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A Potential Operator
and Some Ergodic Properties
of a Positive L~ Contraction

K. A. ASTBURY

The Ohio State University, Columbus, Ohio 43210

Ann. Inst. Henri Poincaré, Section B :

Vol. XI I, n° 2, 1976, p. 151-162. Calcul des Probabilités et Statistique.

SUMMARY. - A potential operator is introduced for a class of positive
operators which includes the positive operators on L~. This potential
operator is shown to have some of the familiar properties enjoyed by
potential operators obtained from kernels (e. g. Domination Principle,
Riesz Decomposition, and Balayage). Given a positive L~ contraction,
its potential operator is used to obtain a Hopf decomposition into conser-
vative and dissipative sets. We further study some of the Ergodic properties
of a positive contraction of L~.

1. INTRODUCTION

Let (X, j~, m) be a o-finite measure space. Throughout this paper func-
tions and sets will be considered equal if they are equal except for a set of
measure zero.

The main result of this paper is that a positive linear contraction of
L~(X, ~, m) determines a Hopf decomposition of the space X into conser-
vative and dissipative regions. When the contraction is the adjoint of
an L1(X, j~, m) operator, then the classical properties of the decomposition
in terms of the L 1 operator are immediate.
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152 K. A. ASTBURY

In the « classical » case, it is well known that the conservative and dissi-

pative regions can be characterized in terms of the finiteness of the sums

S( f ) = I However, when P is not the adjoint of an L1 operator,
n=0

these sums do not have the crucial property that P[S( f )] + f = S( f ). The
proper generalization of the sums is the potential operator defined in
Section 2, which is devoted to its properties. For completeness, we extend
the domain of the potential operator to the cone F of all positive extended
real valued measurable functions on (X, j~, m), and we allow P to be
any positive linear operator on  . Positive L~ operators extend to ~ in
several natural ways (see Section 3) and the particular way the operator
is extended does not affect the Hopf decomposition nor the related

properties.
In Section 3 we define for a positive L~ operator the conservative and

dissipative regions and study their properties. We give examples which
illustrate properties which hold in the classical case but which fail to hold
in the more general case.
We will use throughout this paper a well known property for iF, involv-

ing essential suprema, given by the following lemma:

LEMMA 1.1. 2014 1. Let { fa ~ . Then there exist two unique elements

of ~, denoted by sup fa and inf fa, such that for all f, g E ~ :’ 

a~0394 xeA

(a) f for all oc E A ~ sup fa  f

(b) for all (x E 0394 ~ inf f03B1 > g .

2. Let {A03B1}03B1~0394 c A. Then there exists a unique element of A (up to

sets of m-measure zero), denoted by ~A03B1 such that for all A 
aEt1

Proof. See [8, Proposition II.4.1, p. 44-45].

LEMMA 1. 2. 1. P sup f« >_ sup 
«Ee «Ee

2. P inf f« _ inf P f« .
«Ee «Ee

Proof. P is positive and apply Lemma 1.1.
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153SOME ERGODIC PROPERTIES OF A POSITIVE L~ CONTRACTION

. 2. THE POTENTIAL OPERATOR

Let P be a positive linear operator on ff:

(Multiplication in the extended reals for the finite case is as usual, and for
the infinite case is defined by for a > o, and 0 . oo = oo . o = o . )

DEFINITION 2.1. - For any let ~ _ ~ g E ~ ~ Pg + f _ g ~ .
Clearly the function g = oo E ~. Define the potential of f (with respect
to P) by E( f ) = inf g. The map E : F ~ F is called the potential operator.
It will be shown in the next theorem that E is linear so we will write Ef
for E( f ). We will also write E(A) for E(lA).

THEOREM

Proof. 2014 2. Let Pg + f  g. Then P(Pg + f ) + f  (Pg + f).
1. For any g which satisfies Pg + f  g, we have PEf + f  Pg + f  g,

and PEf + f is a lower bound for g. The other direction follows from 2.
3. From 1 we have and 

defined by

is the largest solution of h + Eg = E( f + g). Another solution is Ph + , f;
hence Ph + f  h, and therefore Ef  h. The second part of 3, and 4 follow
from 1.

The following characterization of potential is useful and is needed in the
proof of Theorem 2.2.

DEFINITION 2 . 2. - A subset of IF is called an E-class for f ~F if:

Vol. XII, n° 2 - 1976. 11



154 K. A. ASTBURY

Note that ~ is an E-class for any f E, and that arbitrary intersections
of E-classes for f are again E-classes for f. Denote by C f the smallest
E-class for f, i. e., the intersection of all E-classes for f.

LEMMA 2.1. - Ef = sup g.

Proof. 2014 According to the definition of E-classes, P (sup g) + 
g~E f

hence P (sup g) + f  sup g. By the definition of Ef, Ef  sup g. To
f gee! f 

establish the other direction, notice that the set ~ == { ~ Ef ~
is an E-class for f. By the minimality we have Cf = ~. Therefore
sup g  Efi

COROLLARY 2.1. - I Ef Equality holds if P is monotonically
n=0

continuous (fn ~ f ~ Pfn ~ Pf).

Proof 201403A3Pnf~Ef. If P is monotonically continuous, then

and equality follows from the definition of Ef
The following is an example where equality does not hold.

EXAMPLE 2.1. - Let X = ~ 0, 1, 2, ... }, let j~ be the family of all
subsets of X, and let m be a probability measure having positive mass at
each point of X. Let  be a positive, purely finitely additive measure on

(X, A) with = 1. Define P by Pg(x) = g(x - 1) for x > 0, and

Pg(0) = f Let f = 1{N} where N E X. Then Pnf = 
After N applications of P(.) + f we have 1 ~Ef, hence 1  Furthermore,
PI = 1 and Theorem 2 . 3 will yield Ef = oo .

THEOREM 2.2. - PEf = EPf

Proof - Clearly EPf  PEf. To establish the other direction, we wish
to show that the set

is an E-class for f. Clearly i) and it) of the definition hold. Let 
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155SOME ERGODIC PROPERTIES OF A POSITIVE Lx; CONTRACTION

Then

We also have

Hence iii) holds. By the minimality we and, therefore,
PEl::; EPf

THEOREM : I

Proof - h E ~ defined by

is the largest solution of h + g = Ef Another solution is Ph + f ; hence
Ph + f  h. Therefore Ef  h.

THEOREM 2.4 (Domination Principle). - Let Pg  g and let Ef  g
on ~ f >O~. ThenEf_g.

Proof - Let h = min (Eg g) = min (Eh g + f ) by hypothesis. Further-
more Ph + f  hand Ef  h.

COROLLARY 2 . 2. Let 1. T hen :

1. (Maximum Principle). If Ef  Eg + a on ~ f > 0 ~ where 0  a E R,
then Ef  Eg ~+ a.

2. If E(A)  a E R on A, then E(A)  a.
3. If E(A)  oo, then there exist sets A such that n.

Proof - Parts 1 and 2 are immediate. To establish 3, let

An = A n ~ E(A)  n ~ . Then E(A)  n on An. Apply part 2.

THEOREM 2.5 (Riesz Decomposition). - If Pg  g, then there exist f,
h E ~ such that Ph = h and g = Ef + h. Furthermore, f satisfies Pg + f = g ;
also, we can take for f any solution of Pg + f = g.

Proof. - If Ph = h and g = Ef + h, then Pg + f = g. Let f be any
solution to Pg + f = g, e. g., f = oo where and f = g - Pg where
g  oo. Clearly Ef  g. defined by

Vol. XI I, n° 2 - 1976.
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is the smallest function satisfying k + Ef = g. Another solution is Pk > k.
Notice that k  g. Pj and j  g ~ and let h = sup j.

jE~

Clearly h > k and h + g. Furthermore Ph >_ h and Ph E ~, hence
Ph = h.

To establish that h + Ef  g, define ki ~F by

Clearly k1 is the largest function satisfying ki + h = g. Another solu-
tion Pk1 1 -I- , f ’  ki 1 and therefore Ef  k 1.

Proof 2014 g = Eh + j where Pj = j. By Theorem 2.3 we have

Ef + j = Ef  oo and, hence, j = 0.

COROLLARY 2.4. 2014 Let Pg ~ g and let lim Png = 0  

T hen g = Ef for some f E ~ .

Proof. Define f so that Pg + f = g and f = oo where Then

g = Ef + h and Ph = h. h = lim Pnh  lim Png = 0  oo ~ . On

{ ~ = we have E/’ > / = oo.

THEOREM 2 . 6 (Balayage ) . - Let oo and T hen there exists
a unique g e ~ such that Eg  supported on A, and Eg = Ef on A.

Proof. e F ( j = Ef on A, and Pj ~j}. Clearly Ef~ J.
Let h = n~ j. Clearly Ph  h  Ef and h = Ef on A. By Corollary 2 . 3,
we have h = Eg for some Let gi =1 A g, g2 =1 A~g and let g3 =gi + Pg2.
Then, using Theorem 2.2,

Therefore Eg 3 = Eg = Ef on A and, by minimality of h, Eg  Egg. Hence
g2 + Eg  g2 + Eg3 = Eg  oo and g2 = 0, i. e. g is supported on A.
To establish uniqueness, let g’ also be supported on A with Eg’ = Ef
on A. By Theorem 2.4, Eg’ = Eg  oo and g = g’ follows from

Theorem 2.1(4).

Remark. Previous abstract studies of potential operators assumed P
to be monotonically continuous. See [I] and [7, Chapter IX].

Annales de 1’Institut Henri Poincaré - Section B



157SOME ERGODIC PROPERTIES OF A POSITIVE L~ CONTRACTION

3. THE ERGODIC DECOMPOSITION

Throughout this section we will assume that P is a positive linear
L~(X, ~, m) contraction. We wish to extend P to iF in order to apply
the potential operator E. One natural extension is given by Pf = sup Pg.

This is the smallest possible extension and has the sometimes useful pro-
perty that P o0 1 A = oo P1A. The largest possible extension is given by
Pf = oo lx for all fE  - L~. Additional extensions can be generated
from any pair of extensions Pi and P2 by 1AP1 + for any 
We will assume for the remainder of this section that P has been extended
to ~ , but we will make no restriction concerning the particular choice of
the extension.

DEFINITION 3.1. - The dissipative part of X is D = ~~ E(A)  
The conservative part of X is C = X - D.

An immediate application of Corollary 2.2 gives us D = t.J A.
Hence, for any positive linear contraction of L~, the dissipative part does
not depend on the particular extension of the operator to ~ .

THEOREM 3.1. Let ~ f > 0 ~ c C. Then Ef takes only the values 0
or oo .

Proof First we wish to show that E f = oo on ~ f > 0 ~ . Let a E R,

and, for each n E Z+, let a} m f~1 n}. Then and

E(nf )  na on An. By Corollary 2 . 2 we have E(A")  na. However,
An c C by hypothesis. Hence An = 0. Also

and

Let

Clearly g  Ef Also Pg  PEf  Ef Notice that Pg can take only the
values 0 or oo since, for any 0 ~ b E R, bPg = Pbg = Pg. Hence Pg  g.
Furthermore, Pg + f  g because Ef = o0 on ~ f > 0 ~ . Therefore Ef  g
and Ef = g.

Vol. XI I, n° 2 - 1976.



158 K. A. ASTBURY

The following corollary gives us the classical Hopf ergodic decompo-
sition.

COROLLARY 3 .1. Let P be generated~ by the dual of a positive L1 contrac-
tion T, and let u E Li. Then :

Proof -

This is 0 or oo for all A c= C, and bounded above by n x udm for A = Anof Corollary 2.2. ~

COROLLARY 3.2. 2014 7~ then Pg = g on C.

Proof. 2014 Let An = C n ~ Pg + -  ~ ~. Then Png + and, by

Theorem 2.1(2), Png + 1~, which is strictly less than oo on A~ by
the definition of A~. According to Theorem 3.1, A~ = 0. Hence

THEOREM 3. 2. - Ef can take only the values 0 or o0 on C.

Proof E = Ef on C, and Pg  g }. Clearly Ef E ~.
Let h = inf g. Clearly h~J. Also P(Ph)  Ph, and Ph = h = Ef on C
by Corollary 3 . 2; hence Ph By minimality of h we have Ph = h  Ef
Theorem 2.3 gives us Ef + h = Ef, and 2Ef = Ef on C.
The following theorem is a summary of the previous theorems.

THEOREM 3 . 3. - The following are equivalent :
1. A c C. 

’

2. Pg=gonA.

Annales de l’Institut Henri Poincaré - Section B
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3. takes only the values 0 or oo.
4. For f E ~ , Ef can take only the values 0 or o0 on A.

Furthermore, the theorem remains true if iF is replaced by L~ in 2, and
if iF is replaced by L~ in 3 and 4.

Proof. 2014 1 => 2, 3 and 4 by previous theorems.
2 ~ 

P(g + II = g + ~ ~ A, and also P1 = 1 on A. Hence Pg = g
on A.

3 ~ 3(L~) and 4 ==> 4(L~). Obvious.
- 1 => - 2(L~), - 3(L~), and - 4(L~). Let 0. By Corol-

lary 2 . 2, there exists a set B such that ~ ~ B c A n D and E(B) E Loo.
Let g = E(B) and f = 1B.

COROLLARY 3 . 3. - For n E Z +, P and Pn have the same ergodic decompo-
sitions.

Proof - Let C and Cn be the conservative parts of P and Pn respectively,
and apply part 2(Loo) of Theorem 3.3. If Pg  g E then g,
Png = g on Cn, and Pg = g on Cn ; hence Cn c C. If E L~, then

n- 1 n n- 1

equality holds on C, and Png = g on C by

cancellation; hence C c Cn.

Remark. A similar decomposition for a transition probability on a
topological space is given in [4] [5] and [6].
We will now give some examples which are not treated by the classical

theory, and which will illustrate some of the unexpected things that can
occur. In each case (X, m) and  will be the same as in Example 2.1,
and PI = 1.

EXAMPLE 3 .1. Define P by Pf (x) = f (o) for x > 1, and = 

It is easy to show that C = {0} and D = {1, 2, 3, ... }. Therefore P1C=1D
N

and lc. Furthermore the averages 1 N 03A3 Pnf converge uniformly

for all f E L~, but there is no finite invariant (countably additive) measure.

EXAMPLE 3. 2. Same as Example 3 .1 except replace  by 1 2  + 1 2 m.

Vol. XI I, n° 2 - 1976.
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N

Then X = C, the averages 2014 ~ P~ converge uniformly for all 

0

for non-negative / ~ 0 the limit is not 0, but still there is no finite invariant
measure.

EXAMPLE 3.3. - Define P by Pf(x) = f(x - 1) for x > 2, =/(!)
N

and = In this example 1 N03A3Pn1{1} converges pointwise

to l{i,2,...} which is not invariant (P1~2,...} ~ l{i,2,...})’

EXAMPLE 3.4.2014 Define P by Pf(x) = f(x) for x >: 1, and = f 
Let An = [1, M], so that An ~ A = [1, oo). Then P1An = but P1A ~ lA.
Example 3.4 shows that the invariant sets E, = = 

which form a ring (see [2, p. 8]), do not necessarily form a o-ring, even if
they form an algebra. However, in the conservative case, the invariant sets
are more conventional.

THEOREM 3.4. 2014 Let X = C. Then:

1. 

2. Pf = f~F => E, measurable.
3. measurable => 

4. f~F is E, measurable, and P oo 1A = oo P1A for all A e A ~ Pf = f

Proof. 2014 1. PI = 1 by conservativity. Let A. Then
inf 1~ = lA and Pl~  1~. Equality holds by conservativity and AeE,.

2. Let Notice that if oceA, then P inf f03B1~inf f03B1
and equality holds by conservativity. For let h = min (~ 
and let g = f - Ph = hand Pg = g. Clearly {~ > 0} = { /> ~}.

min (1, Then and (1 - with

P(l - gn) = 1 - ~. Therefore { /  ~} ci E,
3. This is clear by approximation.
4. Let f e F be 03A3i measurable and let P oo 1A = oo P1A for all A e A.

Then P(oo 1~>~) = oo Pl~>~ = oo 1~>~. By 3, min (~ ~) is invariant
under P. Therefore where min (~) + oo ° Finally
f = inf ~ hence Pf = ~

COROLLARY 3.4. - Let P oo 1~ = oo Pl~ for all and let Ef = oo
for all / ~ 0. Then Pf = f =~ f = constant.

Annales de l’Institut Henri Poincaré - Section B
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Proof. - Clearly X = C. Let A E Ei. Then P oo 1A + lA = oo 1A and
E(A) ~ oo lA. By hypothesis, A = X or 0. Therefore ~I is trivial, and, by
Theorem 3.4, f is Li measurable.
As an application we obtain a result on eigenvalues. P can be extended

to a contraction of the complex L~ : P(gl + ig2) = Pgl + iPg2. By identi-
fying L~ as a C(K) space it is known that if Pfj = 03BBjfj,|03BBj - 1 and 1

for j = 1, 2, then (see [9]).

I = 1, 2,
then 

By conservativity P |fjI = |fj| I (consider ( I f; ~~ |fj|) and ( fj I is Ei
measurable. Notice that for A ~03A3i and g E L~ we have P1Ag = On
A = {! I - ~ ~ we clearly have P(flf2) = 0 = /~.1/~.2,f1 f2. We
will restrict our attention to the invariant set A = {|f1~f2|> 0 }, so
we may assume |f1~f2|> 0. a. e. We will make use of another property
of E~, obtained by approximation : if gl, g2 E L~ and gl is Ei measurable,

then P(glg2) = g1Pg2. Setting gl - I J j I and g2 = fj yields that ’f’. ~ ~) I i j~! I
is a unimodular eigenfunction for P with eigenvalue 03BBj. Let |f1 !! (

and g2 = f1 f2 and apply the result of [9] to complete the proof.I .fl I 72! I
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