Hilbert spaces for massless particles with nonvanishing helicities
Annales de l'I.H.P. Physique théorique, Tome 70 (1999) no. 3, pp. 295-311.
@article{AIHPA_1999__70_3_295_0,
     author = {Karpio, Andrzej},
     title = {Hilbert spaces for massless particles with nonvanishing helicities},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {295--311},
     publisher = {Gauthier-Villars},
     volume = {70},
     number = {3},
     year = {1999},
     mrnumber = {1718184},
     zbl = {0965.81030},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1999__70_3_295_0/}
}
TY  - JOUR
AU  - Karpio, Andrzej
TI  - Hilbert spaces for massless particles with nonvanishing helicities
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1999
SP  - 295
EP  - 311
VL  - 70
IS  - 3
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPA_1999__70_3_295_0/
LA  - en
ID  - AIHPA_1999__70_3_295_0
ER  - 
%0 Journal Article
%A Karpio, Andrzej
%T Hilbert spaces for massless particles with nonvanishing helicities
%J Annales de l'I.H.P. Physique théorique
%D 1999
%P 295-311
%V 70
%N 3
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPA_1999__70_3_295_0/
%G en
%F AIHPA_1999__70_3_295_0
Karpio, Andrzej. Hilbert spaces for massless particles with nonvanishing helicities. Annales de l'I.H.P. Physique théorique, Tome 70 (1999) no. 3, pp. 295-311. http://www.numdam.org/item/AIHPA_1999__70_3_295_0/

[1] R.J. Baston and M.G. Eastwood, The Penrose transform, Oxford, 1989. | MR

[2] T.N. Bailey and R.J. Bailey, Twistors in mathematics and physics, Cambridge, 1990. | Zbl

[3] A.L. Carey and K.C. Hannabuss, Rep. Math. Phys., Vol. 13, No 2, 1978. | MR | Zbl

[4] S.S. Chern, Complex Manifolds Without Potential Theory, Van Nostrand Mathematical Studies, No 15, 1967. | MR | Zbl

[5] R. Godement, Théorie des faisceaux - Herrmann, Paris 1964.

[6] M.G. Eastwood and M.L. Ginsberg, Duality in twistor theory, Duke Math. J., Vol. 48, No 1, 1981. | MR | Zbl

[7] M.G. Eastwood and L.P. Hughston, Massless field based on a line, in [9].

[8] M.L. Ginsberg, Scattering theory and the geometry of multi-twistor spaces, Trans. Am. Math. Soc., Vol. 276, No 2, 1983. | MR | Zbl

[9] M.L. Ginsberg, A Cohomological Scalar Product Construction, in [9].

[10] L.P. Hughston, The twistor cohomology of local Hertz potential, in [9].

[11] L.P. HUGHSTON and R.S. WARD (eds.), Advances in twistor theory, Pitman, Research Notes in Math., 37, San Francisco, London, Melbourne 1979. | MR | Zbl

[12] H.P. Jacobsen and M. Verne, Wave and Dirac operators and representation of the conformal group, J. Functional Analysis, Vol. 24, 1979. | Zbl

[13] A. Karpio, A. Kryszen and A. Odzijewicz, Two-twistor conformal, hamiltonian spaces, Rep. Math. Phys., Vol. 24, 1986. | MR | Zbl

[14] A. Karpio, Some Approach to the Construction of Coherent States for Massless Particles, Procedings of Second Max Born Symposium, Kluwer Academic Publishers, Netherlands 1993. | MR | Zbl

[15] D.E. Lerner, The Inverse Twistor Function for Positive Frequency Fields, in [9].

[16] M.A.H. Maccallum and R. Penrose, Twistor theory: an approach to the quantisation of fields and space-time, Phys. Rep. sec C, Vol. 6, No 4, 1972. | MR

[17] R. Penrose, The twistor programme, Rep. Math. Phys., Vol. 12, 1977. | MR

[18] R. Penrose, Twistor function and sheaf cohomology, in [9].

[19] P. Tod, Rep. Math. Phys., Vol. 11, 1977.

[20] R.S. Ward, Massless fields and sheaf cohomology, in [9].

[21] R.O. Wells, Complex manifolds and mathematical physics., Bull. Am. Math. Soc., Vol. 1, No 2, 1979. | MR | Zbl