@article{AIHPA_1999__71_2_129_0, author = {Procacci, Aldo and Pereira, Emmanuel}, title = {Infrared analysis of the tridimensional {Gross-Neveu} model : pointwise bounds for the effective potential}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {129--198}, publisher = {Gauthier-Villars}, volume = {71}, number = {2}, year = {1999}, mrnumber = {1705135}, zbl = {0964.81051}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1999__71_2_129_0/} }
TY - JOUR AU - Procacci, Aldo AU - Pereira, Emmanuel TI - Infrared analysis of the tridimensional Gross-Neveu model : pointwise bounds for the effective potential JO - Annales de l'I.H.P. Physique théorique PY - 1999 SP - 129 EP - 198 VL - 71 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1999__71_2_129_0/ LA - en ID - AIHPA_1999__71_2_129_0 ER -
%0 Journal Article %A Procacci, Aldo %A Pereira, Emmanuel %T Infrared analysis of the tridimensional Gross-Neveu model : pointwise bounds for the effective potential %J Annales de l'I.H.P. Physique théorique %D 1999 %P 129-198 %V 71 %N 2 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPA_1999__71_2_129_0/ %G en %F AIHPA_1999__71_2_129_0
Procacci, Aldo; Pereira, Emmanuel. Infrared analysis of the tridimensional Gross-Neveu model : pointwise bounds for the effective potential. Annales de l'I.H.P. Physique théorique, Tome 71 (1999) no. 2, pp. 129-198. http://www.numdam.org/item/AIHPA_1999__71_2_129_0/
[1] Explicit fermionic tree expansions, Lett. Math. Phys. 44 (1) (1998) 77-88. | MR | Zbl
and ,[2] A phase cell cluster expansion for euclidean field theory, Ann. Phys. 142 (1982) 95-139. | MR
and ,[3] Perturbation theory of the Fermi surface in a quantum liquid, J. Stat. Phys. 59 (3-4) (1990) 541-664. | MR | Zbl
and ,[4] Renormalization Group, Princeton University Press, Princeton, NJ, 1995. | MR | Zbl
and ,[5] Renormalization group and the Fermi surface in the Luttinger model, Phys. Rev. B 45 (1992) 5468.
, and ,[6] Beta function and Schwinger functions for a many fermions system in one dimension, Anomaly of the Fermi surface, Commun. Math. Phys. 160 (1994) 91-171. | MR | Zbl
, , and ,[7] A Short Course on Cluster Expansion, Les Houches 1984, K. Osterwalder and R. Stora (Eds.), North-Holland, 1986. | MR
,[8] Grad φ perturbations of massless Gaussian fields, Commun. Math. Phys. 129 (1990) 351-392. | MR | Zbl
and ,[9] Continuos constructive fermionic renormalization, Preprint (1998). | MR
and ,[10] Construction de modéles non renormalisables en théorie quantique des champs, Thesis, Ecole Polytechnique, 1991.
,[11] A renormalizable field theory: the massive Gross-Neveu model in two dimensions, Commun. Math. Phys. 103 (1986) 67-103. | MR | Zbl
, , and ,[12] Renormalization Group, Troisième cycle de la Physique, Lausanne, 1990.
,[13] Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods, Rev. Mod. Phys. 57 (1985) 471-562. | MR
,[14] Block spin renormalization group for dipole gas and (∇φ)4, Ann. Phys. 147 (1983) 198-243. | MR
and ,[15] Gross-Neveu model through convergent perturbation expansions, Commun. Math. Phys. 102 (1985) 1-30. | MR
and ,[16] Mass generation in a large N Gross-Neveu model, Commun. Math. Phys. 169 (1995) 121-180. | MR | Zbl
, and ,[17] Asymptotic completeness and multiparticle structure in field theories. II Theories with renormalization: the Gross-Neveu model, Commun. Math. Phys. 111 (1987) 81-100. | MR
and ,[18] Effective action for the Yukawa 2 quantum field Theory, Commun. Math. Phys. 108 (1987) 437-467. | MR
,[19] A representation for the generating and correlation functions in the block field renormalization group formalism and asymptotic freedom, Ann. Phys. 218 (1992) 139-159. | MR | Zbl
and ,[20] Orthogonality between scales in a renormalization group for fermions, J. Stat. Phys. 78 (3-4) (1995) 1067-1082. | Zbl
,[21] Orthogonality between scales and wavelets in a representation for correlation functions. The lattice dipole gas and (∇φ)4 models, J. Stat. Phys. 73 (3-4) (1993) 695-721. | MR | Zbl
and ,[22] Block renormalization group in a formalism with lattice wavelets: correlation function formulas for interacting fermions, Ann. Phys. 255 (1) (1997) 19-33. | MR | Zbl
and ,[23] Multiscale formalism for correlation functions of fermions. Infrared analysis of the tridimensional Gross-Neveu model, J. Stat. Phys. 95 (3/4) (1999) 669-696. | MR | Zbl
, and ,[24] Statistical Mechanics, Rigorous Results, W.A. Benjamin, New York, 1969. | MR | Zbl
,