@article{AIHPB_1975__11_3_265_0, author = {Davies, E. B.}, title = {Markovian master equations. {III}}, journal = {Annales de l'institut Henri Poincar\'e. Section B. Calcul des probabilit\'es et statistiques}, pages = {265--273}, publisher = {Gauthier-Villars}, volume = {11}, number = {3}, year = {1975}, mrnumber = {395639}, zbl = {0323.60062}, language = {en}, url = {http://www.numdam.org/item/AIHPB_1975__11_3_265_0/} }
TY - JOUR AU - Davies, E. B. TI - Markovian master equations. III JO - Annales de l'institut Henri Poincaré. Section B. Calcul des probabilités et statistiques PY - 1975 SP - 265 EP - 273 VL - 11 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPB_1975__11_3_265_0/ LA - en ID - AIHPB_1975__11_3_265_0 ER -
Davies, E. B. Markovian master equations. III. Annales de l'institut Henri Poincaré. Section B. Calcul des probabilités et statistiques, Tome 11 (1975) no. 3, pp. 265-273. http://www.numdam.org/item/AIHPB_1975__11_3_265_0/
[1] Diffusion for weakly coupled quantum oscillators. Commun. math. Phys., t. 27, 1972, p. 309-325. | MR
,[2] The harmonic oscillator in a heat bath. Commun. math. Phys., t. 33, 1973, p. 171-186. | MR
,[3] Markovian master equations. Commun. math. Phys., t. 39, 1974, p. 91-110. | MR | Zbl
,[4] Markovian master equations II. To appear. | MR | Zbl
,[5] Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys., t. 6, 1965, p. 504-515. | MR | Zbl
, and ,[6] Non-commuting random evolutions, and on operator-valued Feynman-Kac formula. Commun. Pure Applied Math., t. 25, 1972, p. 337-367. | MR | Zbl
and ,[7] A limit theorem for perturbed operator semigroups with applications to random evolutions. J. Functional Anal., t. 12, 1973, p. 55-67. | MR | Zbl
,[8] Some limit theorems for stochastic equations and applications. Indiana Univ. Math. J., t. 21, 1972, p. 815-840. | MR | Zbl
and ,[9] A limit theorem with strong mixing in Banach space and two applications to stochastic differential equations. Commun. Pure Applied Math., t. 26, 1973, p. 497-524. | MR | Zbl
and ,[10] The Bloch equations. Commun. math. Phys., t. 38, 1974, p. 241-256. | MR
,