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ABSTRACT. - For the Schrodinger operator on corresponding
to a particle subject to a constant electric field, moving in a disordered
potential of Anderson type, we prove the existence of resonances with
a width exponentially small with respect to the intensity of the field.
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RESUME. - On considere Foperateur de Schrodinger sur L2(R)
correspondant a une particule soumise a un champ electrique constant et
se deplacant dans un potentiel desordonne du type Anderson. On montre
1’ existence de resonances dont la largeur est exponentiellement petite par
rapport a l’intensité du champ. (c) Elsevier, Paris
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498 F. BENTOSELA, P. BRIET

1. INTRODUCTION

This paper is devoted to the study of the spectral properties of the
Hamiltonian of an electron moving in a random potential and subject
to an exterior constant electric field,

on H = L 2 (R) . The functions u i , called the atomic potentials, are

supposed to be negative and vanishing at oo . The coupling constants
E Z, are independent, identically distributed random variables.

The distribution of probability of 03C9i has a density which is continuous
and supported on 0  c~m  c~M (see remark below). In the

following, we denote by ( SZ , i, P) the probability space generated by

It has been known for many years that adding a linear potential to a
regular bounded potential gives rise to absolutely continuous spectrum
[3] (see also [7] for a more general setting), and that for some models
with singular potentials the spectrum is pure point [ 15,2,16] . Several

papers have been devoted to the analytic periodic potential case and to
the existence of resonances (called Bloch oscillators), in this sense we
mention the works [ 19,4,9,11 ] .

It is now natural to address the question of the resonances in the regular
random situation and we mention an earlier work [ 17], where the case of

large interatomic distance is considered.
Without external field, contrary to the periodic case, the spectrum is

pure point and dense, for almost all potentials, see, e.g., [29,26] and
[ 10] for a complete discussion of this point. So, in some sense we are
close to the atomic situation (see [20,5] and references therein) where the
resonances come from the eigenvalues. However, there is an important
difference, as the eigenvalues form a dense set, it is not clear that we

can obtain well separated resonances, except if, when adding the exterior
field, some of the eigenvalues remain close to the real axis while some
others move far apart. Intuitively this can occur because at zero field
the eigenfunctions are localized uniformly on the real line [ 14] . If we
consider the situation near the zero energy, when adding a linear potential
with a small positive slope, the eigenfunctions located close to the origin
will be less affected by the exterior field than those located far apart. They
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499RANDOM POTENTIALS OF ANDERSON TYPE

give rise to sharp resonances instead the eigenfunctions located far to the
left give rise to resonances far apart from the real axis because for them
the perturbation is in some sense larger.

In this paper we define a resonance as a pole of some matrix elements
of the resolvent operator as in [27] and we will use the analytic distortion
method introduced by Hunziker in [21 ], the parameter index will be
called 0. The complex eigenvalues of the distorted operator H~, ( F, 8 )
are the resonances of the original one.

Let us make precise here our assumptions on the atomic potential:

[H 1 ] . - There 0 and a &#x3E; 0 such that the atomic potentials
ui are analytic in the half strip = {z E C, |Im z|  a, Rez  b - i }

denoting by Ci - [i - 1 /2, i + 1 /2] the ith cell and by l~l the
characteristic function of Ci ;

[H2]. - There exists some strictly positive constants c1, C2 and 6,
such that,

and the upper estimate has to be satisfied in all 

Remark. - (i) In general the support of the density probability is chosen
as a compact subset of R or as the total real line with a sufficiently
decaying density. This could be done here, but we prefer a support strictly
positive to avoid inessential technicalities.

(ii) Analyticity of the M~ ’s for b - i is needed because the distorted

part of the operator 9) is supported in a neighbourhood of -~
which is included in (201400, b).

In the atomic case, i.e., when the potential goes to zero at infinity, there
exists, for negative energies, a classically forbidden region sufficiently
large, separating the interior well from the infinite exterior well. In our
case the existence of a similar forbidden region is also essential. As it will
be explained in Section 2, this geometric assumption can be interpreted
as one on the exponential behavior of the local Green function which
takes here the following form. Let H~ be. the restriction of on

an interval ~ , which we define as the self-adjoint operator on 
with Dirichlet boundary conditions on and b~p E =

0, x E = we denote by the corresponding
resolvent. Let Xt, Xr be open intervals having an F independent size,
located respectively near the left boundary and the right boundary of 
Vol. 71, n° 5-1999.
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and o = [-Eo, 0], Eo &#x3E; 0, an energy interval, suppose F small, we will

say that

the operator satisfies the condition C on d, if foY all intervals
11 = [0, E+/F], E+ &#x3E; 0, there exits a complex neighbourhood of a, a’,
independent of F and some uniform constants c, y, v &#x3E; 0 and p &#x3E; 1, such

that,

V,2 E LJ’, ~1~l Rll(Z)1Xr II  de-03B3||~R(z)~p) 1 (l.l

In Section 2, we exhibit an Anderson model for which the condition
C is satisfied. This model consists in choosing for i ~ 0, the functions

u == u for some function u with compact support. Work is in progress
to overcome some of these conditions on the u’s to cover situations in
which the random potential presents long range correlations.

Denoting by

and

we also suppose:

[H3 ] . - The potential V~, and the energy interval a = [- Eo, 0] have
to satisfy:

If we admit that satisfies the condition C above, we only need in
the rest of the article that the u i ’s satisfy [H 1 ], [H2] and [H3] in particular
we get:

THEOREM 1.1. - Let d = [- Eo, 0] be an energy interval and suppose
that [H 1 ], [H2], [H3] and condition C are satisfied. Then there exists a
set of full measure, h C S2, such that for each c~ C h, there exists a

sequence Fn, n E N, Fn ---+ 0, as n ---+ oo such that the operator 
has at least one resonance Zn whose real part is in L1 and the imaginary
part satisfies

for some uniform strictly positive constants c and t.

Annales de l’Institut Henri Poincare - Physique theorique
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ihis result, together with the lower bound obtained in [ 1 ] or com-

pletely analytic Stark-Wannier systems gives the following estimate on
the width of resonance (or the inverse resonance life time),

for some constants 0  c  c and 0  t  r.
To analyze the spectrum of the distorted operator, we will use the

so-called "decoupling method" which in our case goes as follows. We
choose on the real line xext &#x3E; xint == 0, xext is smaller than the last

turning point to the right (defined for energy 0) and xext - xint == 0(1/F).
Notice that with our conditions on Vev, the region of turning points
has a size 0(1/F). We introduce two operators Hext03C9(F,03B8) on Hext ==

and on Hint == L2((xint~ +~)) defined as the
restriction of the original operator ()), respectively on (201400, xext)
and +(0) with Dirichlet boundary conditions. Because of the

potential increase at +00, has pure point spectrum and we will
show in Section 3 that to some of its eigenvalues correspond eigenvectors
which are localized to the right of xext. We will see in Section 4 that in
a neighbourhood of size O ( F4 ) of one of these eigenvalues, the operator

B ) has no spectrum. When we focus on one of these eigenvalues,
going from the decoupled operator H~ ( F, 0) = 0) EB to

0) is a small perturbation, because what occurs in the interval
xext) is similar to the presence of a barrier. In fact we will show

in Section 2 that in this interval, due to the disorder, the Green function
for energy close to 0 is exponentially decreasing with probability close
to 1.

So from the formula linking the resolvents for 9), 0)
and ( see Appendix) we deduce that there exists an eigenvalue of

0) and then a resonance for exponentially close to the real
eigenvalue of this is done in Section 5.

All that has been written, up to now, is sketchy, and will be made
precise later, since special attention has to be paid to the probabilistic
aspects.

We look at the spectrum near 0 energy for notational

convenience, let us notice that because of the stationarity property of V~,
and the linearity of Fx, looking at energies near some E is the same as
looking at energies near 0, performing a translation in space by E / F .
Vol.71,n° 5-1999.
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In the previous papers on Stark-Wannier resonances one needs
additional assumptions on the smallness of the Planck constant or the
distance separating the atomic centers, here, only smallness on F is
required.

2. EXPONENTIAL DECAY OF THE GREEN FUNCTION AND
DECOUPLING

The existence of sharp Stark resonances in atoms or molecules is

due to the presence of a potential barrier which becomes larger as the
electric field goes to zero. One shows that the Green function decreases

exponentially in the barrier, this implies that the coupling between the
interior part, where the bounded states live, in absence of the field, and the
exterior is exponentially small. This is part of the so-called "decoupling"
method used to prove exponentially small resonance widths. In our case,
the condition C means that in an interval to the right of 0, the Green
function decreases exponentially with a rate larger than y . Consider a

eigenstate localized, at zero field, to the right of 0, at some distance
from it. When the field is turned on, it will be trapped to the right of 0,
due to the increasing potential, and partially trapped to the left by some
effective barrier associated with an interval in the vicinity of 0, in which
the Green function decreases exponentially. So in our decoupling method
we will distinguish an exterior part (201400, xext) and an interior
part Rint = == 0, +(0), as above we associate to them the operators

The xext has to be chosen in such a way that, some
eigenvectors of corresponding to eigenvalues close to the energy
0, live in -+-oo). By Theorems 3.1 and 3.2 below, then 
where the energy cext satisfies, 0  cext  Cmax == I - 
Notice that for F small enough, the point cmax/ F is smaller than the
last turning point to the right (defined for energy 0). Such a state will
have at its left a barrier whose width is at least [0, xext] and whose length
increases as F decreases. In the sequel we will first give a model for
which the condition C is satisfied and secondly prove the existence of
eigenstates for localized to the right of xext.

Let us sketch here, rapidly why the Green function decays exponen-
tially on the interval [0, xext] == [0, If we choose some point xo, in
this interval and replace the potential Fjc by Fx0 in some interval of size
2lo included in [0, the solutions for the corresponding Schrodinger
equation for negatives energies E close to 0 will behave exponentially
due to the disorder. The exponential rate will be close to the Lyapunov

Annales de l’Institut Henri Poincaré - Physique theorique
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general the Lyapunov decreases when the energy increases, so, if x0 goes
to the left, the effective energy increases and the Green function will have
a slower decrease. Then, reintroducing the perturbation Fx - Fxo in the
interval of size 2lo does not change drastically the exponential behavior
of the Green function if F is not too large. This will be done using the
stability of solutions of differential equations under small perturbations.
After that, we will enlarge the size of the box using multiscale analy-
sis and reach sizes of the order of 1 / F with a control on the probability
measure of the set of potentials for which we can show the exponential
behavior. So we prove now,

THEOREM 2.1. - Suppose [HI], [H2L ~ = u 0 for some
u E Co and the tail vt small enough. Let 24 = [2014Eo, 0], there exists Fo
such that for 0  F  Fo, satisfies the condition C on a.

Remark. - The smallness of the tail evoked in Theorem 2.1 is explicit
through the condition (2.19) of the proof of Lemma 2.1 below.

Sketch of the proof. - Firstly, we note that for all interval 7l around the
origin and = 0( 1 / F), we have the following Wegner estimate [23] :
let E e R, ~ &#x3E; 0, then

for some cW &#x3E; 0.

The proof of the theorem is based on Lemma 2.1, which is the step 0
in the multiscale analysis. This corresponds to verify that ( 1.1 ) of C is
valid in all boxes [xo - + lo] included in [0, +00) for lo
large enough and F independent. After that, we follow the same steps as
in [ 12] . Let E E zl, by choosing an adapted scale, this procedure shows
the existence of 03BE &#x3E; 2 and y &#x3E; 0 such that,

for some complex neighborhood, a of E and a n RI = O(F2(03BE+1)/3).
From (2.3) the theorem easily follows.

LEMMA 2.1. - Let E E a, there exists lo &#x3E; 0, such that for alllo &#x3E; lo,
there exists yo &#x3E; 0, ç ~ 2, field Fo &#x3E; 0 and a F independent complex
neighbourhood of E, do such that for all 0  F  Fo, and for all

Vol. 71, nO 5-1999.
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intervals [0, if Xo j C an interval centered around ’

xo and Xb C with dist(Xo, ~) ~ lo/3 then,

Proof. - Denote x* = VM = supx~RSi|ui(x - i)|, then

x* is surely in the classically forbidden region for non-positive energies.
All finite intervals included in [x*, are such that the event in (2.4) is
realized, as a consequence of a result by [6,18] and the Wegner estimate.
Hence in the following we will only consider intervals having a nonempty
intersection with [0, x * ) . To study the Green function on a given interval
llxo,lo to the right of 0 we will proceed by the following steps.

First in we replace by Vt(x) = 03A3i03C9i 1Ci(x)u i(x - i ) then
we restrict it to and call the operator obtained with DBC at
the borders. For the random monodromy matrices from i - 1/2
to i + 1 /2, are independent, and have the same distribution. So we can
apply the large deviation theorem as presented in [8]. It says that we can
construct locally a solution of

with given initial condition at lo) = 0, lo) = 1,
and Ye &#x3E; 0, there exists 0  No(e, E - Fxo)  oo and E - Fxo)
such that for all integer, ~ &#x3E; E - Fxo)

where a = E - Fxo) and y’ is the Lyapunov exponent. At the second
step we want to study the behavior of the solutions

on the interval llxo,lo for all E in a small neighbourhood of E.

Considering Fx0 + E - E, as a small perturbation,
we will use the theory of stability of differential equations. In their book
Daleckii and Krein [ 13] addressed the question of the stability of Bohl
exponents (which describe the exponential behavior of the solutions at
infinity) for the differential system

Annales de l’Institut Henri Poincare - Physique theorique .
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and the perturbed system

when the unperturbed differential system admits an exponential splitting
of order n, the dimension of the system. In our case we do not use directly
this theorem since it concerns a property at +00, but looking at its proof
we see that it contains the exponential bounds on the solutions of the
differential equation on finite intervals.

So we are faced with checking the exponential splitting for the
differential equation Ht,03C9(0)03C6 = (E - On x0,l0 we consider
a solution ~+ which increases exponentially and a solution ~_ which
decreases exponentially and we denote ()+ == (~+(~o " ~o). 
and ()- == (~_ (xo - ~o)~(~o - lo)). If we call in R2, p+ and p_
resp. the projections on the directions 8+ and ()- and denote by U (.)
the monodromy matrix, by definition, exponential splitting means that

M and M, 0  M  oo.

Now, let us show that we can find ~+ and ~_ such that these

inequalities are true with probability close to 1. Let be
the probability space corresponding to the sites /o.....~o + lo of
11= we denote also Pi the probability space corresponding
to the single site i . Consider SZ~ the subset of SZ~ such that the solution of
(2.5), which verifies the initial conditions ~+(JCo 2014 /o) = 0, ~.(jco 2014 /o) ==
1 is an exponential solution in the following sense, Yn &#x3E; No &#x3E; No

By the large deviation theorem 1 - 1)).
Write now S2~ = and consider the subset of ~2~~
such that for given final condition + lo) = 0 and + lo) == 1,
~- is a the solution of (2.5) with exponential backward behavior, i.e,
bn &#x3E; No &#x3E; No,

then as a consequence of the large deviation theorem P’(03A9-’)  1 -

Vol. 71, n° 5-1999.
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We will say that the" splitting property ", S holds if the angle between
0’ and 8 + _ (0,1) is not smaller than For a given ==

~-~+2,.... moving causes an analytic change
of o - . Some standard arguments of [26] imply &#x3E; const

uniformly. Then the probability, once c~~~ is fixed that S is satisfied, is
1 - By the Fubini’s theorem, SZ~ being the subset of

SZ~ for which (2.11 ) and S are satisfied,

for some ~ &#x3E; 2 and suitable No. Here lo has to be sufficiently large in
order the calculated No becomes larger than No as necessary and in the
other hand lo &#x3E; 2~o. Then if we denote by S2~ ’ - = S2~ n we get

In the proof of the Daleckii-Krein theorem, it is necessary to bound ~+
and by exponentials all over this can be done using the fact that
in + No) if !! is the sup of the norms of the monodromy
matrices from site to site, the solutions are bounded above by So

if c~~ E SZ~ we have, &#x3E; A~o,

By using (2.14), the analog inequality for ~_ and property S, for lo large
enough, a straightforward analysis leads to,

and

From these estimates, we can find Fo &#x3E; 0, such that if 0  F  Fo, it
exists and 0/- solutions of (2.7) such that dn &#x3E; No,

Annales de l’Institut Henri Poincaré - Physique theorique
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with probability bounded below by 1 2014 l/2/o ~. The constants that appear
in these formula are under the condition (2.19) below, given by: ~+ _

c-,c+= const 
and C’-, C’+ = const ~T~N0e4~l0, here const denotes a strictly positive and
uniform constant, w is the bound of the perturbation, w = Flo + +

~E 2014 E I. Here appears the fact that the atomic tails, the complex energy
E and the field F have to be chosen such that,

in order (y’ - 6’-) to be positive. Notice that this condition fixes the value
Fo that the field cannot exceed.
For a given energy E, satisfying (2.19), there exists a linear combi-

nation, 1/J+ of 1/J+ which increases exponentially in the positive
direction and satisfy 1/r~+ (xo - 10) = 0 and 10) = 1, there also
exists a solution 03C8- which increases exponentially in the negative direc-
tion and satisfies + lo) = 0 and ~’ (xo + lo) == 1, then the Green
function associated to the operator Hl0 is given by

where we use the fact that the wronskian W (~+,1/n_) _ ~_ (xo - lo) ==
+ lo) . Notice that by using the Prufer variables, we have,

Now suppose that there exists a gap around E of size 8 = 2C yy -1 (7o) ~ ~,
for some uniform constant, this event has a probability given by the
Wegner estimate (2.2),

Vol. 71, n° 5-1999.
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Let E satisfying (2.19), then E - E ~  l/2c~(/o)~~ for lo large
enough, by standard arguments of the theory of differential equations
(see, e.g., [26]),

if 181 is small enough and then lo big enough. Suppose that if x E Xo
and y E Xb then jc  y, the other case is established in a same way,
by using == + lo). In this case, a straightforward
computation using (2.19) together with (2.22) and the estimates on the
solutions obtained above give (2.3) for some yo(E) &#x3E; 0 if lo big enough
and F small enough. Taking now No = supEEs = infE~S
and yo == infE~S 03B30(E), where S is the following energy compact set
S == { E - Fxo, E E L1, 0  xo  x * } , the lemma is proven. D

Remark. - By standard arguments see, e.g., Agmon type estimates [6],
the lemma is valid for all energy E E C with any imaginary part and
IReE - E ~ satisfying (2.19).
The arguments evoked in the proof show as a by-product that 

restricted to [0, oo) has only pure point spectrum with exponentially
decaying eigenfunctions. The theorem of large deviation which gives
the local exponential behavior of the solutions plays an essential role.
A similar fact has already been noticed in [24] (see also [28]) for discrete
random operators.

3. EIGENVALUES ESTIMATES FOR THE INTERIOR PART
AND EIGENFUNCTION LOCALIZATION

To use perturbation theory to recover the spectrum of the distorted
operator, 8) (see Section 4), we need to know, in the vicinity of
zero energy, the distance between the eigenvalues of operators 
restricted to some intervals I of the form I = (xa, is chosen such
that xa = 0  a  Cmax. Cmax = the last turning
point is then always larger than xa for F small. We denote by HI ( F) such
an operator. It is intuitively clear that the number of eigenvalues of HI ( F)
in the interval a = [2014Eo, 0] increases as F goes to 0 since the positive
region for which the potential is smaller than 0, has a size 0(1/F). We
want to find some constants C1  C2 such that this number, denoted in
the following by N(0394), is bounded by C1/F and C2/F. Calling 
the integrated density of states for we get:

de l’Institut Henri Poincaré - Physique theorique
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THEOREM 3.1. - Let L1 = [-Eo, 0] be a real energy interval and

1 /2  ~  1. Suppose [H2], [H3] and choose an interval I = (xa, oo)
for which xa = a / F, 0  a  Cmax. Then there exists Fo and two strictly
positive constants C 1, C2 uniform with respect to c~ E S2, such that for
0FFo,

where a_ = a + and a’ == ~ + 

The condition a + 03C9Mvt  Um insures the positivity
of No( -a_).

Proof. -Choose a point b/F, b &#x3E; VM, = 03C9M supx~R 03A3i|ui(x -
i)|, by the classical results on the spectral stability [6,18], the operators
N1 and ~, I = b/ F) have the same number of eigenvalues
in the interval 0394. Let us first replace the potential by Vt(x) =

03A3i03C9i1Ciui(x - i ) and denote by Ht, the corresponding operator. We cut
the interval I in 2(~ 2014~)/~~ intervals of length a ~ /2F and consider
the restriction on these intervals with Neumann boundary
condition (NB C)and call them hi(F), i = 1... 2 (b - For each,
we will study the number of eigenvalues inside the energy interval 0394.

Let us call A~(E) and No ( E ) the number of eigenvalues smaller
than E of hi (F) and respectively. Since the variation of Fx in
the first interval is a ~ /2 and in the form sense, h 1 (o) -~- a  
h 1 (o) -I- a + I a I /2, one obtains,

and then

Similarly, in the second interval, since

Vol. 71, n° 5-1999.
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one obtains,

and so on, for all the intervals. Taking the sum for all the intervals of the
right hand side terms, this quantity is larger than

Due to the independence, = ENo ( E ) , (E denoting the expecta-
tion value with respect to the probability space), so expression (3.5) can
be written as,

To evaluate a lower bound for the sum (3.6) at F small, we compute
the probability that the differences are smaller than const F-~ for some
0  ~  1. In fact, let 1 /2  ~  1, we divide the ith interval in cl F
intervals of length zB/(2cF~), called and consider the number of

eigenvalues smaller than E for the operators defined as the

restrictions to these intervals of the operator /~(0). For fixed i, the 
are independent. So their sum has a variance which is proportional to
the number of intervals cl F times the variance of one of them, i.e.,
const/ F 1-~ . Then by Chebyshev,

for all v &#x3E; 0 and some constant c’ &#x3E; 0. Let Nl be the quantity ¿j A~o~, to
go from the to /~ (0) we have to take off c I F boundary conditions.
It is easy to see that the condition ( No - ENi0| &#x3E; 03B2 &#x3E; 0, implies

&#x3E; (,8 - 2c) F-~ if ~6 is large enough, then

de l’Institut Henri Poincaré - Physique theorique
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Using formula (3.8) in the bound (3.6), the sum of eigenvalues of
the operator in the interval a is greater than (here we have
neglected the first positive term in (3.6)),

with a probability bounded below by 1 - 0(F~ ~), or introducing the
integrated density of states by standard arguments see, e.g., [ 10] it is
greater than

To get the number of eigenvalues for we have to take off the

NBC. This can modify the total number number of eigenvalues by the
number of NB C, i. e., by 2 (b - a ) / d . So the number of eigenvalues of

is greater than

with a probability bounded below by 1 - -1 ) . To evaluate the
number of eigenvalues for 7~(F) we have to take into account the tails

 0. They introduce a correction which is small in norm. From
the inequalities

we can deduce that the number of eigenvalues for in the interval

a is greater than the number of eigenvalues for Ht I( F) in the interval
[2014Eo + 0]. So finally, we get by (3.11 ) that this number is bounded
below by,

with the probability above, this proves the lower bound part of theorem.
For the upper bound, we follow from the same scheme as the previous
one, but here we divide the interval b/F) in (b - intervals of

length a f F and we use the DBC instead NBC to define the operators on
these intervals. D

Vol. 71, n° 5-1999.
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Remark. - We have not a precise control on the distribution of

eigenvalues, even if we would guess that they obey a law close to Poisson,
like for F = 0. In particular we cannot assert that from place to place they
do not accumulate on intervals exponentially small with respect to F.
We denote by Cl a set of eigenvalues with exponentially small distance
between them. Using some standard arguments of [23], we get that the
number of eigenvalues of in the energy interval o , which cannot
exceed nmax/F for some nmax &#x3E; o.

We now want to prove that some eigenvectors live at the right side of
some point intl &#x3E; xext, of course xlnt has to be smaller than the last turning
point. It has been proven recently in [ 14] that for the discrete Anderson
model the distribution of the maxima of the eigenvectors is uniform on
the line and we guess that the proof could be adapted in our case to some
large intervals even if we do not have the translational invariance for the
potential. As in fact, we do not need in Section 5 such a strong result, here
we only prove the following theorem, let is the operator restricted
to I = (xa, oo) and P0394 its spectral projector on the energy interval a,
then:

THEOREM the same assumptions as in Theorem 3.1,
there exists some constants, 0fooo, and a point

 xa  oo with dist(xa, xa) = Ca/F for some 0  Ca  00,

uniformly with respect to c~ E ~2, such that for all 0  F  Fo,

here Ix is the characteristic function of interval X = [x, +(0) with
x  xa. Moreover there exists c &#x3E; 0 such that the event : HI ( F) has at
least one eigenvector ø associated to an eigenvalue in a satisfying,

has a probability bounded below by 1 - 0

Proof - By the standard o arguments of [23], we can see that

Then
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So by using Theorem 3.1, we get (3.14), choosing ca small enough.
On the other hand, if one writes == ~i (~i , where

the 03C6i are the eigenvectors of then by (3.1) and (3.14), there
exists a constant c and at least an eigenvector 03C6 = 03C6i for which

I (~~ ~ 1X Pa~~ ) I &#x3E; c.
In Section 5, we will also use the family of operators defined

on L 2 (R) as,

for some point 0  oo which will be given in Section 5. Let

(~2&#x3E;, r&#x3E;, P&#x3E; ) the probability space corresponding to sites ~ Then

clearly Theorems 3.1 and 3.2 hold with respect to the probability space

For a given potential configuration, and a point xa = Ea/ F,
we will use the notation Cl~ for a cluster of eigenvalues which contains
at least one eigenvalue, corresponding to an eigenvector localized at the
right side of xa in the sense of Theorem 3.2. 0

4. SPECTRAL DEFORMATION

In this section, we consider an energy interval, a as in Theorem 1.1.
To define resonances, we use the complex transformation method of [21 ],
so we have to define an appropriate family of complexified operators
7~(0) = 6 ) , 6 E C, with H = 7~(F). In particular we construct
for () E R a distortion such that, for () E C the exterior operator 
has with good probability, a complex neighbourhood of some E E a in
its resolvent set This problem has been originally solved in
[5]. For further applications in the next section we need to consider firstly
a family of exterior operators which is slightly different from the operator
Hext = defined in Section 2, let
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on Hext with DBC at where

for some point xext  xM and dist(xext,, xM ) - 0(1/F). The random
operator hext only depends on the random variables  we

denote by (~2, T, P) the corresponding probability space. Notice also
that the operators hext and Hext are essentially selfadjoint on 
{M E Cü(( -00, == 0}. Return now to the definition of the
family N(0), ~ E C, suppose F small enough, and

consider a nonincreasing function s E satisfying,

where as, a~ are strictly negative constants such that xs  0. Define

where v == + Fx. The field f is a Coo solution of

Let fe (x) = x +0/(jc), () E R, be the associated distortion. Formula (4.5)
is a type of virial equality which implies that the corresponding classical
particle moving in the potential v at energy E is non-trapped (see, e.g.,
[6,18]), we will see that (4.5) is an essential ingredient in our analysis. It
holds, for 0  F  Fo and Fo small enough,

which shows that fe is a translation in a neighbourhood of 2014oo. On the
other hand a straightforward analysis from (4.5) yields to,

near x = ElF ~- xs and
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in a neighbourhood of 2014oo, these estimates are valid for all E E L1 and
c~~ E ~2. For F and () small enough fe is a Coo diffeomorphism on R
which implements a family of unitary operators on H by

Let

By assumption [HI], then for F small enough and some constant ce &#x3E; 0,
if I ()  the operators V~, (8 ) have an analytic extension as bounded
operators on 7~. For () E R and small,

then for I() 0  F  Fo, Fo small enough,

is a type A analytic family of operators. Similarly we define the family
and It must be noticed that by some familiar arguments

of perturbation theory, we get easily that these operators have a nonempty
resolvent set, in particular it contains the half plane E C, yo }
for some yo &#x3E; 0 and big enough. For the sequel, we need more than this
last simple spectral estimate, our analysis is based on a Wegner estimate
for hext. Let I be a real interval and h I be the restriction of hext to I, we
have:

LEMMA 4.1. - Let E real energy &#x3E; 0, then there exists
an uniform constant cW &#x3E; 0 with respect to the energy E E a, such that

The proof of this lemma is the same as in [23] where a Wegner estimate
for a general Anderson model is given, notice that this fact is also true for
the restriction of Hext to the interval I.

t ) == {À E R, !E - ~ ~ ~ ~ ~ ( E , t ) its complement in Rand

Then the main result of this section is the following. Let 
F, z), z E be the resolvent of we have:
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THEOREM 4.1. - Let E E a be a real energy, 0  8  1, 0  48’  8,

then there exists some strictly positive constants Fo and Cext uniform with
respect to c~~ E SZ~ and E E a, such thatfor o = i,8, ,8 = F3~2+3£~g, 0 
F  Fo, the event (E, F) :

where p = -1 /2 + 3~/8  0, has a probability measure , satisfying,
P~(E,F))~1-0(/~).
To prove Theorem 4.1 we introduce 

. for o = 0 ~ f3 ~ ~3/2+3~/s and o
0F~o, zeCthe family of operators,

on For () small enough, the operators h(z) and (h eXt (8 ) _ z) are
"quasi-similar", in the sense that they differ from each other by the
multiplication by the weight function fe which is a bounded one to one
mapping on the domain of with a bounded inverse.
We have,

where for some 0 ~ ~ ~ 

Notice that in (4.17) we have used,

which by the conditions of Theorem 4.1 and by (4.7) verifies:
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we also have

Finally, we will denote by r(z) = r(~, z), if it exists, the inverse of h(z).
The spectral analysis of the operator h(z) has to take into account the
singularity of the potential at -~ which is controlled by the choice of the
distortion and the possible eigenstates localized in the region of turning
points which are controlled by Wegner estimates. These two types of
regimes can be described by the geometric perturbation theory for two
wells potentials of the appendix. Hence, let 0  £  1 and consider the

following non-disjoint partition of 11 U 12,

and the operators hk(z), k = 1, 2, defined on ?-~k = L2(Ik) as the
restriction of the operator on Ik. We will denote by rk (z ) , k = 1, 2,
if they exist, the inverse of these operators.

LEMMA 4.2. - Let E E a be a real energy, 0  8  1 and 0  48’  8.

Then there exists some strictly positive constants Fo and C2 uniform
with respect c~~ E S2~ and E E d, such that for 8 = 0 ~ fJ C
F3~2+3£~g, , 0  F  Fo, the event ~2 (E, F) : .

has a probability, P(03BE2(F))  1 - 0

Proof. - Consider first the operator

on H2, here hI2 is the restriction of hext on I2 = + x2,xext). Let

~2 ( F) be the event,
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i.e., 03B4(E, 8F3+2~+~’) is a gap for hI2, then for z E v2, F small enough, the
Neumann series imply that ~2,0 (~) has a bounded inverse, r2,0(Z) on 7~2
and .

by Lemma 4.1, the event 03BE2(E, F) has a probability P03BE(03BE2)  1-O(F~’).
In the sequel, we will use {fe, x} = + S2, where S1, S2 E Coo(R) and

verify, Sl = S2 = 0(F~+~+~) (see, e. g., (4.7)). Consider now,
for 1] &#x3E; 0, the family of operators,

on 7~2. For F small enough and z such that z)) - r~ / 4  0,
from (4.20), we have,

in the quadratic form sense on D (h2,1 (z, 1])). This shows by a straightfor-
ward calculus [25] that du E D(122,1(.z, r~)),

Clearly, we get the same estimate for the adj oint operator, (h 2,1 (z , r~ ) ) *
and by standard arguments [22], this implies that h2,1 (,z, r~) has a bounded
inverse on ~C2 , ~2,i(~ .z ) and

On the other hand by (4.21), for F small enough, we have

which shows by the Cauchy-Schwartz inequality,

Then let z E v(E, 6F~2014/, -~/4), by (4.31), (4.33) and the following
resolvent equation,
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where W = ~2.1~,’?) - h2,o(,z) = i~8s(-1 + O(Fp)) - ~, we get,

for a strictly positive constant uniform with respect c~~ E ~2. Suppose
17 = 4~11/2+3~+2~ for F small enough, by standard arguments
of the regular perturbation theory and (4.27), the operator h2 (z) _
h 2,1 (.z , 17) + S2 - i r~ has a bounded inverse and

together with (4.27) implies (4.24). Finally since the event 2 ’
implies ~2(E, F), the lemma is proven. 0

We now give some spectral estimates for the operator We have:

LEMMA 4.3. - Let E E 24 be a real energy, 0  8  1, then there exists

Fo &#x3E; 0, such that for () = 0 ~ ~6 ~ f3/2+3./s 0  F  Fo, vl =

~(E,F’~/4) 

Notice that this result is deterministic, this is due to the fact that on 11
the system is weakly affected by the random potential. The proof of this
statement follows easily from [5] since on 11 by (4.21), Im(f’203B8(V(03B8) -
E))  -03B2/4  0 for F small enough.

Let ~a and ~b be two bounded intervals contained in {x  such

that &#x3E; 0 and 03C8 a Coo characteristic function of the set

{~; dist(x, ~a) and ~b)  dist(~a, ~b)}.

LEMMA 4.4. - With the same conditions as in Lemma 4.3, ~a and ~b
being as above, then

for some constant, C1 &#x3E; 0 and 1 &#x3E; &#x3E; 0, where d (. , .) denotes the semi-
distance on I1 associated with the metric, ds2 = (03B203C8/16)2 ( E - Fx ) -1.
The proof of this lemma is based on the usual boost technique (see,

e.g., [6]), by noticing as before that by (4.21), on I1, s = 1 and then
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the imaginary part of the operator h 1 (z) has a definite sign for F small
enough.
We can give now the

Proof of Theorem 4.1. - Suppose F small enough, let z with &#x3E; 0,
big enough, |Re z - E|  2 F3+2£+£’ and

acting on ~Cd = T~i 1 ® 7~2. Recall that

is a core for h (z) and

is a core for h2 (z) . To compare operators h(z) and hd(z), we use here, a
slightly different perturbation theory than the one described in appendix.
Hence let Uk == 1~, ~ ~ ~ ~=1,2, and define the functions

such that:

here and in the sequel denotes a generic, strictly positive F independent
constant. Clearly ~J’k~~ == O ( F2+E ) . On the other hand we choose
Jk, k = 1, 2, as the characteristic functions of {jc E R, dist(x, 
dist(U1, U2 ) / 2 } , we also denote by the same symbol the corresponding
identification operators. For k = 1, 2 and in a dense subset of

~k X 

this identity is valid in the sense of bounded operators from to 7~,
if the map on 7~ u -+ and the map on 

are bounded operators respectively on these
facts are considered below. The formula (4.39) leads to define r(z) from
the following GPF (see Appendix),
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where we have chosen = J’~’k(F(5+3~)/2), (4.41) is valid in the sense
of bounded operators on ?-~ provided  1 with

== (see (A.10) and (A.11)). To justify (4.41) the
following energy inequality is useful, obtained from a straightforward
calculus, let k = 1, 2, l = 1, 2, u E 0  F  Fo, Im z &#x3E; 0 big
enoush and Re ,z - E! ~ 2F~+~+~, then

valid uniformly on S2~ with

the functions 03B6k E k=1,2, are such that

and we denote ~k = support of 03B6k. On one hand (4.42) implies, in the
norm operator sense,

for another strictly positive constant, uniform with respect to c~~ E 
In particular the map on u 2014~ and the map on

u k ---+ are bounded operators respectively on
7~ and these estimates extend to all z E v . On the other hand, in the
same conditions as for (4.43) we get from (4.42),

for k ; k and then by Lemma 4.3,

for some 0  /~i  which is E and c~~ independent, consequently

Suppose now that the configuration c~~ are such that ~2 ( F) is realized

and let z E v . For F small enough, by Lemmas 4.1, 4.2 and (4.47), (4.41 )
Vol. 71, n° 5-1999.
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defines r Z as a bounded operator on Hext so v C p z (notice that
for z E v, ; I are " uniformly bounded). We prove " (4.15 ), from
(4.42), in fact, we get

tor some another U  1  1 and where the constants are strictly
positive and uniform with respect to E E a. On, the other hand for
z E v, dist-1(z, 03B4c(E, F3+2~+~’)), then by using Lemma 4.1
and formulas (4.41 ), (4.45)-(4.49) we obtain (4.15). Finally since the
event ~2 ( E , F ) implies ~’ ( E , F), Theorem 4.1 is proven. D

One consequence of Theorem 4.1 concerns the operator Since

by construction we have = for some 6 (see
[H2]), if we choose in the sequel 6 &#x3E; 11/2 + 38 + 2e’ (38 + 2c’ 
1 /2), then:

THEOREM 4.2. - Let E E a be a real energy, 0  4c’  c, 3c + 28’ 

1 /2 there exists some strictly positive constants, Fo and eext, uniform
with respect to 03C9 ~ 03A9 ahd E E a, such that for 0  F  Fo, for all
~=(~,~)e~, ~e~(E,F)~~0=~, ~=p3/2+3~

The probability of this last event is bounded below by 1 - 0(F~).
The condition on the random potential Vev, 6, can be removed, if
we follow the arguments of the proof of Theorem 4.1 with the operator

instead, but for further application in Section 5, we need to use
this procedure which consists to construct first the event for and

. then show that this event is stable under the perturbation 
We finish this section by giving technical inequalities, [ 12] needed to

use the perturbation theory of Section 5. Suppose F small enough, let
= Rext n Rint and ~int, Xext C 11 be the two disjoint intervals defined in

Section 2, recall that distant, Xext) = const/ F. Let HI2 be the restriction
of H on 12 and ext = {x E R; dist(x, 1]}, we have, for F small
enough, uniformly on 03A9
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Both formulas (4.50) and (4.51 ) will be used together, this leads to

suppose that there exists a spectral gap for HI2 around E and according to
the remark above we first assume the existence of a spectral gap around
the real energy E for the operator in fact this last event is implicit in
the proof of Lemma 4.2 and Theorem 4.1, see (4.26). Notice also that for
F small enough and all cv~ E ~(E, F) the existence of a spectral gap for
hI2 around E of size 0(F~~) implies a spectral gap for HI2 around E
with a size 0(F~~~). Hence, we define the exterior event ext(E, F)
as it will be used in Section 5, 6’, c’ being as above.

The potential configuration belongs to F) if:
(i) the spectral deformation of /~(F), h~~ (F) (8), in the sense

defined above is such that there exists some constants Fo small enough
and C1, C2, C3 uniform with respect to c~~ E S2~ and the energy E such
that for 0  F  Fo, 8 = ~B = ~3/2+3./8 ~ = _ 1 /2 + 3~/8, 0 
4e  8’, 38 + 28’  1 /2,

(ii) the restriction of hext on the interval 12, hI2 has a spectral gap
around E, with size 0(F3+~+~)

and for F small enough, we have the estimate F)) &#x3E; 1 -

5. SPECTRAL STABILITY AND EXISTENCE OF
RESONANCES

In this section, we suppose that the assumptions of Theorem 1.1 are
satisfied. One of the main technical problems here, is the dependance of
the random operators H int == Hint(F) and Hext = through the
potential. Given a small interval around an energy E E a, if we choose
a potential configuration such that Hint has an eigenvalue in this interval
and the associated eigenstate is well localized, this configuration has to be
such that there exists a complex deformation, which contains in
its resolvent set a complex neighbourhood of the interval. Such a choice
will allow to show that this eigenvalue which is also an eigenvalue of
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Hint ® turns resonance when going to H = In the

sequel we will denote by h the set of these good configurations.
In the discussion below, we suppose F small. To construct 7~, we

divide the probability space in the following way. Let xintr = E Rint
be a point at the right of xext: cext   Cmax . We denote Rr t the
interior region oo) . Let xM be the middle point between xext and xintr
and (~2:,T~,P), (~2~,r&#x3E;,P&#x3E;), the probability space corresponding
respectively to the sites i  xM, ~ so

To the interior region Rlnt, we associate the interior operator,

acting on with DBC at x = Due to the large separation
between Rr t and Rext the random operators hint03C9 and the one defined
in Section 4, = /z~(F) are weakly dependant. Our strategy consist
first to construct the set of good configurations, denoted by for

(8) ® ~~t This operator plays here, a central role, then modulo
a set of small probability, we will show that hd is stable under the

perturbation EB Hint.
Let h&#x3E; be the set of configurations c~&#x3E; E ~2&#x3E; for which the operator

/~ has const/ F eigenvalues in the energy interval a, and whose at least
one of them is associated to a well localized state with respect to the

point xintr (see Section 3). This event has a probability measure satisfying
1 - O ( F 2~ -1 ) , for some 1 / 2  ~  1. On the other hand for

technical reasons we also have to consider together the eigenvalues which
are not well separated. Hence let ~ &#x3E; 0 and define a cluster Cl c 03C3(hint03C9&#x3E;)
as:

and denote Cl~ the cluster which contains at least one eigenvalue whose
associated eigenstate is well localized with respect to For each

c~~ E 7~ there exists a cluster Cl+ of eigenvalues of h~~ such that

Cl+ n ZB ~ 0, eventually this cluster contains only one eigenvalue. Notice
that for F small,  uniformly on F. Let
h~, n E 0... N(F), for some finite integer A~(F), a disjoint partition
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of r&#x3E; ,

where the sets h~ are inductively defined in the following way. Let
E E ~ and x * == where 1]* &#x3E; 1}. Notice that the interval

[x*, +00) is contained in the classically forbidden region,

for all c~&#x3E; E ~2&#x3E;. Now, fix c~~ E jT&#x3E; and let Clo be a cluster of eigenvalues
for hint0 such that Ch n 0 and define

where we use the notation, Iw&#x3E; - 03C90&#x3E;|1* = 03C90i|. Then we
have:

LEMMA 5.1. - There exits Fo small enough, uniform with respect to
c~&#x3E; E S2&#x3E;, and b’F, 0  F  Fo, there exists a real neighbourhood of
Clo , with I C 2(nmaX/F) such that for all 03C9&#x3E; E h°
the operator hint03C9&#x3E; has a cluster Cl+of eigenvalues in No.

Proof - Let c~&#x3E; E h°, writing

where

and

The perturbation v’* is uniformly supported in the classically forbidden
region CF, consequently by the general results on the spectral stability
see, e.g., [6,18], for F small enough, there exists a cluster Cl+ of
eigenvalues of h* == + v* satisfying the statement of the lemma. On
the other hand, by noticing that for 03C9&#x3E; E 03930&#x3E;, we have by construction of
the random potential = O ( F2 uniformly on ~2&#x3E;.
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This due to (5.6) and the fact that the sites i &#x3E; x* have an exponentially
small contribution to the potential v* . Then for F small enough, by
standard arguments of the regular perturbation theory [27], the statement
also follows for the operators h~~ = h* -)- v* and this proves the lemma.
Then for some ~ E h&#x3E; B F~ let

and successively for some 6~ E (r&#x3E; B ~). we construct the set

So we obtain a disjoint partition of f&#x3E;, h~ for some

N = N ( F) . For each k = 0...~V(F), it exists an interval of size

around a cluster Clk of eigenvalues of
such that Nk contains a cluster Cl+ of eigenvalues of the operator

hing03C9&#x3E;, 03C9&#x3E; E 0393k&#x3E;. From these uniform spectral estimates for the interior part
on each 77~ we now complete these right configurations by choosing the
left configurations c~~ E ~ C SZ~ for which the exterior operator /~
has the desired property.

In the cluster Clk of eigenvalues of we choose ~,k. For c~~ E ~2,
consider the complexified operator A~~(0); ~ 9 ~ I small enough, obtained
through the spectral deformation defined at E = Àk in the sense of Section
4, recall that for ~8 ~ I  0  F  Fo, Fo small enough, h~~ (9) is a
type A analytic family of operators on Let h~ c S2~ be the event

~). we have P&#x3E;(/~) = 1 - for some E’ &#x3E; 0. In particular
for 03C9 E 03C9, Im03B8 = F3/2+3~/8, the resolvent set of contains the

set ~(~, 1, 1 ) = ~(~~ F~+~+~B _~n/2+3.+2~ which clearly contains
A4 for F small enough. Define now the disjoint sets hk = h~ x h~ and

which is a measurable set, we have,
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with a suitable choice of the constant 8’. We summarize this discussion

by the following property denoted for the operator h ~~ (()) E9
hint úJ E rd: .

There exists an uniform Fo small enough, such that for 0  F  Fo, there
exists some finite constants Cl, C2, C3, C4 &#x3E; 0, uniform with respect to
F, the energy E E d and all c~ E hd, such that,

(i) the event F) is realized for some À E L1 and for the
constants, C1, C2, C3,

(ii) there exists real neighbourhood .J~(~.) . o,f’ À, with 

C4, N(~.) C v (~., Cl , C2) and N(~.) contains a cluster Cl+ of
eigenvalues of the operator h~~ .

In this first step C1 1 = C2 = 2, C3 = Cext and C4 = 2(nmax/ F ) exp( - F ) .
We want to show that the property is stable under the perturba-

tion Hext(o) E9 where Hintr 1S the restriction of Hint on l.e.,

acting on with DBC at x == This is done by using again the
regular perturbation theory and the estimates, obtained from [H2],

which are uniform with respect to úJ E S2. Hence, let úJ E hk for some
k = 1... N (F), due to our choice, the operator has only const/ F

eigenvalues in all bounded real interval. Then there exist some gap

(gr, -f- ) , respectively in

satisfying, =0(F~+~) and
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uniformly with respect to c~~ E ~2. For F small enough, then by (5.12)
(~ +) are stable when going to Hrnt in the sense that there exists some

gaps for C and C gr,+, satisfying =
0(~5+2~+2~~ uniformly on h. We then define the spectral projectors
associated respectively to the operators hint, by

for some suitable contour C, we have,

uniformly on ~2. Notice that here, our assumptions and [H2] imply
(Y 2014 (5 + 2£ + 2£’) &#x3E; 0. These considerations together with Theorem 4.2
proves

LEMMA 5.2. - Let 1 &#x3E; ~~’ &#x3E; 0, £ &#x3E; 4£’ and 3£ + 2£’  1 /2. There
exists Fo, such that for 0  F  Fo, () = ,8 = ~3/2+3~/8~ ~ ~ ~j the
property true for EB Hrnt. In this case for each 03C9 E hd,
IN(À) == O ( F4+2~+2~~ ) and satisfy the uniform estimate on hd,

here A~ denoting the complement of the set A.

The third step of our method consists in showing that is true

for EB Hint on some set h’ c with a probability 
1 - for F small enough. Let intr == xintl == cintl/F E Rint
such that, cintr  intr  cintl  Cmax where intr corresponds in Theorem 3.2
to xa while xintr corresponds to xa and in the other hand dist(xintr, xlnt) ==

Let be the restriction of the operator on (0 ==
xint, xintl). By Theorem 3.2 at least one eigenstate of Hintr is localized at
the right of By using the geometric perturbation theory, described
in Appendix, we compare the operator Hint with EB Hrnt and
if J, J denote the identification operators defined according to the
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decomposition, Rint - Rlnt U we have for F small enough, z E
p(H/nt) U p(H;nt) and o  1,

In (5.18), lint Jintr, intl, intr denote the cut-off functions and Rd(z) _
Rlnt(z) EB Formula (5.18) defined Rint(z) as bounded operator on
?oCint which implies that .z E p (Hlnt) .
LEMMA 5.3. - Let 1 &#x3E; 8, ~’ &#x3E; 0, 8 &#x3E; 48’ and 38 -E- 28’  1 /2. There

exits Fo, such that for 0  F  Fo, e = ,8 = F3~2+3~/8, the property
is true for the operator HeXt(9) EB Hint on a set h’ C h and

For each 1-’’, IN(À) I - O(F3+2~+£’) and verifies the following
uniform estimates on I-’’,

Proof. - By using (A.16) we have, for F small enough,

uniformly on jT, by our general condition C, the event,

Re Z E a and for some y &#x3E; 0, is realized with a probability satisfying,
P &#x3E; 1 - So, let r’ be the set of 03C9 E hd for which (5.22) is
satisfied, clearly,

for suitable " choice " of ~. Then for such configuration, by (5.18), if
o
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z E For cv E h’, let À e a and .l~(~.) as given in Lemma 5.2,
recall that on both sides of ~(~), there exist some gaps, G~-, in

the spectrum of Hintr satisfying , I Gr,+ = O(F5+2~+2~’) uniformly
on 7~. On the other hand, since the operator Hi nt has only a finite
number on eigenvalues in all real bounded interval, there exists some gaps
Gd C G - G+ C G for the operator Hd = Hi nt EB Hintr verifying,
G, G~ = O ( F6+2£+2~~ ) uniformly on h’ and by (5.24) this also holds
for the operator We denote by G-, G + the gaps of H int and again
by N(03BB), the spectral interval of Hint between G_, G+. The lemma is
proven if we show that .l~(~,) contains a cluster Cl+ of eigenvalues for
Hint, By construction of the function intl and the spectral interval N(03BB),
there exists u E Hint, = 1, Jrntu = u 0) and 
const &#x3E; 0 where Prnt denotes the spectral projector on the interval .J~(~.)
associated to the operator Hrnt. Then if C denotes a suitable contour in C,
by (5.18) for F small enough, we get,

By estimates (A.15), (5.22) and lei = 0(F~~’) we have for F small
enough,

which proves that ~ pintu II I const &#x3E; 0. We prove now one of the main

results of this section (see Section 3 for the definition of nmax):.

THEOREM 5.1 (on the spectral stability). - Suppose that the assump-
tions of Theorem 1.1 are satisfied. Let a = [-Eo, 0], 1 &#x3E; e, e’ &#x3E; 0, 3e -I-
2e’  1 /2 and 8 &#x3E; 4E’. There exits Fo, so that if 0  F  Fo, there exists
1-’ C S2 with a probability measure satisfying

and for all úJ E h there exists À E d such that for 9 = ~8 - F’3~2+3£/8
the complexified operator H (8 ), has at least one and at most nmax/ F’

eigenvalues in a complex neighbourhood of À. On the other hand i, f
.zl , l E 1... nmax/ F’, denotes such an eigenvalue, then,

Annales de l’Institut Henri Poincare - Physique theorique



531RANDOM POTENTIALS OF ANDERSON TYPE

for some uniform constants t &#x3E; 0 and cl &#x3E; 0.

Proof. - Let J, J be the identification operators defined according to
the decomposition R = Rint U Let 0  F  Fo, () ~B ==
F3~2+3~~g and choose first úJ E ~2. For z E n and

 1 we have (see A.11)

where /~(~ z) denotes the resolvent of the operator

formula (5.29) holds in a bounded operator sense on 7~. By the estimates
of the appendix, we have,

the second term of the r.h. s. of (5.30) is estimated by (4.51 ) as

and 0 the arguments of the proof of Lemma  4.5 applied to the operator
instead give,

uniformly on where int being defined in the same way as ext. Notice
that by construction we have good spectral information on HI2 and Hlnt
near the energy ~, E a and then some estimate on their resolvent. For
Rez E a, we consider the following events,

and
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for some uniform constants y &#x3E; 0, by the condition C, this event has a
probability P ~ 1 - Define the set h" _ {c~ E r’ s.t. formulas
(5.32) and (5.33) hold}, then

For such configurations and for F small enough, by construction, there
exists ~, E o such that the complexified operator contains v =

~(A.F~~~, _~n/2+3g+2c~ ~ ~ resolvent set and there exists a spectral
gap of size F~4+2£+2£’) around ~, for the operator On the other hand,
by Lemma 5.3 there exists some gaps G+, G- around a spectral
interval N(03BB) for the operator Hint containing a cluster Cl+ of eigenvalues
and we have obtained the uniform estimate O(F6+2£+2£’).
There also exists some gaps Gi, Gd and G+ c Gi, G- c Gd for
the operator, Hintl EB satisfying the same uniform estimate, so the
same holds for the operator Formulas (5.33) and (5.34) together
with (5.29), (5.31 ) and (5.32) imply that for F small enough, z E v and

that z E /)(/-/(0)). In particular if H (8 ) has eigenvalues near A/~(~), then
their imaginary part satisfy (5.28).

For the configuration chosen above and for a suitable contour C around
.A/’(~), we define the spectral projector, P (8) for the operator H (B)
associated with the spectrum inside C, by

notice that by construction we also have p int - _ (2i ~c ) -1 
and since the complexified exterior operator has no spectrum

inside C the corresponding spectral projector O. Clearly the

arguments of the proof of Lemma 5.3, applied to the projectors P(0) and
Pint, imply that dimP(9) &#x3E; 0. We now show that dim P(03B8)  dim Pint,
hence let 2" a map from Ran P((9) ---+ Ran defined by

our last statement is proven if in these 
" conditions I is an injective " map o

and o to see " this fact, we need 0 some " estimates on z)Jextll
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and 0 ’ For Re z E A since support n support Jext
= 0 (A.14) gives, for F small enough, uniformly on h",

On the other hand, let Jext ~ C~(Rext) such that Jext ext = 0 and
== 1 if dist(x, support ext) &#x3E; ~ for some ~ &#x3E; 0 and F indepen-

dent, we denote support(Jext)’ == ~ext, then

and by using the formula (4.52) with the function Jext instead, for F small
enough we get,

and then,

Similarly, we have,

which lead us to define a new event, consider the set of configurations c~
for which, .

and

Re z E a for some y &#x3E; 0 and finally the event r = E I’" s.t. formulas

(5.45) and (5.46) hold}. By Theorem 2.1, for F small enough, we have
the estimate

Then let 03C9 E 0393, a straightforward calculation gives
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for 1 and 0 this estimate " holds uniformly for z E C and 0
for 60 E r. For all cp E H, we have !! II |JintPintint03C6~, then by
(5.29), (5.48) for F small enough,

which shows, that for F small enough, ~ is an injective map and this
proves the theorem. D

By some standard arguments see, e.g., [27,21 ], an immediate corollary
of this result is

THEOREM 5.2 (on the existence of spectral resonances). - In the same
conditions as in Theorem 5.1, there exists c’, Fo &#x3E; 0 and small enough,
such that for 0  F  Fo, there exists h C S2 with a probability measure
satisfying

such that for all úJ E jT, the operator has at least one resonance

whose real part is in a and the imaginary part satisfies (5.28).

We now give the proof of Theorem 1.1: it follows from Theorem 5.2
and the Borel-Cantelli lemma passing to the complement of the event
given in Theorem 5.2.

Notice that Theorem 1.1 is an improvement of Theorem 5.2 in the
sense that it gives the uniformity with respect to F, for the result on the
existence of resonances of 
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APPENDIX: THE GEOMETRIC PERTURBATION THEORY

In this section, we describe the perturbation framework adapted to our
problem, for a more general version see, e.g., [5,6]. Let H (F) be the
S chrodinger operator on ~C = L 2 (R) ,
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and suppose V E Then H(F) is essentially selfadjoint on C =
The spectral analysis of H is done here from local information

given, e.g. by the geometry of the potential. Hence let Ha = Ha(F), a =
1, 2, the local operators, defined respectively on ~Ca = as the
restriction of H on TZa = (-00, xa) (see the introduction for definitions).
Here x 1 = x2 = x2 ( F ) , depend continuously on F, 2014oo  x2 
x  +00 and

It must be noted that the set E ~p = 0 on is a core for H,
in the sequel we will denote by Ca the core for Ha. Let Hd == 
Hl EB H2 acting on = T~i 1 ® ~-C2 be the decoupled operator, we want to
compare the operators H and Hd. Let Fo &#x3E; F &#x3E; 0 for some Fo &#x3E; 0, we
introduce the identification operator J : H1 (B H2 -+ H, defined from the
cut-off functions Ja E which are positive, monotone and satisfy
Ja(x) == 1 if &#x3E; yy, for some ~ &#x3E; 0 and F independent, we
also denote by Ja the identification operators,

On the other hand let xm the middle point between x2 and the two

positive functions Ja, a = 1, 2, on R, such that Jl -f- J2 = 1 on Rand

as above, let J be the associated identification operator, clearly, JY* =
1~, i.e., J* is a right inverse of the operator J. Let now z E p(H) n
p(Hd), then we have the Geometric Resolvent Equation, between R(z) ==
(H - and == (Hd - (G.R.E. in short),

where (support J’a) ---+ (here H1 denoting the standard
Sobolev space) is the differential operator of the first order, defined in
the quadratic form sense on 0)~ Ca ,
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where a = 1(2) if a = 2(1). Since the potential V (x) + Fx is bounded
on the support of the function by the arguments of Section 4 and
the estimates which we will give below, formula (A.6) is valid in the
bounded operator sense from ~-~C to To solve the G.R.E. (A.6), we
use the following differential operators, .~’a (l ) : HI (support 2014~

denoting by

it holds in the quadratic form sense on Ca

In Section 5, these formulas are used with l == 1, whereas in Section 4,
we want to take in account the smallness of the ~~ Ja ~~ ~ and then in this
case, we choose l = F(5+3~)/2 For a = 1, 2, z E p(Ni) n p (H2), let

I~a (.z ) : EÐ -~ ~La be the operators,

we will show that these operators are bounded, moreover for z E p(Hd) n
p(H) I  1, the formal iteration of the G.R.E.

(A. 8) together with (A.1 ) and (A.12) lead to the following Geometric
Perturbation Formula (G.P.F. in short),

here "’" denotes the usual scalar product in R2 and the 2 x 2 matrix:

Under the conditions stated above, the G.P.F. is valid in the bounded

operator sense on ?~.
It must be also noted that this theory is valid if: one or both regions
7Z2 are open and bounded intervals or if we consider Hl as the
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distorted operator instead, if the potential V satisfies suitable analyticity
conditions, since the support of the distortion is such that support f n ~1 =
, 11 = TZ1 n 7Z2 and in the other hand the distortion preserves the
core of Hl. In this last case, the G.P.F. has the same explicit form as
(A. 11) where now /~(z), Rd(z), R 1 (z ) are respectively the resolvent of
the operators ~(0), ~(0), ~i(~), I small enough and for a suitable
choice of z E C. We give now some useful estimates which we often use,
let for ~=1,2, ~ e ~=1,2, such that,

for some 1] &#x3E; 0 and F independent and denote by ~a the support of the
function ~a , then for 0  F  Fo, Im z &#x3E; 0 big enough and u E 

b = 1, 2, where /c(z) = 1 + sup{I(V - Rez)l; x E is then uniformly
bounded in all bounded neighbourhood of z = 0. In the one hand (A.14)
implies, in the norm operator sense,

for another uniform constant c &#x3E; 0. On the other hand, in the same
conditions as for (A.14) and for a constant c &#x3E; 0,
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