@article{AIHPA_1999__71_2_199_0, author = {Nakamura, M. and Ozawa, T.}, title = {The {Cauchy} problem for nonlinear wave equations in the homogeneous {Sobolev} space}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {199--215}, publisher = {Gauthier-Villars}, volume = {71}, number = {2}, year = {1999}, mrnumber = {1705131}, zbl = {0960.35066}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1999__71_2_199_0/} }
TY - JOUR AU - Nakamura, M. AU - Ozawa, T. TI - The Cauchy problem for nonlinear wave equations in the homogeneous Sobolev space JO - Annales de l'I.H.P. Physique théorique PY - 1999 SP - 199 EP - 215 VL - 71 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1999__71_2_199_0/ LA - en ID - AIHPA_1999__71_2_199_0 ER -
%0 Journal Article %A Nakamura, M. %A Ozawa, T. %T The Cauchy problem for nonlinear wave equations in the homogeneous Sobolev space %J Annales de l'I.H.P. Physique théorique %D 1999 %P 199-215 %V 71 %N 2 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPA_1999__71_2_199_0/ %G en %F AIHPA_1999__71_2_199_0
Nakamura, M.; Ozawa, T. The Cauchy problem for nonlinear wave equations in the homogeneous Sobolev space. Annales de l'I.H.P. Physique théorique, Tome 71 (1999) no. 2, pp. 199-215. http://www.numdam.org/item/AIHPA_1999__71_2_199_0/
[1] Interpolation Spaces, Springer, Berlin, 1976. | MR
and ,[2] On Lp-Lp' estimates for the wave equation, Math. Z. 145 (1975) 251-254. | MR | Zbl
,[3] The Cauchy problem for the critical nonlinear Schrödinger equation in HS, Nonlinear Anal. TMA 14 (1990) 807-836. | MR | Zbl
and ,[4] Global existence of low regularity solutions of non-linear wave equations, Math. Z. 219 (1995) 1-19. | MR | Zbl
and ,[5] Scattering theory in the energy space for a class of nonlinear wave equation, Adv. Stud. Pure Math. 23 (1994) 83-103. | MR | Zbl
,[6] On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Physique théorique 60 (1994) 211-239. | Numdam | MR | Zbl
, and ,[7] The global Cauchy problem for the critical non-linear wave equation, J. Funct. Anal. 110 (1992) 96-130. | MR | Zbl
, and ,[8] The global Cauchy problem for the nonlinear Klein-Gordon equation, Math. Z. 189 (1985) 487-505. | MR | Zbl
and ,[9] Regularity of solutions of critical and subcritical nonlinear wave equations, Nonlinear Anal. 22 (1) (1994) 1-19. | MR | Zbl
and ,[10] Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995) 50-68. | MR | Zbl
and ,[11] Weak and yet weaker solutions of semilinear wave equations, Comm. Partial Differential Equations 19 (1994) 1629-1676. | MR | Zbl
,[12] Global and unique weak solutions of nonlinear wave equations, Math. Res. Lett. 1 (1994) 211-223. | MR | Zbl
,[13] Global solutions of nonlinear wave equations, Comm. Pure Appl. Math. XLV (1992) 1063-1096. | MR | Zbl
,[14] A sharp counterexample to the lacal existence of low-regularity solutions to nonlinear wave equations, Duke Math. J. 72 (1993) 503-539. | MR | Zbl
,[15] On existince and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995) 357-426. | MR | Zbl
and ,[16] Low energy scattering for nonlinear Schrödinger equations in fractional order Sobolev spaces, Rev. Math. Phys. 9 (3) (1997) 397- 410. | MR | Zbl
and ,[17] The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order, Preprint.
and ,[18] Lp-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichumgen, I, Math. Z. 150 (1976) 159-183. | MR | Zbl
,[19] Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z. 185 (1984) 261-270. | MR | Zbl
,[20] Local solutions of semilinear wave equations in Hs+1, Math. Methods Appl. Sci. 19 (1996) 145-170. | MR | Zbl
,[21] Convolution with kernels having singularities on a sphere, Trans. AMS 148 (1970) 461-471. | MR | Zbl
,[22] A priori estimates for the wave equation and some applications, J. Funct. Anal. 5 (1970) 218-235. | MR | Zbl
,[23] Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977) 705-714. | MR | Zbl
,[24] Theory of Function Spaces, Birkhäuser, Basel, 1983. | Zbl
,