On the problem of defining a specific theory within the frame of local quantum physics
Annales de l'I.H.P. Physique théorique, Tome 64 (1996) no. 4, pp. 385-393.
@article{AIHPA_1996__64_4_385_0,
     author = {Haag, Rudolf and Ojima, Izumi},
     title = {On the problem of defining a specific theory within the frame of local quantum physics},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {385--393},
     publisher = {Gauthier-Villars},
     volume = {64},
     number = {4},
     year = {1996},
     mrnumber = {1407752},
     zbl = {0933.46072},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1996__64_4_385_0/}
}
TY  - JOUR
AU  - Haag, Rudolf
AU  - Ojima, Izumi
TI  - On the problem of defining a specific theory within the frame of local quantum physics
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1996
SP  - 385
EP  - 393
VL  - 64
IS  - 4
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPA_1996__64_4_385_0/
LA  - en
ID  - AIHPA_1996__64_4_385_0
ER  - 
%0 Journal Article
%A Haag, Rudolf
%A Ojima, Izumi
%T On the problem of defining a specific theory within the frame of local quantum physics
%J Annales de l'I.H.P. Physique théorique
%D 1996
%P 385-393
%V 64
%N 4
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPA_1996__64_4_385_0/
%G en
%F AIHPA_1996__64_4_385_0
Haag, Rudolf; Ojima, Izumi. On the problem of defining a specific theory within the frame of local quantum physics. Annales de l'I.H.P. Physique théorique, Tome 64 (1996) no. 4, pp. 385-393. http://www.numdam.org/item/AIHPA_1996__64_4_385_0/

[1] R. Haag, Local Quantum Physics, Springer-Verlag, Heidelberg, 1992. | MR | Zbl

[2] J.E. Roberts, private communication around, 1985.

[3] D. Buchholz and E. Wichmann, Causal independence and the energy level density of states in local field theory, Comm. Math. Phys., 85, 1986, p. 49. | MR

[4] D. Buchholz and M. Porrmann, How small is phase space in quantum field theory, Ann. Inst. H. Poincaré, 52, 1990, p. 237. | Numdam | MR | Zbl

[5] K. Fredenhagen and J. Hertel, Local algebras of observables and point-like localized fields, Comm. Math. Phys., 80, 1981, p. 555. | MR | Zbl

[6] D. Buchholz and R. Verch, Scaling algebras and renormalization group in algebraic quantum field theory, Rev. Math. Phys., 1995, p. 1195. | MR | Zbl

[7] D. Buchholz, unpublished notes, 1995.

[8] K. Fredenhagen and R. Haag, Generally covariant quantum field theory and scaling limits, Commun. Math. Phys., 108, 1987, p. 91. | MR | Zbl