@article{AIHPA_1997__67_1_1_0, author = {Lewis, Roger T. and Siedentop, Heinz and Vugalter, Simeon}, title = {The essential spectrum of relativistic multi-particle operators}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {1--28}, publisher = {Gauthier-Villars}, volume = {67}, number = {1}, year = {1997}, mrnumber = {1463002}, zbl = {0886.35126}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1997__67_1_1_0/} }
TY - JOUR AU - Lewis, Roger T. AU - Siedentop, Heinz AU - Vugalter, Simeon TI - The essential spectrum of relativistic multi-particle operators JO - Annales de l'I.H.P. Physique théorique PY - 1997 SP - 1 EP - 28 VL - 67 IS - 1 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1997__67_1_1_0/ LA - en ID - AIHPA_1997__67_1_1_0 ER -
%0 Journal Article %A Lewis, Roger T. %A Siedentop, Heinz %A Vugalter, Simeon %T The essential spectrum of relativistic multi-particle operators %J Annales de l'I.H.P. Physique théorique %D 1997 %P 1-28 %V 67 %N 1 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPA_1997__67_1_1_0/ %G en %F AIHPA_1997__67_1_1_0
Lewis, Roger T.; Siedentop, Heinz; Vugalter, Simeon. The essential spectrum of relativistic multi-particle operators. Annales de l'I.H.P. Physique théorique, Tome 67 (1997) no. 1, pp. 1-28. http://www.numdam.org/item/AIHPA_1997__67_1_1_0/
[1] Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-body Schrödinger Operators. Mathematical Notes 29. Princeton University Press, Princeton, 1 edition, 1982. | MR | Zbl
,[2] Schrödinger operators with symmetries. Rep. Math. Phys., Vol. 5, 1974, pp. 219-280. | MR | Zbl
,[3] Schrödinger operators with symmetries. II. Rep. Math. Phys., Vol. 5, 1974, pp. 393-413. | MR | Zbl
,[4] Werner Kirsch, and Barry Simon. Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. Text and Monographs in Physics. Springer-Verlag, Berlin, 1 edition, 1987. | MR | Zbl
, ,[5] The Agmon spectral function for molecular hamiltonians with symmetry restrictions. Proc. Royal Soc. Lond. A, Vol. 440, 1993, pp. 621-638. | MR | Zbl
, and ,[6] On the spectra of Schrödinger multiparticle Hamiltonians. Helv. Phys. Acta, Vol. 39, 1966, pp. 451-462. | MR | Zbl
,[7] Spectral Properties of Hamiltonian Operators, Vol. 313 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1 edition, 1973. | MR | Zbl
and ,[8] Stability of Relativistic Matter via Thomas-Fermi Theory. Helv. Phys. Acta, In press. | MR | Zbl
, , and ,[9] The stability and instability of relativistic matter. Commun. Math. Phys., Vol. 118, 1988, pp. 177-213. | MR | Zbl
and ,[10] Bessel functions of integer order. In Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, chapter 9, pp. 355-433. Dover Publications, New York, 5 edition, 1968. | MR
,[11] Bounds for the discrete spectrum of a semi-bounded Schrödinger operator. Math. Scand., Vol. 8, pp. 143-153, 1960. | MR | Zbl
,[12] Methods of Modern Mathematical Physics, volume 4: Analysis of Operators. Academic Press, New York, 1 edition, 1978. | Zbl
and ,[13] Quantum Mechanics for Hamiltonians Defined as Quadratic Forms. Princeton University Press, Princeton, New Jersey, 1 edition, 1971. | MR | Zbl
,[ 14] Trace Ideals and Their Applications. Number 35 in London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1979. | MR | Zbl
,[15] Lehrbuch der Mathematischen Physik 3: Quantenmechanik von Atomen und Molekülen. Springer-Verlag, Wien, New York, 1 edition, 1979. | MR | Zbl
,[16] Theory of finite systems of particles I. the Green function. Mat. Fys. Dan. Vid. Selsk., Vol. 2(8), 1964, pp. 1-60. | MR | Zbl
,[17] On the finiteness of discrete spectrum in the n-particle problem. Rep. Math. Phys., Vol. 19(1), February 1984, pp. 39-90. | MR | Zbl
and ,[18] A study of the spectrum of the Schrödinger operator for a system of several particles. Trudy Moskov. Mat. Obsc., Vol. 9, 1960, pp. 81-120. | MR
,[19] Spectrum of differential operators of quantum-mechanical many-particle systems in spaces of functions of a given symmetry. Mathematics of the USSR-Izvestija, Vol. 3(3), 1969, pp. 559-616. | Zbl
,