathscr{F}_n\right] \leq g_n \mathbf{V}_n + \xi_n - \eta_n$$

Annales de l'Institut Henri Poincaré-Section B

Then the sequences (V_n) and $\left(\sum_{j=1}^n \eta_j\right)$ converge almost surely on the set

$$\mathbf{B} = \left\{ 0 < \lim_{n} \prod_{j=1}^{n} g_{j} < \infty \right\} \cap \left\{ \sum_{j=1}^{\infty} \xi_{i} < \infty \right\}.$$

Proof. — Setting

$$V'_{n} = \frac{V_{n}}{\prod_{1}^{n-1}}, \qquad \xi'_{n} = \frac{\xi_{n}}{\prod_{1}^{n}}, \qquad \eta'_{n} = \frac{\eta_{n}}{\prod_{1}^{n}}g_{j}$$

we see that

$$\mathbf{E}\left[\mathbf{V}_{n+1}^{\prime}/\mathscr{F}_{n}\right] \leq \mathbf{V}_{n}^{\prime} + \xi_{n}^{\prime} - \eta_{n}^{\prime} \leq \mathbf{V}_{n}^{\prime} + \xi_{n}^{\prime}$$

Moreover, on B, the sequences (V_n) and (V'_n) (resp. $\sum_{1}^{n} \xi_k$ and $\sum_{1}^{n} \xi'_k$, resp. $\sum_{1}^{n} \eta_k$ and $\sum_{1}^{n} \eta'_k$) have the same set of convergence.

Theorem 2 applied to the sequences (V'_n) and (ξ'_n) implies that (V_n) converges almost surely on B. Set

$$\mathbf{A} = \left\{ \sup_{n} \sum_{1}^{n} (\xi'_{k} - \eta'_{k}) < \infty \right\}.$$

On A, (V'_n) and $\Sigma(\xi'_k - \eta'_k)$ have the same set of convergence, by theorem 2. Since on B, the series $\Sigma(\xi'_k - \eta'_k)$ converges if and only if $\Sigma \eta_k$ does, the corollary follows.

II. C-SEQUENCES

Before defining C-sequences, we prove a « Doob decomposition theorem ».

THEOREM 3. — Let (V_n) be an adapted sequence of integrable random variables. Then there exists sequences (M_n) , (\tilde{V}_n) of random variables such that

V_n = M_n + V_n
 V₁ = 0 and V_n is F_{n-1}-measurable for every n ≥ 2
 M_n is an F_n-martingale.

This decomposition is unique.

Proof. — Setting $M_1 = V_1$,

$$\begin{split} \mathbf{M}_n &= \left(\mathbf{V}_n - \sum_{1}^{n-1} \left[\mathbf{E}(\mathbf{V}_{k+1} / \mathscr{F}_k) - \mathbf{V}_k \right] \right) \\ & \tilde{\mathbf{V}}_n = \sum_{1}^{n-1} \left[\mathbf{E}(\mathbf{V}_{k+1} / \mathscr{F}_k) - \mathbf{V}_k \right] \quad \text{for } n \geq 2 \end{split}$$

we get the desired decomposition. To prove uniqueness, we note that if $V_n = M'_n + B_n$ is another decomposition verifying 1), 2) and 3), we have

$$\sum_{1}^{n-1} \left[E(V_{k+1}/\mathscr{F}_k) - V_k \right] = \sum_{1}^{n-1} \left[M'_k + B_{k+1} - M'_k - B_k \right] = B_n - B_1 = B_n$$
Thus $B_n = \widetilde{V}$ are left of $n \ge 2$.

Thus $B = \tilde{V}$ and the uniqueness is proved.

The following terminology and notation is standard.

DEFINITION. — If (V_n) is a sequence verifying the hypotheses of theorem 3, (\tilde{V}^n) will denote the sequence defined by $\tilde{V}_1 = 0$,

$$\widetilde{\mathbf{V}}_n = \sum_{1}^{n-1} \left(\mathbf{E}(\mathbf{V}_{k+1} \mid \mathscr{F}_k) - \mathbf{V}_k) \quad \text{for } n \ge 2 ; \right)$$

 (\tilde{V}_n) is called the *previsible compensator* of (V_n) .

DEFINITION. — An adapted sequence of random variables (X_n) is called a *C*-sequence if the V_n 's are integrable and if the sequence (\tilde{V}_n) converges in \mathbb{R} . It is called a *strict* C-sequence if (\tilde{V}_n) converges in \mathbb{R} .

Martingales, submartingales, supermartingales, quasi-martingales are C-sequences. Adapted sequences (V_n) satisfying

$$\sum_1^\infty | E(V_{n+1}/\mathscr{F}_n) - V_n | < \infty \qquad \text{a. s.}$$

are C-sequences but the converse is not true as is seen by the following example.

Let (X_n) be a sequence of independent identically distributed random

Annales de l'Institut Henri Poincaré-Section B

68

variables with $E(X_n) = 0$, $0 < E(X_n^2) < \infty$. Then putting $V_n = \frac{X_n}{n}$ it is easy to see that (V_n) a C-sequence but that

$$\sum_{1}^{\infty} |E(V_{n+1}/\mathscr{F}_n) - V_n| = \sum_{1}^{\infty} \frac{|X_n|}{n} = \infty \qquad \text{a.s}$$

THEOREM 4. — Let (V_n) be an adapted sequence of integrable random variables such that

- 1) $\sup E(V_n^-) < \infty$
- 2) $\sup E(\widetilde{V}_n^+) < \infty$

Then (V_n) converges almost surely if and only if it is a C-sequence.

Proof. — Write $V_n = M_n + \tilde{V}_n$ where (M_n) is a martingale (cf. theorem 3). If (V_n) converges a. s., $\sup_n E(M_n^-) \leq \sup_n E(\tilde{V}_n^+) + \sup_n E(V_n^-) < \infty$ which implies that (M_n) converges a. s. The same is then true for (\tilde{V}_n) . Conversely, suppose (\tilde{V}_n) converges a. s. in \mathbb{R} . The equalities

$$E(V_n^+) - E(V_n^-) - E(V_1) = E(V_n) - E(V_1) = E(\tilde{V}_{n-1}) = E(\tilde{V}_{n-1}^+) - E(\tilde{V}_{n-1}^-)$$

imply that

$$\sup_{n} E(\widetilde{V}_{n}^{-}) \leq \sup_{n} \left[E(\widetilde{V}_{n}^{+}) + E(V_{n+1}^{-}) + E(V_{1}) \right]$$

and this last term is finite by hypothesis. Using Fatou's lemma, we conclude that $\lim \tilde{V}_n^+$ and $\lim \tilde{V}_n^-$ are finite, i. e. (\tilde{V}_n) converges a. s. (in \mathbb{R}). The hypothesis of our theorem allows us now to apply theorem 1 and to conclude that the sequence (V_n) converge a. s.

COROLLARY 4.1. — Let (V_n) be an adapted sequence of integrable random variables. If

- 1) $\sup_{n} E(|V_n|) < \infty$
- 2) there exists a constant k such that

$$\sum_{j=(n-1)k+1}^{nk} \mathrm{E}(\mathrm{V}_{j+1}/\mathscr{F}_j) \leq \sum_{j=(n-1)k+1}^{nk} \mathrm{V}_j$$

3) $E(V_{n+1}/\mathscr{F}_n) - V_n$ converges to 0 a. s.

Then (V_n) converges to 0 a. s.

Vol. XVII, nº 1-1981.

for all $n = 1, 2, \ldots$

Proof. — We have

$$\sum_{1}^{n} \left[E(V_{j+1}/\mathscr{F}_{j}) - V_{j} \right] = \sum_{m=1}^{\binom{n}{k}} a_{m} + \sum_{\binom{n}{k}k+1}^{n} \left[E(V_{j+1}/\mathscr{F}_{j}) - V_{j} \right]$$

where

$$a_m = \sum_{j=(m-1)k+1}^{mk} \left[\mathbb{E}(\mathbf{V}_{j+1}/\mathscr{F}_j) - \mathbf{V}_j \right]$$

condition 2) implies that $a_m \leq 0$ for all *m*. Furthermore

$$\left|\sum_{\begin{bmatrix}n\\k\end{bmatrix}}^{n} \left[\mathrm{E}(\mathrm{V}_{j+1}/\mathscr{F}_{j}) - \mathrm{V}_{j}\right]\right| \leq k \max_{\begin{bmatrix}n\\k\end{bmatrix}k+1 \leq j \leq n} |\mathrm{E}(\mathrm{V}_{j+1}/\mathscr{F}_{j}) - \mathrm{V}_{j}|$$

This last term converges to 0 a. s. by condition 3). Thus (V_n) is a C-sequence. Since

$$\sup_{n} E(\tilde{V}_{n}^{+}) \leq \sup_{n} E\left[\sum_{m=1}^{\lfloor \tilde{k} \rfloor} a_{m}\right]^{+} + \sup_{n} E\left[\sum_{\substack{n \\ k \end{pmatrix} k+1}^{n} (E(V_{j+1}/\mathscr{F}_{j}) - V_{1})\right]^{+}$$
$$\leq 2k \sup_{n} E(|V_{n}|) < \infty$$

(using the above inequality and condition 1), condition 2) of theorem 4 is satisfied and therefore (V_n) converges a. s.

COROLLARY 4.2. — Let (V_n) be an adapted sequence of integrable random variables. If

- 1) $\sup E(V_n^-) < \infty$
- 2) $E(V_{n+1}/\mathscr{F}_n) \leq V_n$ if *n* is odd $E(V_{n+1}/\mathscr{F}_n) \geq V_n$ if *n* is even 3) $|E(V_{n+1}/\mathscr{F}_n) - V_n| \downarrow 0$ a. s.

then (V_n) converges a. s.

Proof. — By the convergence theorem for alternating series, (V_n) is a C-sequence. Also we notice that for all n

$$\left|\sum_{1}^{n} \left(\mathrm{E}(\mathrm{V}_{k+1}/\mathscr{F}_{k}) - \mathrm{V}_{k} \right) \right| \leq |\mathrm{E}(\mathrm{V}_{2}/\mathscr{F}_{1}) - \mathrm{V}_{1}|$$

and therefore theorem 4 applies.

Annales de l'Institut Henri Poincaré-Section B

70

We now try to weaken L_1 bounded conditions such that

$$\sup_{n} E(V_{n}^{-}) < \infty \quad \text{or} \quad \sup_{n} E(|V_{n}|) < \infty$$

THEOREM 5. — Let (V_n) be an adapted sequence of positive random variables. If (V_n) is a strict C-sequence, then (V_n) converges a. s. Conversely if (V_n) converges a. s., then (\tilde{V}_n) converges a. s. on the set $\{\sup_n \tilde{V}_n < \infty\}$.

Proof. — Write $E(V_{n+1}/\mathscr{F}_n) = (E(V_{n+1}/\mathscr{F}_n) - V_n)$ and apply theorem 2.

COROLLARY 5.1. — Let (V_n) be an adapted sequence of non negative random variables. Then (V_n) converges a. s. if any one of the following conditions is satisfied

1)
$$E(V_{n+1}/\mathscr{F}_n) \ge V_n$$
 and $\sum_{1}^{\infty} (E(V_{n+1}/\mathscr{F}_n) - V_n) < \infty$ a. s.
2) $\sum_{1}^{\infty} |E(V_{n+1}/\mathscr{F}_n) - V_n| < \infty$ a. s.

3) For almost all ω , there exist an integer $k(\omega)$ such that

a) $E(V_{n+1}/\mathscr{F}_n) - V_n$ is alternating when $n \ge k(\omega)$ b) $|E(V_{n+1}/\mathscr{F}_n) - V_n| \downarrow 0$ when $n \ge k(\omega)$.

As an example where this corollary can be used (see [1]) take the unit interval with its Borel field and Lebesgue measure and set $V_i = i2^i$ on $\left[0, \frac{1}{2^i}\right]$, 0 elsewhere if *i* is odd, $\equiv 0$ if *i* is even.

We now rid ourselves of the hypothesis that the V_n 's are positive.

THEOREM 6. — Let (V_n) be an adapted sequence of integrable random variables. Then on the set

$$\mathbf{B} = \{ \sup_{n} \widetilde{\mathbf{V}}_{n}^{+} < \infty , \sup_{n} \widetilde{\mathbf{V}}_{n}^{-} < \infty \}$$

 (V_n) converges a. s. if and only if (\widetilde{V}_n^+) and (\widetilde{V}_n^-) converge a. s.

If any two of the four sequences (V_n) , (V_n^+) , (V_n^-) , $(|V_n|)$ are strict C-sequences, then (V_n) converges a. s.

The proof goes very much along the lines of that of Theorem 5.

COROLLARY 6.1. — Let (V_n) be a submartingale. If (\tilde{V}_n) and (\tilde{V}_n^+) converge a. s., then so does (V_n) .

Remark. — The conditions in this corollary are weaker than the usual Vol. XVII, nº 1-1981.

condition $\sup_{n} E(V_{n}^{+}) < \infty$ as can be seen by considering the sequence (V_{n}) defined on the unit interval by the formula

$$V_n = n2^n 1_{[0,2^{-n}]}$$

COROLLARY 6.2. — Any of the following conditions is sufficient for the almost sure convergence of the martingale (V_n) :

$$i) \sum_{1}^{\infty} \left[E(|V_{j+1}|/\mathscr{F}_j) - |V_j| \right] < \infty \text{ a. s.}$$
$$ii) \sum_{1}^{\infty} \left[E(V_{j+1}^+/\mathscr{F}_j) - V_j^+ \right] < \infty \text{ a. s.}$$
$$iii) \sum_{1}^{\infty} \left[E(V_{j+1}^-/\mathscr{F}_j) - V_j^- \right] < \infty \text{ a. s.}$$

We now show that asymptotic martingales (\ll amarts \gg , see [2] (*h*) and [7]) are not necessarily C-sequences nor are C-sequences necessarily asymptotic martingales. As a matter of fact, the C-sequence defined in the remark following corollary 6.1 is not an asymptotic martingale.

Let (X_n) be a sequence of independent identically distributed random variables such that $|X_n| < 1$. Let (a_n) be a sequence of real numbers diver- $\sum_{n=1}^{n} X_n$.

ging to ∞ so slowly that $\sum_{i=1}^{n} \frac{X_{i}}{a_{i}}$ does not converge in $\overline{\mathbb{R}}$ (this is possible by

the law of iterated logarithm (see [9])). Then $\left(V_n = \frac{X_n}{a_n}\right)$ is an asymptotic martingale since V_n converges uniformly to 0. Writing

$$\mathbf{V}_n = \sum_{j=1}^n \frac{\mathbf{X}_j}{a_j} - \sum_{j=1}^{n-1} \frac{\mathbf{X}_j}{a_j}$$

and using the uniqueness of the compensator it is seen that (V_n) is not a C-sequence.

ACKNOWLEDGMENTS

The author wishes to thank Dr. N. V. Thu, Professors M. Duflo, J. Sam Lazaro and D. Lepingle for their kind help and suggestions.

REFERENCES

- [1] D. G. AUSTIN, G. A. EDGAR, A. IONESCU TULCEA, Pointwise convergence in term of expectation. Z. Wahrscheinlichkeitstheorie verw. Gebiete, t. 30, 1974, p. 17-26.
- [2] [a] A. BELLOW, On vector valued asymptotic martingales. Proc. Nat. Acad. Sci. U. S. A., t. 73, n° 6, 1976, p. 1798-1799.
 [b] A. BELLOW, Several stability properties of the class of asymptotic martingales. Z. Wahrscheinlichkeitstheorie verw. Gebiete, t. 37, 1977, p. 275-290.
- [3] A. N. BORODIN, Quasi-martingales. Theory of Probability and Appl. 1978-3.
- [4] DAN ANBAV, An application of a theorem of Robbins and Siegmund. Annals of Statistics, t. 4, nº 5, 1976, p. 1018-1021
- [5] G. A. EDGAR, L. SUCHESTON, Amarts, A class of asymptotic martingales (Discrete parameter), J. Multivariate Anal., t. 6, 1976, p. 193-221.
- [6] J. NEVEU, a) Mathematical foundations of the calculus of probability, Holden Day, San Fransisco, 1965; b) Martingales discrètes, Masson, 1972.
- [7] M. M. RAO, Quasi-martingales. Math. Scand., t. 24, 1969, p. 79-92.
- [8] H. ROBBINS, D. SIEGMUND, A convergence theorem for non negative almost supermartingales and some applications. *Optimization methods in statistics*, A. P. New-York, 1971, p. 233-257.
- [9] R. J. TOMKINS, A law of the Iterated Logarithm Logarithm for martingales. Z. Wahrscheinlickeitstheorie verw. Gebiete, t. 33, 1975, p. 55-59.

(Manuscrit reçu le 6 octobre 1980).

Vol. XVII, nº 1-1981.