A unified approach to constrained mechanical systems as implicit differential equations
Annales de l'I.H.P. Physique théorique, Tome 70 (1999) no. 6, pp. 515-546.
@article{AIHPA_1999__70_6_515_0,
     author = {Barone, F. and Grassini, R. and Mendella, G.},
     title = {A unified approach to constrained mechanical systems as implicit differential equations},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {515--546},
     publisher = {Gauthier-Villars},
     volume = {70},
     number = {6},
     year = {1999},
     mrnumber = {1693588},
     zbl = {0965.70030},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1999__70_6_515_0/}
}
TY  - JOUR
AU  - Barone, F.
AU  - Grassini, R.
AU  - Mendella, G.
TI  - A unified approach to constrained mechanical systems as implicit differential equations
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1999
SP  - 515
EP  - 546
VL  - 70
IS  - 6
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPA_1999__70_6_515_0/
LA  - en
ID  - AIHPA_1999__70_6_515_0
ER  - 
%0 Journal Article
%A Barone, F.
%A Grassini, R.
%A Mendella, G.
%T A unified approach to constrained mechanical systems as implicit differential equations
%J Annales de l'I.H.P. Physique théorique
%D 1999
%P 515-546
%V 70
%N 6
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPA_1999__70_6_515_0/
%G en
%F AIHPA_1999__70_6_515_0
Barone, F.; Grassini, R.; Mendella, G. A unified approach to constrained mechanical systems as implicit differential equations. Annales de l'I.H.P. Physique théorique, Tome 70 (1999) no. 6, pp. 515-546. http://www.numdam.org/item/AIHPA_1999__70_6_515_0/

[1] V.I. Arnold, V.V. Kozlov and A.I. Neishtadt, Dynamical Systems III, Springer, New York, 1988. | MR

[2] F. Barone and R. Grassini, On the second-order Euler-Lagrange equation in implicit form, Ric. Mat. 46 (1) (1997) 221-233. | MR | Zbl

[3] F. Barone, R. Grassini and G. Mendella, A generalized Lagrange equation in implicit form for nonconservative mechanics, J. Phys. A: Math. Gen. 30 (1997) 1575-1590. | MR | Zbl

[4] J.F. Cariñena and M.F. Rañada, Lagrangian systems with constraints: a geometric approach to the method of Lagrange multipliers, J. Phys. A: Math. Gen. 26 (1993) 1335-1351. | MR | Zbl

[5] M. Crampin, Tangent bundle geometry for Lagrangian dynamics, J. Phys. A: Math. Gen. 16 (1983) 3755-3772. | MR | Zbl

[6] P. Dazord, Mécanique Hamiltonienne en présence de contraintes, Ill. J. Math. 38 (1994) 148-175. | MR | Zbl

[7] M. De Léon and P.R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland, Amsterdam, 1989. | MR | Zbl

[8] M. De Léon and D.M. De Diego, On the geometry of non-holonomic Lagrangian systems, J. Math. Phys. 37 (7) (1996) 3389-3414. | MR | Zbl

[9] M. De Léon and D.M. De Diego, Mechanical systems with non-linear constraints, Preprint.

[10] C. Godbillon, Géométrie Differentielle et Mécanique Analytique, Hermann, Paris, 1969. | MR | Zbl

[11] M.J. Gotay and J. Nester, Presymplectic Lagrangian systems I: The constraint algorithm and the equivalence theorem, Ann. Inst. Henri Poincaré 30 (2) (1979) 129-142. | Numdam | MR | Zbl

[12] M.J. Gotay and J. Nester, Presymplectic Lagrangian systems II: The second-order equation problem, Ann. Inst. Henri Poincaré 32 (1) (1980) 1-13. | Numdam | MR | Zbl

[13] X. Grácia and J.M. Pons, Constrained systems: A unified geometric approach, Int. J. Th. Phys. 30 (4) (1991) 511-516. | MR | Zbl

[14] X. Grácia and J.M. Pons, A generalized geometric framework for constrained systems, Diff. Geom. Appl. 2 (1992) 223-247. | MR | Zbl

[15] C.M. Marle, Reduction of constrained mechanical systems and stability of relative equilibria, Comm. Math. Phys. 74 (1995) 295-318. | MR | Zbl

[16] G. Marmo, G. Mendella and W.M. Tulczyjew, Symmetries and constants of the motion for dynamics in implicit form, Ann. Inst. H. Poincaré 57 (2) (1992) 147-166. | Numdam | MR | Zbl

[17] G. Marmo, G. Mendella and W.M. Tulczyjew, Constrained Hamiltonian systems as implicit differential equations, J. Phys. A: Math. Gen. 30 (1997) 277- 293. | MR | Zbl

[18] W.M. Tulczyjew, Geometric Formulations of Physical Theories, Bibliopolis, Napoli, 1989. | MR | Zbl

[19] A.M. Vershik and L.D. Fadeev, Differential geometry and Lagrangian mechanics with constraints, Soviet Physics-Doklady 17 (1) (1972) 34-36. | Zbl

[20] A.M. Vershik and L.D. Fadeev, Lagrangian mechanics in invariant form, Sel. Math. Sov. 1 (1975) 339-350. | Zbl

[21] E.T. Whittaker, A Treatise on the Analitical Dynamics of Particles and Rigid Bodies, Cambridge University Press, 1927. | JFM | MR

[22] N. Woodhouse, Geometric Quantization, Clarendon Press, Oxford, 1980. | MR | Zbl