@article{AIHPA_1994__60_3_253_0, author = {Dell'Antonio, G. F. and Figari, R. and Teta, A.}, title = {Hamiltonians for systems of {N} particles interacting through point interactions}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {253--290}, publisher = {Gauthier-Villars}, volume = {60}, number = {3}, year = {1994}, mrnumber = {1281647}, zbl = {0808.35113}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1994__60_3_253_0/} }
TY - JOUR AU - Dell'Antonio, G. F. AU - Figari, R. AU - Teta, A. TI - Hamiltonians for systems of N particles interacting through point interactions JO - Annales de l'I.H.P. Physique théorique PY - 1994 SP - 253 EP - 290 VL - 60 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1994__60_3_253_0/ LA - en ID - AIHPA_1994__60_3_253_0 ER -
%0 Journal Article %A Dell'Antonio, G. F. %A Figari, R. %A Teta, A. %T Hamiltonians for systems of N particles interacting through point interactions %J Annales de l'I.H.P. Physique théorique %D 1994 %P 253-290 %V 60 %N 3 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPA_1994__60_3_253_0/ %G en %F AIHPA_1994__60_3_253_0
Dell'Antonio, G. F.; Figari, R.; Teta, A. Hamiltonians for systems of N particles interacting through point interactions. Annales de l'I.H.P. Physique théorique, Tome 60 (1994) no. 3, pp. 253-290. http://www.numdam.org/item/AIHPA_1994__60_3_253_0/
[1] On the Point Interaction for a Three-Particle System in Quantum Mechanics, Soviet Phys. Dokl., Vol. 6, 1962, pp. 1072-1074. | MR
and ,[2] Comment on the Problem of Three Particles with Point Interactions, Soviet. Phys. Jept., Vol. 14, 1962, pp. 1315-1316. | MR
and ,[3] Schrödinger Operators with Potentials Supported by Null Sets, To appear in: Ideas and Methods in Quantum and Statistical Physics, S. ALBEVERIO, J. R. FENSTAD, H. HOLDEN, T. LINDSTROM, Eds., Cambridge University Press. | MR | Zbl
, , , and ,[4] The Effect of Submanifold upon Essential Self-Adjointness and Deficiency Indices, J. Math. Anal. and Appl., Vol. 80, 1981, pp. 551-565. | MR | Zbl
,[5] Solvable Models in Quantum Mechanics, Springer-Verlag, New-York, 1988. | MR | Zbl
, , and ,[6] Quadratic Forms for Singular Perturbations of the Laplacian, Publ. R.I.M.S. Kyoto Univ., Vol. 26, 1990, pp. 803-817. | MR | Zbl
,[7] An Introduction to Γ-Convergence, Preprint S.I.S.S.A., Trieste, 1992. | MR | Zbl
,[8] Γ-Convergence and Calculus of Variations. In: Mathematical Theories of Optimization, J. P. CECCONI, T. ZOLEZZI, Eds., Lect. N. in Math., Vol. 979, Springer Verlag, Berlin, 1983. | MR | Zbl
, ,[9] The Three-Body Problem with Short-Range Forces. Scattering of Low-Energy Neutrons by Deuterons, Soviet. Phys. Jept., Vol. 4, 1957, pp. 648-661. | MR | Zbl
and ,[10] The Interaction Between a Neutron and a Proton and the Structure of H3, Phys. Rev., Vol. 47, 1935, pp. 903-909. | JFM | Zbl
,[11] Binding of Three Identical Bosons in two Dimensions, Phys. Rev. A, Vol. 19, 1979, pp. 425-432.
, ,[12] Non Existence of the Efimov Effect in two Dimensions, Phys. Rev. B, Vol. 22, 1980, pp. 1467-1469. | MR
, ,[13] SHERMATOV, On Pointlike Interaction of Three Quantum Particles, Vestnik Mosk, Univ. Ser. I Math. Mekh., Vol. 6, 1989, pp. 7-14. | MR | Zbl
, .[14] On the Point Interaction of Three Particles. In: Applications of Self-Adjoint Extensions in Quantum Physics, Exner, P., Seba, P. Eds., Lect. Notes in Phys., Vol. 324, Springer Verlag, Berlin, 1989. | MR | Zbl
,[15] Table of Integrals, Series and Products, Academic Press, New-York, 1980.
, ,[16] Tables of Integral Transforms, Mc Graw-Hill, New-York, 1954.
.,[17] On the Theory of the Discrete Spectrum of the Three-Particle Schrôdinger Operator, Mat. Sb., Vol. 94, 1974, pp. 567-593. | MR | Zbl
,[18] On the Finiteness of the Discrete Spectrum of Hamiltonians for Quantum Systems of Three One-or Two Dimensional Particles, Lett. Math. Phys., Vol. 25, 1992, pp. 299-306. | MR | Zbl
, ,[19] A Class of Exactly Solvable Three-Body Quantum Mechanical Problems and the Universal Low-Energy Behavior, Phys. Lett., Vol. 83 A, 1981, pp. 105-109. | MR
, , ,[20] The Non-Relativistic Limit of P(φ)2 Quantum Field Theories: Two-Particle Phenomena, Comm. Math. Phys., Vol. 57, 1977, pp. 51-66. | MR
,