@article{AIHPB_1977__13_4_321_0, author = {Lin, Michael}, title = {Ergodic properties of an operator obtained from a continuous representation}, journal = {Annales de l'institut Henri Poincar\'e. Section B. Calcul des probabilit\'es et statistiques}, pages = {321--331}, publisher = {Gauthier-Villars}, volume = {13}, number = {4}, year = {1977}, mrnumber = {499082}, zbl = {0383.60071}, language = {en}, url = {http://www.numdam.org/item/AIHPB_1977__13_4_321_0/} }
TY - JOUR AU - Lin, Michael TI - Ergodic properties of an operator obtained from a continuous representation JO - Annales de l'institut Henri Poincaré. Section B. Calcul des probabilités et statistiques PY - 1977 SP - 321 EP - 331 VL - 13 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPB_1977__13_4_321_0/ LA - en ID - AIHPB_1977__13_4_321_0 ER -
%0 Journal Article %A Lin, Michael %T Ergodic properties of an operator obtained from a continuous representation %J Annales de l'institut Henri Poincaré. Section B. Calcul des probabilités et statistiques %D 1977 %P 321-331 %V 13 %N 4 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPB_1977__13_4_321_0/ %G en %F AIHPB_1977__13_4_321_0
Lin, Michael. Ergodic properties of an operator obtained from a continuous representation. Annales de l'institut Henri Poincaré. Section B. Calcul des probabilités et statistiques, Tome 13 (1977) no. 4, pp. 321-331. http://www.numdam.org/item/AIHPB_1977__13_4_321_0/
[1] Sur l'équation de convolution μ = μ * σ. C. R. Acad. Sci. Paris, t. 250, 1960, p. 799-801. | MR | Zbl
and ,[2] Lois « zéro on deux » pour les processus de Markov. Applications aux marches aléatoires. Ann. Inst. H. Poincaré B, XII, 1976, p. 111-130. | Numdam | MR | Zbl
,[3] Linear operators. Part I. Interscience, New York, 1958. | MR | Zbl
and ,[4] On finite invariant measures for Markov operators. Proc. Amer. Math. Soc., t. 38, 1973, p. 553-557. | MR | Zbl
,[5] Convergence of the iterates of an operator. Israel J. Math., t. 16, 1973, p. 159-161. | MR | Zbl
,[6] Convergence of the iterates of convolutions. To appear. | MR
,[7] Iterates of a convolution on a non-Abelian group. Ann. Inst. H. Poincaré B, XI, 1975, p. 199-202. | Numdam | MR | Zbl
,[8] On convex power series of a conservative Markov operator. Proc. Amer. Math. Soc., t. 38, 1973, p. 325-330. | MR | Zbl
and ,[9] Mixing for Markov operators. Z. Wahrscheinlichkeitstheorie, t. 29, 1971, p. 231-242. | MR | Zbl
,[10] On the uniform ergodic theorem II. Proc. Amer. Math. Soc., t. 46, 1974, p. 217-225. | MR | Zbl
,[11] Limit theorems for probability measures on non-compact groups and semi-groups. Z. Wahrscheinlichkeitstheorie, t. 33, 1976, p. 273-284. | MR | Zbl
,[12] A note on the ergodic properties of homeomorphisms. Proc. Amer. Math. Soc., t. 57, 1976, p. 169-172. | MR | Zbl
,[13] Probability measures on locally compact groups and semi-groups. Springer lecture notes in Mathematics, Berlin-Heidelberg, 1976. | MR
and ,