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ABSTRACT. — We prove that the Schwinger functions of the ¢* models,
in dimension d=1, are analytic functions of the coupling constant in a

. . 3 . .
common domain which extends to |Arg7»|<—21«[ , and in which each of

them is the Borel sum of its Taylor series at A= 0; these series are uniformly
Borel summable of level 1 in all directions except that of negative real
numbers.

ResuME. — On démontre que les fonctions de Schwinger des modeéles ¢*,
en dimension d=1, sont des fonctions analytiques de la constante de

. . 3n
couplage dans un domaine commun d’ouverture angulaire |Arg7x|<—2—,

dans lequel elles sont la somme de Borel de leurs séries de Taylor en
A=0; ces séries sont uniformément Borel-sommables de niveau 1 dans
toutes les directions, sauf celle des réels négatifs.
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142 C. BILLIONNET AND P. RENOUARD

INTRODUCTION

In this paper, we begin a study of the analyticity properties in the
coupling constant A of the ¢* models, in the region Re A <0.

In dimension d<3, the aim is to show that the domain in which the
Schwinger functions are given by the Borel sum of their Taylor’s series
has an angular extension as large as one can expect, namely that it covers
all directions up to |Arg7& | <3m/2 (the functions being of course 2-valued
if ReA <0, an example of Stokes phenomenon).

A (far) more ambitious project will be an approach of the four dimen-
sional problem, since the procedure allows to reach the region of
asymptotic freedom, the only one where one can expect the existence of
the (euclidean) theory; [moreover, an argument by Khuri [8], strongly
suggests that the functions may be real for A<0, whereas the cut-off
approximations are not].

It is quite easy to obtain representations of the cut-off functions as
integrals over an auxiliary field, which lead to a domain of analyticity in
the region | Arg A |<m, [1]; to go further, the idea is to start with discretized
approximations given by finite dimensional integrals, and then to make a
change of integration path, multiplying the (gaussian) variables by some
complex number, which allows an analytic continuation in A.

As the complex measures obtained that way have no limit as the number
of variables goes to infinity, one needs to remove the discretization by
technics like “phase-space expansions”.

As a first result, we show in the simplest case of dimension d=1, that
this procedure works. We deal with fields with an arbitrary number N
of components, that is with the N-dimensional anharmonic oscillator
described (for A =0), by the Schrédinger operator

2
H= =LA+ w240
272

in RN, In this case, we prove that all Schwinger functions are analytic,
and the Borel summability of level 1 holds, in some common domain
which, for any 1 >0, includes a sector of the form

{XGC;

An almost similar result is known [12] for the eigenvalues of the Hamil-
tonian: they have “the same” property in domains of the same shape; but
these domains are not uniform with respect to the order of the eigenvalue,
and it is not known if (and, as suggested by numerical analysis, it is
probably false that) there is some common domaine extending to

Argklé%’j—n, |M§Rn}.
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ANALYTICITY AND BOREL SUMMABILITY OF THE ¢* MODELS 143

|ArgA|<3m/2 in which this holds simultaneously for all eigenvalues
(see [17]).

In fact the relation between the singularities of the Schwinger functions
and those of the eigenvalues is quite unclear, except the fact that (at least
in the scalar case) the vacuum energy E, (M) is analytic where the Schwinger
functions are, (since it can be expressed as a linear combination of equal-

. 1 d*
time Schwinger functions: if H= —5 F+V(u), then
u

E,= <‘|’0a [V (¢’o) + % 4’0 \A (4’0):] \I’o)a

where \, is the ground state and ¢, the field at time 0). Nevertheless the
present result is not a consequence of [12].

Technically, the main problem, (the only serious one in dimension d =1),
is to control the factorials which arise in the estimations of the terms of
the expansion; usually this is done by some “domination of the low
momentum fields by the interaction term” (see for example [9]), which
improves the gaussian estimates; in the present case no such thing seems
to exist (and in fact has not to be expected, since the coupling constant
has the “wrong” sign), and the suitable bounds come from some mutual
“quasi independence” of the field variables located in phase-space cells.

The discrete approximations and their analytic continuation are introdu-
ced in section 1, we prove the existence and the properties of the non
normalized Schwinger functions in a finite volume in sections 2 and 3, the
infinite volume limit is studied in sections 4 and 5, (this presentation
introduces some repetitions, but a more condensed one would have been
too confuse). The appendices recall, in a model-independent form, the
main features of the expansions.

1. THE FINITE DIMENSIONAL APPROXIMATION
AND ITS ANALYTIC CONTINUATION

1.0. One starts with the standard situation of a phase-space analysis,
one introduces the following notations: for reN, let 9, be the set
{[k27 1y, (k+1)27"1y}; keZ} of segments of length 27"1,, in R; let

2=U92, 2,=U92,, 2=U 9,, .= U 2 for Ae2, |A| is the
r=0 r=1 s=0 s=1

length of A, (z;‘ e.|A|=27"1,, if A€eD,); O, is the middle of A; and, if

A€P,,(r21), A is the unique element of 2,_, such that AeA; if AcR is

a finite union of segments in 2,, one sets A,={Ae€2,; AcA}, and defines

in an obvious way A, A,, A", A",,(reN).

Vol. 59, n° 2-1993.



144 C. BILLIONNET AND P. RENOUARD

Now let ' :=%"(R, R) be the space of real tempered distributions
over R, ve .#' (#') the gaussian measure defined by

G(f):=j e IOy (doy=e 2N S B (fe),
¥

and ® the process indexed by the Sobolev space # ™! :=.# "1 (R, R) such
that, for fe%, ®(f) is the class (mod.v) of the function
oo, 2 f5 with £, :=(—D?+m?), for some given m>0.

For each integer N>0 one sets = ()N, va=v®N, Oy=®®N; and
O is the j-th component of ®y.

1.1. For Ae2, y,e #~! being the Dirac measure 8o, for reN, one

sets
Q,(x):= Y 1,(x).®(x), (xeR), (1.1.1)

Ae 2,

(where 1, is the indicatrix function of A), ®y ,=®®N, and
N

| Dy, (x)[* = ( Y d>§{’,(x)2>2, (1.1.2)

j=1

N 2
O, l# 0 = [ 0,0l as= T |a|( L oer). a1

AeA,

Given a family f:={fj;kje¢%”‘1; 1<jEN, 12k;<1;}, and A 20, one
sets ()
!

N j
Zysin ()= [T T1 0Q,(f4) e Mo P00y (1.1.4)

SN j=1 kj=1

The Schwinger functions Sy , (f) are then obtained from (*):

Zy ;A (f):= lim Zy, s a, () (1.1.5)
and
SN.x;A(.f)::ZN,X;A(f)/ZN,k;A(g)a (1.1.6)

(') The Schwinger functions are in principle defined for functions f;,, €%; but, on the
one hand, in the particular case of the dimension d =1, the Dirac measures belong to # !
and one can choose fj=81j; and, on the other hand it will be useful to require that each
function =172 f; x; has its support in some segment in 9, (any function in & is a sum,
convergent in 3!, of functions having this property; this allows to ‘“‘reconstruct” the
Schwinger functions for fj;, € &).

(® The existence of these limits is known, it is also a consequence of the proofs below.
Independently of this construction, the functions S, ,,(A20), are characterized as the
moments of the stationary Markov process with transition semigroup generated by the

o 1 m? - .
Schrédinger operator —EA,,+w2—|u|2 +A|ul* in RN

Annales de I'Institut Henri Poincaré - Physique théorique



ANALYTICITY AND BOREL SUMMABILITY OF THE ¢* MODELS 145

Sn.1 (f) := lim Sy 1A (). (1.1.7)

A—R

1.2. One substitutes in (1.1.4), with A=p?/8, (p=0), the identity

N
e—wz/snoN,,l“uA):J e—(i/Z)PAz:éer1A>-(,-§1"’{~1"(1A’2)v(d0), (1.2.1)
e

one obtains (from Fubini’s theorem),

ZN, ®r AT (.f) = ZN, p2/8; Ar (.f)

=L ﬁ[ ﬁ(% Zn ' fiing)

=1l Jg k=1

x e—(i/z)pAezér (o 14> C0p T2 g5 V(d(oj)] v(do); (1.2.2)

then, if (for almost all ce ¥’), A, ,(o) is the real, self-adjoint operator '
of finite rank over L2 (R) defined by

Ar, @V =Y (0, 1,)E P xa V2. 2, P2 (WeEL?), (1.2.3)

AeAr

and denoted by
A, (0)= Z (o, L) 2 2 a X 20 2 g, (1.2.9)

AeA,
one obtains, by integrating over the @;’s in (1.2.2):

ZN, P A, r (.f)

N

=J H( Y I (Zﬁl/zfj;,u[I+iPAA,r(0)]_1Z,Z”zfj;“)>
Fj=1 Pje.?z(lj) pel’j

x Det.(I+ipA, () M2v(do), (1.2.5)

where 2, (.) is the set of partitions in pairs of a set (%), and p={p_, p, }.

1.3. First, the right hand side of (1.2.5) is well defined for

|Arg p| <g, and defines an a analytic function of p, [again denoted by

Zx, oy: A, r (], so that (1.2.5) is now valid as soon as | Argp| <g.

(®) One supposes each l; is even, otherwise the corresponding sum (and the whole func-
tion), vanishes.

Vol. 59, n° 2-1993.



146 C. BILLIONNET AND P. RENOUARD

Then, for a.e C¥, |Arga|<g, if | Argap| <g, one has

ZN, ®s AT (f) N
o lérl
(\/R—e_o?) jy' JI;Il (Pje§2 (i) pl}’j

< (2727 £y [H(%) AA"(“)]-I = f"”’*))

iop ~N/2

«Det(1+(—22_) A, (o
( ( Re.a ard )>

xe—(i/Z)(lm.ntlee.otz)AEz/_\rlAI‘1 (o, 1A>2V(d0'); (13 1)

indeed, if one introduces the variables $=(Sa)aca, < = R by
s,(0)=|A|7* (o, 1), one transforms the right hand side of (1.2.5)
into an integral over the finite dimensional space R%, with respect to the

gaussian measure s, v, namely: j F@( I1 e~sk? s, ) An elemen-
Ar

RL AEI_\_)‘ 21!5

tary estimate of F shows that

Z () :=j F(ug)( I e v ski2y dSA)

Ae Ay \/—2—_’)'E

is well defined for ue C* such that | Argul <§— and |Argup| <g; then Z

is a constant function, because it is holomorphic and constant over RY;

last, (forlArgp\ <—Z), the right hand side of (1.2.5) equals Z(1) and

that of (1.3.1) equals z(i/;—/f_z—) =
c.o

3
Now, one continues analytically Ly, (y; a.r( f) for |Argp |< 41by (1.3.1)

where o satisfies | Arga| <% and is chosen so that | Arg ap| <g *.

The rest of this paper is devoted to show the existence, and the properties
of Borel summability, of the limits, with respect to 7 and A, which provides
analytic continuations of (1.1.5)and (1.1 7).

(*) That is one forgets the useless condition | Argp|<m/2.
Moreover one remarks that any po such that |Arg po|<3m/4 has a neighbourhood ¥
such that one can choose & independently of pe?¥".

Annales de I'Institut Henri Poincaré - Physique théorique



ANALYTICITY AND BOREL SUMMABILITY OF THE ¢* MODELS 147

2. CONTINUATION OF THE NON NORMALIZED
SCHWINGER FUNCTIONS Z, ,.  (f)

2.0. To show the existence of the limits as r — oo of the functions
defined by (1.3.1), one introduces auxiliary variables as follows:
one sets 77, :=[0, 11A%, (r=1), and T, := U T, <[0, 1]*+ ();

r21
for te 7, one denotes by A (f)c= A the family defined by
AgA: 1,,=0,
AeA@) iff | and, (if AeA,), (2.0.1)

JA,gA 1, #0,

then A (¢) is a family of pairwise disjoint segments whose union covers A.
Now, one defines the vectors Y, Vs, U,€ L2 (R, R), (A€ 9), by

Va =2, 2y, (2.0.2)
Va =YYy, (2.0.3)
B 5= (s 0), (2.0.4)

(where, conventionnaly, for Ay,e%,, Vi =0, so that Y, =V,
1
$A0=5\|1A0); and for teJ ,, one denotes by AL(O'), (ce¥’), the real

selfadjoint operator over L*(R) :

A (0):= Y 140, 1) (Wax Va5 X V)

AeA

= Y a0, 1) (W X Pat Vs X W), 2.0.5)

AeA
(with, for Age D, t,,= 1, by convention).

Last, one defines Zy (., (f) substituting A, (c) to A, ,(c)and A(®) to
A, (®) in (1.3.1), namely:

Zx, 11 (f) .
( Re. O()IA“”Jy i= 1( Z H

Pie?, () pePj

9 (2;1/2 s [I+(\/%) Al(c)]_ z, fj;p+))

(°) See note (3%).
(°) For te 7", one can make or not the substitution of A (¢) to A,, without changing the
value of the integral; one uses both forms, as necessary.

Vol. 59, n® 2-1993.



148 C. BILLIONNET AND P. RENOUARD

iap -N/2
x Det. (I + (m) A, m)

- 2 2 -1 2
X e (1/2)(lm.u/Re.u)Ae%(9lAl (6,15 V(dO'); (206)

(so that Zy . », ,(f) is the value of Zy @ (f) for 1=1,r).

2.1. One now wants to show that one can apply the theorem (A .0) (")
to the function t—Zy .. (f).

One gives first a suitable expression of the successive derivatives

0 .
( [T D®)Zy (). (f), (where Dy=-—) wunder the hypothesis that
AcAs - 0ty
g€Q, := U N2* and te 7, satisfies

rz1

qr=0 and t,=1, if A contains strictly an element of A(¢). (2.1.1)

First, one notes that

. iop -1
R,(0) [I + (7\/W) Al(c)] 2.1.2)

satisfies

(81, R (0)g2)=(g2, R, (0)g1), Vg1, 8,€L*(R,R), (2.1.3)
[indeed, R, (0)*= R, (o) since A (0)=A,(0)*=A,(0)]

Next, given a family g={g;}, <j<,, of real functions g;eL? (R, R), one
sets

S, (5 0):= ) ]—I(gl,_,RL(c)g“), (2.1.4)

Pe?,() peP

where 2, (g) is the set of partition in pairs of the family g, [the choice of
p_, p4 in the pair p={p_, p, } is irrelevant, according to (2.1.3)]; then,
from (2.1.1) and (2.0.5), if g is the family {g, J,, ¥4 }, one has (%).

D, (S, (; o) Det. RL(O')UZ)

= P% (5, 1,).Su( o) Det.R ()2 (2.1.5)

/Re.o?

(") See appendix A.
(®) One supposes that the functions g; do not depend on teT .

Annales de I'Institut Henri Poincaré - Physique théorique



ANALYTICITY AND BOREL SUMMABILITY OF THE ¢* MODELS 149

But if f;={%, 2 f, K }15k;21; (1SS N), one can write (2.0.6) in the
new form

N
Zas == )'A' [1 (575 ). Det. R, (o))
& j=1
xe—(z/Z)(lm.uZ/Re.uz)AE):érlAl_l(o,lA)z.v(do.)’ (2.1.6)

so one computes the successive derivatives of Zy ;. (f) (by derivation
under the integral sign), using Leibniz formula, by repeated use of (2.1.5),
starting with the 57 S.

Given a family of functions g and ¢= {qA } aca,> One denotes by g2 the
Jamily containing g and, for each A€, q, functions equal to U, and qa
Junctions equal to ), then

(T1 DE)Zy ()= (<24

Aehy (8ih1<jsN; 2 gj AeAy
j I—[qu!

o L G

S AeAy
x [[ (S/¢ (5 0). Det.R,(c)"2)
=1 7" B

- 2 2 -1 2
X e (1/2)(lm.m/Re.u)Aezé'|A| (o, 1) _V(do.):l_ (2.1.7)

Now, after the derivations have been done and t fixed to its definitive
value, R, (c) depends on o only through the variables {{ o, 1,)},. Ay
because then

AL(O')= Y. <o, 1A>(’A¢AX¢A+(1_1A)‘|’AAx‘l’ﬁ); (2.1.8)

AcA®

.. . S o
it is therefore possible to “suppress” the multiplication by Wit on
e.a

the variables orthogonal to the {{ o, 1, ) ae A@ S, this leads to substitute

[<o (a1 g o100
to ——— (o, 1,),

JRe.a?

Vol. 59, n° 2-1993.



150 C. BILLIONNET AND P. RENOUARD

(where Ac A (2) and Ao A)(°), and A(2) to A, in (2.1.7), it gives

( H DqAA)ZN,(p);L(f)= Z [( l—[ _qA.!_)
!

N
AeA+ (gjh1sjsN; Tgj=al \AeAs
J I1

o lA@|
R I
<\/RW) F AeAs
x p <O‘,< Rl ) PR S |
el ) R E
% Hsfj—."(_; c).Det.R, (o)"?

—( 2 2 -
x @2 am - wPRe.a®) T ) 14] 1<°’1A>2.v(do')]. 2.1.9

One now wants to derive from (2.1.9) a first estimate(*®) of these
derivatives.

2.2. The estimation of the terms Sj4(#; o) in the right hand side of
(2.1.9) mainly relies on the inequaliticé (2.2.1) and (2.2.2) below.

LemMMA. — Let H be an Hilbert space, and, for each integer i, (1<i<k),
k

u;cH and n,eN,, one sets n=) n,, and denotes by v the symmetric
i=1
tensor product, then, for any &;>0, (1<i<k), one has

k k 1 k nf2
<1 "H**. sup <g Y &l (u; uj)|> .(2.2.1)

V uivn
=1 HY" i=1 15igk ij=1

k
Proof. — Let A,, (1<i<k), be a set with n; elements, A= U A; their
i=1
disjoint union, and % (A) the set of permutations of A, one has
2

= Z H (uiz (@)’ uia)

v uivn,
= HY" 1e®B(A)acA

1
. 1
=® z H <— ui1 (ay’ aia uia)
&i, (@)

teB(A) acA

i

(°) With the hypothesis (2.1.1) each A which occurs in (2.1. 7)—that is such
that g, #0—is included in a (unique) element K of A

(19) See (2.8.1), (2.8.3); the useful estimate will be a geometric mean of (2.8.3) and of
an other one, (2.9.10), obtained after an integration by parts in (2.1.7).
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1
(a; it (a)° g!a 'a)
k 1 n
(a- ’é""’))

k
<T] (). sup (g S u,>|)
i=1

1sisk \§; j=1

< 2 1l

reQ(A) aeA

g“ﬂmwﬂ

(@ because [] (L F,,-a)= 1, @ by inspection). [ ]

acA iy (@)

One deduces the

CoROLLARY. — For 1Zi<k, u;eH, n,eN, and the sets A; are as in the
lemma; one supposes n is even; on the other hand let ReL (H) be an
operator such that (u;, Ru)=(u; Ruy), 154, j<k; then if 2,(A) is the set

k

of partitions in pairs of A= \UJ A,, one has

i=1
| X 11 @ Ry

Pe?3(A) peP

QHWWHmWww(Zimuo.@M)

i=1 1<i<k

Proof. — Let vP(R)eL (H"?) be the operator defined by
p p
p(R) \4 (pj—- V R(pp ((p]eH7 léjép)’
i=1

one has | v?(R)||<||R |

Now let # be the set of parts of A with n/2 elements, and for Je #, let
#(J, J') be the set of bijections from J to its complement J'=A\J, one
has

Z H (up_’ Rup+)=2_n/2 Z Z l—[ (uir(a)’ Ruia)

Pe#?,(A) peP Je fFreB(J, V) ael

k
_2 n/2 Z <V uvn (J) vn/Z(R) v uvn (J)) ,
Je § ji=1 an/2
where n,(J)=|A;NJ|,
[so that n,(J)+n,(J)=n, and (HODRTNEY AR

one deduces (2.2.2) from (2.2.1) and the Schwarz inequality, because
PRV |

2.3. The following lemma gives an improved estimate, which will be
useful to control the “adiabatic” limit (A — R).

Vol. 59, n° 2-1993.



152 C. BILLIONNET AND P. RENOUARD

LEMMA. — Suppose the family ¢;e L*>(R), (1<j=<n), is such that some
distributions Z)/> ¢;€ # ™" have their support included in some segment in
D,; for each Ae.@o, one sets 1,={j; 1<j<n, supp. Z"Z(pch} and
nA——|J al; I is the set of the indices for which the property is not assumed,
and n'=|J'|, then

”(v @IV Vv v @)|L2vn

AeDg jela

SC' @' DY ] (maH)'? H lo;llz- (2.3.1)
) Ae Py
Proof. — Let p, € #* (') the gaussian measure of mean 0 and covari-
ance X! and, for keN, let IT, e L (L2 (¥, u,,)) the orthogonal projection
onto the “k-particles space” %, (*!), one has

n n
vl = nn( <., z;f2<p,.>)
i=1 LZmv" i=1 L2, u.,.)
l—.[ < 21/2 (p] b
L2(#", m)
therefore
(v edv( v v @)@y
iel) AePDq jelp
= “ H CLEZ0). H l_[ (- Zvlrn/z(Pj>||L2(y'.um)
iel AePqg jela
é” H CHZ20) ||L4(y', u,.,)-“ H H CLZ? (P,-> |‘L4(y’, Hm)?
iely AeDg jela
on has

HTI < 22000 It o, w = H 1< 20200 leor o, um

ie)
<[] (<4n'w2n< L0 iz o ,m,)ga' o "% T [0l

je¥y iel)
(W from Hoélder’s inequality, ) from Nelson’s ‘“hypercontractivity”
inequality [10]).

LTI TT <o 20050 [t o

AeDg jela
ST ITT <o 2200 st o, i
AeDgy jelp
SO T TTIC - 202950 llessracsr, um
AeDg jela

(*Y) Otherwise stated, the “k-th Wiener’s chaos”.
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<o T 11 (@Bn)" < 35203 12 . )

AePDg jela
=C™ I D' I1 9]l wpe

Ae9g jeyia
A

[@ from Hoélder’s inequality, ™ from Nelson’s “hypercontractivity”
inequality]. ]
On deduces the

CoROLLARY. — With the hypothesis of the lemma, and ReL(L?(R)) an
operator such that (¢;, R@;)=(9;, Ro,), (1=i, j<n), one has

| Z l_[ ((Pi,,_, R(Pi“)l

Pe®,(n) peP

<C'@'DY T )™ IR [T llo;ll2- (2.3.2)
j=1

AeDg
[The proof is similar to that of corollary (2.2).]
2.4. Now, one shows the main estimate:

LEMMA. — One supposes that geQ, and te I, satisfy (2.1.1), then
each term Sjii(t; ©) in the formula (2.1.9) is bounded by
J

1S @ o)A ()HCIY' T (g5[a D
Age Ao
X l—[ ((qu!)1/2|Al(1/2—a)qu)’ (2.4_1)

AeA+

where

Ut
A U=CiGDY? T (1S lle-1s
kj=1
lgil= Y 4 |g;[a0|= Y

AeAy AecAt;AcAg

Proof. — First, from (2.0.2), (2.0.3), (2.0.4), with Xa=0o,, SO that
2;1/2¢A(x)= L e—m|x—0A|’
2m
1
[WallZe=—, (AeA), , (2.4.2)
2m
' 1 _ A

[ Valfz=—(1—emI2l2)< % (AeA,), (2.4.3)

[Vall2= /=, (AeA,), (2.4.4)

ST
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then, from (2.0.3), if @€ L? is such that £_/? ¢ has a bounded variation,
2 (@, V| Svar. [£,12 0]=|(Z, 2 0) |1, (2.4.5)

AeAy

but
2
var. [Z, 2] = = (1-e ™81 <[A],  (AeAL), (2.4.6)
m

therefore, if one sets

upaS|A|TV, (AeAy), (2.4.7)
one has, with &A=|A|1/2,
1
Sup (_ Z gAzI(uAla uA2)|>§C5- (2.4.8)
Areds &AI AzeAs

Now, let V. f5 be the set of vectors @; of the form either =, '/ f, (fe f)),
or ,, (AeA.) (*?), one notes V' =f§J\V, from (2.1.4) and (2.4.7), one
has

St 0)=( [T A2 9%9)
J AeAs
v |/2

xyY ¥ > (T 1 0nsROe,))

k=0 XcV;|X|=2k YSV;|Y|=2k P1e?2(V\X) p1ePy

(% T Geo R(@I1))

teB(Y,X) yeY

><( ) I1 (uA,,z_,RL(c)uA,,h)). (2.4.9)

P2 €22 (V\Y) p2eP2

One bounds the factors under the sign sum: the first one by (2.3.2), the
third by (2.2.2), and the second by (2.2.1) and (2.3.1), because

> [T (@ Ri(0) uAy)=( V0, VHR(0) Vv uAy)(LZ)VZk

teB(Y,X) yeY xeX yeY

Then, using (2.4.3) to (2.4.8), the inequality

JO B
- \/Re.cxz

<|cos Argap| '<C, (2.4.10)

(*?) Plus, if | ¢;| is odd, one arbitrary vector of})ﬁi of the form )} so that | V|, (also|V’|),
is even. -
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(because A, (o) is self adjoint), and |V |</[,+]|g;|+1,| V'|£]g;|, it becomes

I
1S @ o) [ TT [ /5hller-C TT [A[0272950)
kj=l . A

€A+
lg;l/2
) 4 (lj+|gjl> (Iflj|)czj+|gj|.((l}'\x!)uz I (Iq}h)(()ll)uz)
k=0 2k 2k o€ Ao
(@0 1 (g, TT (@, )2 CE)
AgeAo yeY
(T @ah2cerisi-»), (2.4.11)
xe VN\Y
where I¥, 1Y%, (g%, g/™¥), is the number of elements of f,, (g,), which
belong to X, VN X; then (2.4.1) follows easily. u

One deduces elementarily the

COROLLARY. — With the hypothesis of the lemma above, one has

N
!
M= ) S74 (5 )
=1

ihzjsNiZaj=qa+ (AGA+
) l_[ gja!
j=1

J

<H(NC T (afaID? TT (@a)?|a[2-90), (2.4.12)

ApgeAo AeAy

N
(where /()= T1 ¥ )i ldlaol= X awlal= X a»-
j=1

Aeé+;ACA0 AeAy
2.5. Now one estimates the factor Det. R of (2.1.9):

LemMMA. — If te T , satisfies the condition (2.1.1), one has
|| Det. R, ||o<CLAIHI2Q1 (2.5.1)
[where | A| is the length of A and | A(t)| is the number of elements of A (£)).
Proof. — If R=[I+1A]"'=I-1RA, according to [I13], one has

|Det. R|<ell®RAllst <ol sl IRI Al where || . ||,1 is the trace norm.
Now, if te 7, satisfies (2.1.1),

A0)= Y (o, 1) tVa XYt (-8 x¥g),  (2.5.2)

AeAQ)

so that, from (2.4.2),
A, (@) |1 = L <o T P+ vz [
AeA@®
<C ¥ Ko 1| @.5.3)

AcA()
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thus, from (2.4. 10),

||Det R ||Lp<”ec P, < lA)l“l/P— H ”eC|<.,1A>|||II‘/lp,
AeA()

because the variables { o, 1, )’s are independent, then from
e|Cx|§er+e—Cx and J‘ eC(o,lA)v(do.)=el/2C2|A|,
P

one has

| Det. R, |l o< [T (2e2C*18Nhp,
) AcA@

and (2.5.1) follows since ). |A|=|A]|. [ ]

AcA®
2.6. One will use repeatedly the following elementary inequality:

LEMMA. — Let X< 2,, (r=0), and n=(ny), . x a family of integer (almost

all vanishing); withn: = Y. n,, one has
AcX
[n|! TT |A[**om<ClzlX ]2 T (ra). (2.6.1)
AeX AcX

Proof. — Withn,= ) n,, (s2r), one has [n|= ¥ n,, so that

AcX;Ae Dy s2r

X[H=T1( ¥ |A|>"szn(% I |A1"A),

s2r AcX;Ae 9 szr (na!) AcX; Ae D
AcX;Ae g
thus
[T D IT |APag X TT () (2.6.2)
s2r AcX AcX

on the other hand, if |A,| is the length of a segment in 2,

|n|! ae lnl!
on AJm<(Y A =C,ln|, (2.6.3)
[[(n')AIc]xl | ﬂ( ,)sl:[rl EOI N |
and (2.6. 1) follows from (2.6.2) and (2.6.3). m

2.7. Now one estimates the factor

n[<° (IA_%IZ)>+\/RZ = :2: (o, ‘A>]

of 2.1.9).
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LEMMA. — For any p=1, €>0, there is a constant C, , such that

RIILSERSE - X

LP

<Cl T (@ah2]ape-om). @.7.1)

AGA+

Proof. — First, from Holder’s inequality:

1A] “
l_[ <"1A>+B < IZ>
AeA+ |Z| L?
<(+|B]'e! sup (II [T o107 |2
0shsgq AeA+
g <) L)
, 13D . (2.7.2)
I (g ew)
Then,
| TT <o 10> |2
AeA+
<cletl T ((ga—had)V2|A[0296m), (2.7.3)
AeAy
indeed,
I TT <o tamllee=(TT TT <. 1a0"s|leee
AeA+ s21 AelAs
SOTL I IT <5 1a,0ms|luses
s21  AelAs
=OTT T1 1< a0l =TT TT (I <-5 1a,) [lusestna)™s
s21 AeAs 521 AeAg
SETT JT @ps?ny )2 ((|<., 1a, ) [[2)"s,
521 AeAs

[ from Holder’s inequality, since Y — > <1, @ because the variables
s=1 S

(o, 1,,) are independent, and @ from Nelson’s “hypercontractivity”

mequahty] then (2.7.3) follows easily because || (., 1, ) |jL.2=|A|"/? and
sSC,|Af

Last,

I (gremw)f

Vol. 59, n° 2-1993.
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indeed

81 (1)
Ag,,_(‘Z' 1A>) sz
n 1 ('A‘ 1)

’
AeA(t) AeAt;AcA lA

o (o (A

AeA) AcAtiAcA ‘A l

<@ ] ( I (\A‘)"A)(z z h)(l/l) RV

’
A'eé(i) AE/}+;ACA' IA

h

o la (e 2, hA)ACA "

(1/2) E hA

[V because the variables (o, 1,,) are independant, %) from Nelson’s
“hypercontractivity” inequality], one then deduces (2.7.4) using (2.6.1);
and obviously (2.7.1) follows from (2.7.3) and (2.7.4). |

2.8. An estimation of the right hand side of (2.1.9), after Holder’s
inequality, according to (2.4.12), (2.5.1), (2.7.1), (and of course
|e—(i/2)(lm.a2/Rc.u2) z |A|—l<°le>2|= 1), gives

AeA@®

LemMMA. — If geQ, and te T , satisfies (2.1.1), then for any £>0 there
exists a constant C,, (depending on the parameters N, p, and on the auxiliary
parameter o, uniformly on any compact set in the domain defined by

|Arg a| < g, | Arg ap|< g, and not depending on t, A, neither on m bounded
away from 0) (}3), such that

|C TT D& Zy, .. ()|

AeAy
< (pciarseia T (a0 1 (@ad]alr-24), @.8.1)

ApeAo AeA+

[where N (f), |Al, |A@]|, |4l|.|a[s,| have the same meaning as in
(2.4.12), 2.5.1)].
In view to apply the theorem (A.0), one sets

Dy= Y D, (rz1,4AeA), (2.8.2)

Ape Ap; ApcA

one has

(*3) Constants introduced in the proofs above have this property, so it will be for those
introduced afterwards.
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ProposiTION. — Let k={kj; r=1, AeA', } be a family of (almost all
vanishing) integers, and te T ,, one supposes (2.1.1) is satisfied by t and
each qe 2 (k), [where 2 (k) is such that [] [T @O%= Y [] Dl

rzl AeA’y ge2(k) AcA'y
then
|( H l_[ (DrA)kz) ZN- (Pt (f)l
rzl AeA’y

SH(NCIAH2QIFIEL TT (Jk[ 5 |12

ApeAo
([T TT GaD?[A,]7%), (2.8.3)
rzl AeA’y .
(where |k[a|= X X Ky lkl= X [klsl= X X ki and
r21 AeA’y;AcAg AoeAo r21 Aepl

|A,| is the length of any element of A,).
Proof. — From (2.8.2)

(IT TI DBV Zy, ()

rz1 Aeé'_,_
ky!
= ) (]’[ Il __;A#_>
pe? (k) \rz1 AE/}'.‘. 1_[ Pﬁrl
AreAp; ApcA
z R
x[( H (Da)aSa )ZN»(P);L(f)]’ (2.8.4)
A eA:
where

PE) :={p=P)acas . Pr=ky, (2D} (2.8.5)

Are Ay A cA

Therefore, from (2.8.1), written down for €, <g, one has

I(IT TT BV Zy, g (NS4 () Clp IO

rz1 AE/}'+
x Y [H( I1 <_ ky! _ |A,|kz>. I <[ y pgg];)]
pe?® Lrzl Nacal [1  pa! AveA, \AeA; MDA,
AreAp; A cA - -
x TT (klaID2.(IT T1 |A,]75%), (2.8.6)
AgeAo rzl Ae Al
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then, on the one hand,

Mma Y 2

AreA, A eAy; A'DA,

[ X ml [T oy
_ l_[ A €A A DA, H (A,eé,.;A,CA kZ!)
A;.eé, l_l (Pﬁf') AeA} kz‘

A eAL; A DA,

< 1 AaZa [ k= 1 Pa@D,

Are A, AEQ'.;. AeAy

but, for any §, >0, r<C;, |A,|™%, (because | A, |=1,27"), thus

M« ¥ #avs 1 (chialo%my): @87

AreAr A eAiADA, AeA’y

on the other hand, for r>1, AeA,,

!
(Pﬁ')A'cA; b)) pﬁr:k'A l—[ pAr!

Are Ay ApcA
A,cA r € Dp; Qp

so that

!
(0 S iak)s] 1 lafs @89
Pe? () \r21 aAca” H Par! r21 Ae A’

AreAp; ApcA

then, one chooses &,>0, and sets B,=b|A, | %2, (with b such that

Y. B, !=1), one has

r=1
IINIEES 1 (> k;]zg;“&g“%kw)_
21 AeA;AcAg
so that
IT (k[ As|Y
Ag e Ao
sclt! T T[T« ¥ kIDTT IT [A]7%% 2.8.9

ApeAo r2t Ael_\ﬁ;AcAo rz1 Ae/}';
last, as |A,|<|A|, VAeA',, one obtains from (2.6.1)
ImIma ¥ &1t I1 [aM
AgeAp rz1 AG/AQ;ACAO AE/}'+;ACA0

SCIENAGE TT T (KatA,|7%%). (2.8.10)

rz1 AEQ’+
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Then one obtains (2.8.3), with e=¢g, +§, +§,+E&,, by setting (2.8.7),
(2.8.8),(2.8.9) and (2.8.10) into (2.8.6). [ |

2.9. Now one wants to give a second estimate of

(H H (ﬁrA)krA) Zy, oy; t N

rz1 AE/}'+

one starts with the formula (2.1.7), in which one forces the factors
(o, 1,) to “disappear” by iterated integrations by parts.
One uses the formula

J (o, 8> F(G)V(d0)=_[ 0,F (o) v(do),
& &’

where for geL?*(R, R), ¢,F(0)= 4

F(o+ug), one deduces for
du ‘-u =0
AeA,:

a : - B
f —— <o, 1, ) F(0)e™ @2 0m.a?Re.a®) X |47] Koy (do)
&

\/Re.cz )
-], (=)

61AF(0)e_(i/2)('m . a2/Re . a2) AEQ' | A’ I_I(G,IA’)zv(do_). (2.9.1)

One has obviously
61A1<0’ 1A2>=|A10A2|7 (2.92)

therefore if E, is a set containing, for each AeA,, g, elements equal to
A, one obtains, from (2.1.7) and (2.9.1)

( H D‘fsA)ZN,(p);L(f)=(_iP)Iﬂl Z

AeA+ @j)1<j<N; £4j=4 XcEg.|X]e2N

-2 (% mia.na.b

AeAy Pe?3(X) peP
I1 g!

j=1

x <ﬁ)lé@|fy,<ﬁg\x (ﬁ%)_lau’)

N
x [ T (S72(t;0). Det. RL(O')I/Z):I

j=1

Xe—(i/2)(lm.a2/Re.a2) z |A|—1<°»1A>2.V(d6)]. (2.9.3)

AeA®)
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[after integrations by parts have been done, one has “suppressed” the
complex multiplication on the wvariables orthogonal to the
{{0, 14 }aea’s on which the integrand does not depend anymore].

An estimation of the right hand side of (2.9.3) gives

LEMMA. — Under the hypothesis of lemma (2.8), one has

| ( ]._I DqAA) ZN, (p);i(./') I

AeAy

éﬂ(ﬂclsAHlé(yﬂgl 1’[ (lql'A0|!)1/2 n ((qA!)l/ZlAl(I/Z—a)qA)

Ag e Ao AeAy

P | (WD)

X<Eg; |X|e2N AgeAg

xC 2 I, N4, D I1 (a0 @949

Pe?2(X) peP yeEg\X
(where gy is the number of elements equal to A in X' =E \X).

Proof. — First, according to (2.1.2), (2.1.8), if for AeA, (with
ga#0)AeA(2) is defined by the condition AcA, one has

)_1 0,,R,(0)

= —ipR(o) iz Vs x Yz + (1 -1 Vi x ViIR, (), (2.9.5)
Therefore, from (2.1.4), for any family g of L?-functions,

=

* 2>_1 8., (5,5 ©) Det. R,(6)"")

(y‘ﬁe—.“a_

2P A| (xS 0)+ ([ =15 Sz (& 0)] Det. R, (0)"2), (2.9.6)

where g, is the family {g, ¥,, ¥, }.

One introduces the families gy, (h={/,}as), containing the elements
of g, and for each Ae A, 2 h, vectors equal to \,;
and for Y<E, one denotes by HZ" the set of the h={h,},., of which
the only non vanlshmg elements are, for each Ae A (¥), h, and h; which
satisfies

0<h<|{yeY; A,cA}|
and )
=|{yeY; A,cA}|- Z kg

A A=A
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then, from (2.9.6),

(ﬂ (75_“2>—1% )(Sf‘y ( o) Det.R,(0)'?)
yey e.o ) -

=(__i£)' (I11a,h ¥ (c,(h)st(_, 0)) Det. R, (0)1/2, (2.9.7)

2 veY heH‘l

with constants ¢, (k) satisfying 0= ¢, =1
Then one computes the right hand side of (2.9.3), according to (2.9.7),
]._[ DAA) ZN, (p);l(.f)
A €A+

X

)

q;¥i
(hjeHy "}1g5jsN

{gjl1=jsN; T aj=a X<Eg|X|e2N
j

{(YjhigjsN U Yj=EQ\XYinY ;=0
j

—ip)2lal-IxX] ! N qYi
Clrne™ 11 52— MG 11 (7))

AeAy AeA()
H [N

(X ]‘[lA,,_mA,,+!) I1 14,]

Pe?5(X) peP ye E.\X

o lA®] N
< ) I1 Sra (& o). Det. R,(c)"?
\/Re 0( & j=1 —J

x =D am aRed) T 147Ky (do)  (2.9.8)

€4y

One estimates each Sf_,(_, o) from (2.2.1), (2.2.2), (2.3.1), (2.3.2), as
in (2.4), [with now VC]jqﬁ’ the set of the vectors of the form X, /2 f,
(fef), or Yu, (A€ A L), or Yy, (A€A)],
|SfJ(J o) | N (fy) Cla!* k!

x [T Wa;l a0 172085140 D

AgeAo

X H ((qu!)I/Z|A|(1/2)—e)4m)’ (2.9.9)

AeA+

and one easily deduces (2.9.4) from (2.9.3), (2.9.7), (2.9.9) and
2.5.1). |
Now one deduces from (2.9.4) the
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PROPOSITION. — With the hypothesis of proposition (2.8), one has
I(IT T D2 Zy, gy, (N
rzl AcA’y

S (f) CLATIAQIHEL T (k|12

AgeAg

(TT TI (1)32|A,[279%), (2.9.10)

r21 Aeéﬁ.

Proof. — According to (2.8.4), (2.8.5), (2.9.4) written down for
€,<g, and (2.8.7), one has

I(TT TT G Zy, g, (N|SH (HCIAHOIIEIC e

rz1 AEI}'-{.

X n (|]_(|‘AO|!)1/2.(1—1 l—[ (kz!)3/2IAr|(1/2)—el—§l)k'A)

Aoeho rzl Aen’,

x ) LIT diFaId I1 ¢ X A

X<=Fg | X[e2N AgeAg y e Fg\X AcAriAcay
)N, (2.9.11)

PN | G 2 A" A

Pe?3(X) peP A’el},p_;A’CAp_ A”e/_\,.m_;A"‘:A‘,+

where F, is a set containing k}, elements equal to {A, r},(r<1,Ael,),
and k¥ is the number of elements of X'=F,\X equal to {A, r}.
But -

Y ANAT=[ANA, (A ]]A )2

A€M A CAL A A, A CA

and obviously

Y A=Al
A'e A A'cA
therefore
[T (&l IT € X |AD
AgeAo yng\X Ae/},y;ACAy

<Y MC Y S lana

Pe?3(X) peP A'cAr, ;A'CAp AVcA,, ACA,,

SO T (1iFag| 211K D (T TT [AJ250)

Ape Ao r21 pAcpr
=+

<CEVTT TT RAII2[1EC G [1]A,7524), (2.9.12)

rzl AeA”y

)

The last inequality coming from (2.6.1); one obtains easily (2.9.10),
with e=¢, +&; +&,, be setting (2.9.12) in (2.9.11). |
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2.10. Taking the geometric mean of (2.8.3) and (2.9.10) gives

rz1 Ae Al
<A (HCIAFIBOIIE (T [T (g )7#]A,[1479%), (2.10.1)

rzl Aeéﬁ_

then, according to the theorem (A .0), one can state

THeorREM. — If |Arg p|<%4£, the functions Zy ). a,(f) defined by

(1.3.1)—where o is chosen so that |Arg a|<% -and |Arg ocp|<%
— converge, (uniformly for p in any compact set), as r — oo towards analytic

2
functions Zy . A(f) which coninue, (if 7L=28—), the functions defined

by (1.1.5).
Moreover, there exists a constant K, (depending on N and p-uniformly
on any compact set-but not depending on A), such that

|Zn, oy D SN ()M, (2.10.2)

3. BOREL SUMMABILITY FOR THE NON NORMALIZED
SCHWINGER FUNCTION

3.1. The aim of this chapter is to prove that the analytic functions
A= Zy 2. A (f) are of class C*® at A=0, and that their Taylor series are
Borel-summable of level 1 in any direction, except that of the negative
real numbers.

This is an easy consequence of the

PROPOSITION. — The functions pr— Zy . » (f), analytic in
3
{peC*; |Arg p|< Tn},

are of class C* at p=0 (**), and, for any n>0, R>0, there exists a

constant C'R,n (*°) such that, if 0<|p|<R, and |Arg p|< 34—“—7], one

. . - 3
(**) More precisely, their restriction to any sector { peC; |Argp|<7n—n } is of class C*®

at p=0.
(*%) The constants does not depend on n, A, f, N bounded, and m bounded away from 0;
this will be true throughout this chapter, if not otherwise stated.
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has for all neN
4
d n
3.2. In order to prove this proposition, one wants to show that the

successive derivatives of the functions p—Zy (., (f), defined by (2.0.6),
satisfy s1m11ar inequalities and converge uniformly for 0<|p|<R,

Zy, o AN [EN )M A2 Cy 7 ()2, (3.1.1)

| Arg pléj—n‘

So one wants to give two estimates of ([ [] (D4 )"3) Zy, oyt ()
r21 Ae 1}'

which are obtained by derivation with respect to p in the formulae 2.1.9

and (2.9.8), respectively. From (2.1.2) and (2.1.8), one has

d =
k@)= JRN ; L (o 1) R()

eA)
X[, Wa X Ya+ (1= 1) Yz x Yzl R, (0), (3.2.1)
therefore, from (2.1.4), with g,={g, Vs, ¥, }, as in (2.9),

2 (8,5 ©) Det. R,(0)"")
dp -

XY (0, 14) (1S, (& 0)

2\/Re.d AeA()
+(1= 1) Sz (& ©)) Det. R,(6)"2. (3.2.2)

Given te7,, keN one sets I[={k={ky,eN} .r¢ |k|=k}, (with

|k|:= Y. ky); and for k={k, eN}AEA such that k,=0 if A includes
AeA(®

stricly an element of A (f), one denotes by HY the set of the

h={hyeN}, ., of which the only non necessarily vanishing components

are, for each Ae A (¢), h, and Az which verify

0Sh< Y ks, and  hg= Y ky,— ) A

AreA; A1 <A AzeA;Ar=A A’ A=A

Then, from (3.2.2),

2 (8,(t o) Det. R, (6)!")
dp'l =

(35 e Gy

nelf

T AeA(®)

x(x (11 < >) ¢.(B) S,, (& ©)) Det. R,(0)"2, (3.2.3)

heH" AeA(@®)
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where, as (2.9), g, is the family containing g and, for each AeA, 2h,

functions equal to V,; and 0=¢,(B)<1.
Therefore, from (2.1.9), one has (1)

(II DqA) ZN wxt ()
AEA+
= Y
k; [(n—K)!] Z H kA

ke],
AeAQ)

x X 2 2

{gil1gjsNs )J;li=ﬂ {b)l§j§N3§5=E (@jenlif}lé,-éN

x[<—i'z'+~p'z'-~+* ()()4)
2k k) \n—k

< IR0 ﬁ(e@» n ()

~
AeA @) j=1 AeA@®)
= l_[ qJA - ]_:_[ ! e

)™ [ 11 oG )

\/Re a? ¥ AcAs
A
\/RC:. = :z&:< o.5)"

XA g\(r)(\/Re (o, 1“'>) l_[ Sf,—l(.; o)

x Det. R, (0)V2. e~ (/) 0m ?Re o®) | K 14171 Co10)?, v(dc)]. (3.2.4)

and from (2 9.8)

(Ag\+ DqA) ZN ) r(f) Z [(n—K)!] k;, I-[ PR
AeA®

X
(q_;hgjgN;Zg_, 4 X<Eg|X]e2N (Y;higjsN YYj=EQ\X, YinY;=0
j 7 =

x X 2 Y

., - = . Y, . -
hsisNZE=k  (piens’y g on () €eBE1gjan
; 9 Y s)s a2

(%) The lines 2, 3 and 4 of the right hand side in this formula, and also lines 2, 3, 4, 5
and 6 in (3.2.5), contribute to the estimate only through harmless constants to some power.
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(P 1almIXirkp2lal-IXi-ntk /1y (2] g]—-|X]
X
[ 2al-IX|+k (k)< n—k )
qa! !
X Aq NA I1 N
< AeA()
‘+H‘IJA! __l:[

x H (e, TI (q’,“> (k,. ))

AeA() jA A

Y I11a.04,.1) I |a)

Pe?32(X) peP yeEq\x

lA®] o k
(\/Re o ) Jy AeA(r) JRe.o? (e 1A>) A

H :4 oy (& ©).Det. R, (c)"?

—G 2 - 2
X g~ @ tm.aRe.ad) R 1a1TH @) .v(dc)]. (3.2.5)

The estimation of the right hand side of (3.2.4) and (3.2.5) uses the
inequalities (2.5.1), (2.7.1), (2.9.9) and

I TT Cotaelesctt T (kah2]ape2),  (3.2.6)

AcA® AcA®

and also the

LEMMA. — One has

!
Z nk k l—[ ((k ')1/2|A|kA/2)<Cke|A(t)||A|h/2 (k |)1/2 (3 2 7)
kel, A AeA@)

AeAQ)

Proof. — One decomposes the sum in the left hand side of (3.2.7) as
the sum of the terms in each of which the set of values taken by the k,’s
is fixed, (there are at most 2! such terms); let T be one of these terms,

for which the non vanishing values taken by the k,’s are p numbers
} 4
0<p< ,5‘), ky,..., k,22, with sum ) k;=k,<k, and k,=k—k, times
i=1
the number 1, one has

P 1 .
Té[ﬂ &N Y |A|ki/2):||: z k,! ] |A'kA/2:|’
i=1 AcA( kel [T ki'acaw
L oAeA@
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because T is the sub-sum of “non coinciding points” of the right hand
side, but

n(<k hie Y |Af2)
AeAt)
V4
<TT(ED" 10521 T |A])<CHIA2 ey )12,
i=1 AeA@®

since |[A|<|Ao| and Y |A|=]|A|, and on the other and

AcA®

k,! .
"2 A kp/2
gé"z [T Ai! Ael;[@ 4]

L Aerq

<<-’( el )Py s T1 AR

1‘ H kA % ki'acaw

1 AeA@ L AeA(t)
=@ A (1) 22| A P22 < A Q1| A PF2r2 (k, 1)112,
[ from Schawarz inequality, ) because |If2|=|A(z)[*> and
- |

Y A=Al

AcAQ
Then, from (3.2‘4), one has

CTI

AeA+

<‘/V(f') C|A|+A(t)|+|qt+n 'A|u/2("1)3/2

x I1 (ar,, 197 T1 (@h]ap-om), (3.2.9

ApeAo AeA+

and, from (3 2. 5)

(I

AeA+

é./V(f')CiAIHé(g|+|1|+"IA|’/2(ﬂ!)3/2

x T (|g|-A0|!)1/2 1 ((qA!)llzlAIu/z—e)qA)

ApeAo AeA+

x Y D)

X<Eg [X|e2N AgeAp

x(Y I11a_naLD TI1 1AL 3.2.9

Pe?,(X) peP ye EQ\X

One achieves the proof by the substitution of the inequalities (3.2.8),
(3.2.9) to the inequalities (2.8.1), (2.9.4) respectively, in the proof of
theorem (2.9). |
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3.3. As an immediate consequence of proposition (3. 1), one has

THEOREM. — The function A Zy ;. 5 (f), analytic in
{reC*; |Arg. A|< 37“},
are of class C* at A=0 in any sector
{reC; |Arg. A< 3?“ -k

their Taylor series at =0 are Borel-summable of level 1 in all directions
except that of negative real numbers (7), each function being of course the
Borel-sum of its series; more precisely, for any >0, R>0, there exists a

constant Cy , such that, if 0<|A|<R and | Arg. 1| < ?’z—n—n,for any neN,

one has

Zanat- 3 ( won) o

§JV(f)eK'A'|A|"CR,,"'n!|l|". (3.3.1)

Proof. — To deduce (3.3.1) from (3.1.1), it suffices to remark that

the derivatives of odd order of the function p>Zy ., (f) vanish at

p=0, (indeed one can change p into —p in (1.3.1), since the measure v
is even); for if Y@**D(0)=0, ¥ (z)=V( /), one has, recursively on n,

u )n 1

-n!

wo@=2os [[ O oo o, w2,

from which one deduces

%) (2) | < (z”n sup | W@ (u_/z)],
O0=us1

and particularly
|P?|<a@ Aty if PP |<ac" (). A

4. CONTINUATION OF THE SCHWINGER FUNCTION Sy , (/)

4.0. In this chapter, one shows the existence of the limits, as A - R,
for the functions Sy ;,2(f) defined by (1.1.6), now valid for

(") Their Borel-transform of level 1 is therefore analytic and exponentially bounded of
order 1 in the cut plane.
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|Arg A | < 3715’ when the denominator does not vanish. For this purpose,

one uses the general method of “cluster expansion” of Glimm-Jaffe-
Spencer (%), the main features of which are recalled briefly in
appendix B (*°). The first step is the construction, for each function
(A Zy 4 (f)eC¥o, of an extension ((A, 5)i>Zy ;, 4, (f))eC¥o*50,
such that Zy ;. 4, 1,(f)=Zy, ;2 (f), and to which the theorems (B.3) and
(B.4) can be applied.

These functions themselves are obtained as limits, as r — oo, of the
functions Zy ;. 4. ,.s(f) which one introduces now.

First, if for B, 8,€ 2, and s€S,, H(s|B; ,, §,) is the coefficient denoted
H® (s|B; 8,, 8,) in appendix C, one has

0§H(S|B; 8, 8,)=1 (4.0.1)

H(s|B; 8,, 8,)=H(s|B; 8,, 8,). 4.0.2)

Next, there exists a constant (*°) C, such that, if Be 2, and XeZ, one
has

[ 1x Wall2SCemdtb-XI (A9, Ac=P), (4.0.3)

where d is the distance over R, indeed, from (2.0.2), with x,=38,,, one

has {, (x)= ;—lt K, (m(x—0,)), but there exists (') a constant ¢ such that

Ko@) <ce "l if |u|=1, therefore

2
2 7. <C -2map,x —m|x| Jr. — (2 ,—2md[B, X]
Yy (x)?dx < 5 € e dx.=C%e .
X T

Last, if MyzeL(L*(R)) is the operator of multiplication by 1;, (5€2,),
for 1€ 7, and seS,, one defines A,,,(c)eL(L*(R)) by

Ais(0):= ) Y. H(s|B; 8y, 8,)
BeAop 81,82€20

X 2 a0, Tgly ) My [N X U+ Ua X Wil M, (4.0.4)

AeA

so that, from (C.1.7), A,(c)=A,,,(c); the series is convergent
from (4.0.1), (4.0.3) and the definitions (2.0.3), (2.0.4); the

(*®) One of the aims of this paper being to prepare an analogous analysis in higher
dimension, one does not try to use some method too much particular to the dimension d=1.

(*?) One uses the appendix B with the identification ¥"=%,, each element of # being
the common end of some adjacent segments of 9,; one refers to appendix B for the notations.

(*°) This constant is independent of m bounded from below; one chooses 1, so that
mly=1.

(*") K, is the modified Bessel function of the second kind; the inequality is classical, it is
also an easy consequence of the representation (4.2.3) below.
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operator A, ,(c) is real and self-adjoint, due to (4.0.2). Then one
supposes that the family f={f;,, e #~'; 1<j<N, 12k;<1;} is such that
each function ' f, K ef has its support included is some segment of
Dy (%2, one sets f,= {fef;supp. £,2 fcA}, and one defines
ZN o FI=2Zy 2/3 s (f) by the substltutlon of A,;(c) to A,(c) and of
fa to £(3%) in (2 .6), the analog of (2.1.6) is

Zy, ;155 (N):
o [ A1 N 1/2
=<\/R— _e?) L [T (8, (& 5: 0). Det. Ry, ()')

ji=1
X @~ (@/2) Im . a2Re . o?) ): |A| 1(o,15)? v(do), (4.0.5)

where R, :(0) and Sy, (_, s; o) are defined by substitution in (2.1.2) and
2.1.49).

4.1. The existence of the limits
ZN, (p);A;s(f) L= llm ZN, ) A, r;s(f), (4 1 . 1)

r— o
[with, of course, Zy (). o, rs(f) 1 =Zn, ); 1r,;s (f)]; and the inequality (**)
|ZN,(p):A;s(f)|§‘/V(fA)eKllA', “4.1.2)

are proved by the following adaptation of the argument of chapter 2.
First, from (4.0.4), and owing to (4.0.2), for Ae A, the analogue of
formula (2.1.5) is

D, (S (% s; ©) Det. R, ,(c)"/?)

—ipa
= (o,
\/Re .o Co.1a)
x Y H(s|A% &, 8) Sym 6.5 (8 5, 0) R, ()2, (4.1.3)
d',0e Do

where A°e A, is determined by A°>A, and g% ={g, M V), MQ]’/A}
therefore if, given geQ, and &', SE@E‘I (®%), one denotes by g% 3 the

(**) This condition allows to verify the condition L.(i) of the definition (B.4); see
remark (!).

(*®) This convention is introduced to verify the condition L.(iii) of (B.4), with, for
Z; )12 @) the set Zr of segments of 9, which contain the support of at least one function
of f; it does not change the value of the limit as A — R.

(**) Where now, according to the hypothesis done on f,

A (H=CY ] llfrAl,l'l”2 IS lles
Ape DBy
with £, := {fef suppZ, 12 fc Ay}
(*°) Asin (2.9), E, is the set containing, for each Ae 9, ¢, elements equal to A.
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family of L*-functions containing g and, for each A€E,, the functions
M, Vi and M3, J,, the formula analogous to (2.1.9). becomes

(I1 DBZy s D= 3 T %

AeAy {gih1<jsNi T gi=4 AeAy
J

(grem) L0 (ol
\/R: |_§_|< 1>D

XH( Y {(I1 HG|A% 8 8) S, w53 5 0)})

j=1 §,8jeaqy AcEy
2 -1 1 2
x Det. Ry, ()2, g~ @12 (m o7k e A(z)IAI (18> v(do) . (4.1.4)

o
(1! i 1)

In the same way, the analogous (2.9.6) can be written

-1 '
) 01, (5. (& 5; ©) Det. RBS(G)1/2)= Tlp 1A

x ¥ HE|A% 87, 8 [13Ses- 4+, & 5 0)
87,87 e
+(1= 1) Sy3.5- 4+, (& 5 0) Det. R,(0)2, (4.1.5)
then, for h={h, },., and 87, 8" € D, one denotes by & 5-, 5+ the family

of Lz ~functions containing g and for each A€E,, the functzons M8 r, and
st Va; one obtains for the formula analogous to (2.9.8),

H D3 Zx, ;155 (f)

AE/_\+

= )) ) ) )

(4j)15jsN; £ 4j=9 X<Eg | X|e2N {Yjl1<jsN; | Yj=E\X, YinY;= 0@ {
j - j -

=

&
hjeBE j1<jsn

(—ip)?lal-ixi qa! X 'HA
X[ 2lal=1X] T <= H aly 11 ;;
= AeAy l—[q | i=1 AeA@) JA
ja:
=t

C 2 IL1A-NnaD TT 14

Pe#?3(X) peP yeEx\X

( o )Ié(yl ﬁ( 3 »

x —_—

JRe.o? &' i=1 5, 5caby 5.8} < 2bh
{( [T H(s|A% &4, 3,0)

AEEQ
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CI1 HG|A 85, ) S w3 (553 0)])
s 3

A € By, .81

x Det. R,,,(0)V/2 e~ @D Im - a?Re.ad) K 14171 Cola)?, v(dc)]. (4.1.6)

The proof of (4.1.1), (4.1.2) (*°), rests mainly on the following inequal-
ity, analogous to (2.4.1) and (2.9.9), to be proved in paragraph (4.2),

LeMMA. — If, as in lemma (2.4), geQ, and te T , verify (2.1.1), one
has

|Sg[qa B, (_,s o) SN, (g)clq|+|h|

x [ m2e - Hm@(aY, 83 1+d(A9.54 )

AlsEl

x 1—[ m~ e~ (1-Om@(AY, 85 1+d (43,88 )

AzeEh
x 1 Qary, |11, | TT (@) [A[0279%). @4.1.7)
AgeAo AeAs

One also needs
||Det. RESHLng'A', “4.1.8)

analogous to (2.5.1), with the same condition, and easily deduced from
(4.0.3).

4.2. The proof of (4.1.7) mimics that of lemma (2.4), according to
the inequalities (4.2.1) and (4.2.8) below. First, the analog of lemma
2.3)is

LEMMA. — Given k={ky}scq, €Dk, and g={g;eL*}, <;<, a family
such that each function g; has its support included in some segment of 9,
one has

1
( v g,)v( v Ma )

j=1 AeEk

L2v Ukl+1)
A, @CHE [T (&, |17
Age Do

x [[ m~2e 1-0mala% a1 (4.2 1)
AeEk

(*%) One does not give more details, since this proof is a particular case of that of
paragraphs (4.3), (4.4).
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where

H2@=C" T (ler,, 1" H &1l

Age Do
,—Ao—{geg, supp gcAo}.
Proof. — As M, M, =0if y, #Y,, one has
| v Mg Wall=IT 1l v M, Va |,

AcEy vePo Aed 1y
then, from (2.4.2) and (4.0.3),
I v M [sCEiOla () [nt?

Aes™ ) .
x [ mUzem-tomia®y
Aes™ 1y
but, Y e 222mleM<Cy , therefore if
Ape Do

871 (1,  ={A€d™ (v AcA, ),

(|§—1 (,Y) | !).e-Zﬁzlé—l (7)|_A0|”‘d[AO"Y]_S_C£2| 8~ 1y l—[ (|§“1 (»Y)l_AOI!);

Ao e Ao
from what one deduces (4.2.1) since, on the one hand

3 187y, =lkry, | so that TT (187, D= kr, !

Yye Do YE Do

and, on the other hand,

1
(v v v Mywp| e g“n Mol
ji=1 AeEk
and
1
I vgll=TII I v glls IT (&r, D" H gl =
i=1 Age Do 9<8la, Ao € Do
Next

LemMMmA. — Let B, 8, A, be segments of D,, and A€ D ,, A, =B, then
for any £>0, there exists a constant C_ such that, for any r=1,

X MV, My <

Ae P, AcAp

“m@p,51+d[A0, 3D (4.2 2)
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Proof. — One has ¥, (x)= % (Ko (m(x—0,)) =K, (m (x—03))). and,

one deduces from [7], (3.53), the representation

1 1 (= Sy
—Ko(mx)=-'[ K12 ! e~ VM Kixlgg  (4.2.3)
n

T Jo 2 \/m2+K
indeed, (—D?+4m?)~1/2 is the operator of convolution by 1 Ko(m.), and
T

(—=D?*+m?)~! the operator of convolution by i e ™1 Therefore, one
has first

MWy |l2<C|A]e™™B%3 if d[A°, 8]>0,  (4.2.4)
indeed, for x€3,

A
V@< % sup (% 1K (m)]),

y€[0a, O3l +x

but if d[A°, 8]>0, one has |my|=ml, =1, and one deduces easily from
(4.2.3) that |Kj () |<ce™'"!, if |u|2 1, thus

J‘ |\|1’(x)|2dx§ cjmzz IAlze—zmd[AO,sl J e~ 2mIxl gy
s m

Next )
C,|A|YP, l<p<oo,

IMa ¥ [lor =] W Lpé{cl"”Al'loglAl’ pp=1, 4.2.5)
indeed,
ﬁ le™MIxI—g~MIx—3l| < 1_;\:'” max {e™M1%], g~MIx=y1}

§%(3—M|xl+e—M|x—y|%
therefore
¥l - IFpapallr

with

l_e—a Vm2 +K

- e—‘/m2+K|x|dK,
\/m2+K

o[
0
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then, one deduces (4.2.5) from the estimate
1 —avm2+K

Fll,<| gwlze” ™"
e e

1/p © l_e—a*/m2+K
é([ e-plyldy) f K12 (m2+K)'U(2")dK
R 0 m

a2
gc;(aj K172 (m*+ K)~ 0P dK
0

“e—x/m2+K|.|||Lde

+fw K- 1/2 (m2+K)—1/2(1+1/P)dK>.
a—Z

Now, with the hypothesis of the lemma,
(i) if d[B, 8]>0 and d [A,, 8]>0, according to (4.2.4),
Z I(Ms\I"Ap Ms‘l’&)lé Z ”Ms\l’:sl ”L2 ” Ms‘l’:slll.z

Ae 9, AcAp AePp;AcAp

§C|A1|e—mdw.sl Z |A|e—md[Ao,6]
Ae2,; AcAg
=(C|Ao|)|A; |e~m@IB. 81+d1a0. 5D,

(ii) i)f d[B, 8]>0 and d[A,, 8]=0, with an obvious adaptation of
(2.4.5),
Z l(Ms ‘I’,’sl, M, ‘I’IA)|§Var-Ao [Z,.'*M; ‘VAJ
AeDp;AcAg
= 1ag Zm 2 M5 [l [ Ao |2 | (Z0 2 MWy, 2
<[ Ao V2| M5 ¥a, [[L2S(C[Ag [V3) | Ay e matP 2],

(iii) if d [B, 8]=0 and d[A,, 8]>0,
Z |(M5 \lffsl’ M; “’IA) < ” le =, 1z M; \l’/’sl)' "Ll

AePDy; AcAg

1 ’
le (; K, (m.)xM; \|"A1)

m I’ 7
= 14, (; Ko (m-)*Ms‘I’A1>

L! L!

<sup f %lKa(m(x—y)denMw;l LiSC,|A, |79 emmd 1408
Ao

vesd
the last inequality comes from (2.4.5) and thé inequality
|Ko (@) |[Sce™ !, if |u|21,
(iv) if d[B, 8]=0 and d[A,, 8]=0, due to the equivalence of the norms
(loletl@'le)  and  [(=D*+ D¢
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over the space #,, (1<p<o0) (*7),
Y MV, Mab) S 14y (B0 My, [t

AeDp;AcAg

S| Ao [T [(Z P M) (I
SG[ Ao [* T My, [lLr =G, | A, |17,
the last inequality is deduced from (2.4.5), and it suffices to choose p

such that 1 =(1—¢). [ |
p

One deduces elementarily from (4.2.2) the inequality analogous to
(2.4.8), that is

CoRroLLARY. — If now, for A€ 9 ,, d€ D, one sets
uA,5=|A|‘“/2“’ o1 ~Dmd [0, 8] M, Vs, 4.2.6)

then, for &, s=|A|V2 e~ ™% 3 one has

1
sup < Z &Az, 52 k (uAl, 81 qu, 82) |> é Cs,C‘ (4 . 2 . 7)

A1eD+,81e€Dy E-'Al 81 A2€9P4,82e9g

4.3. Now, with the notations of appendix B, let, for be %, 0® = -aa—,
S
and for Te®,, "= ][] o® if T#, (09=10); then, if teJ, verffies

bel

(2.1.1), one deduces from (4.0.4), taking (4.0.2) into account
a® (Sg(g 5; o) Det. R,.S(O')llz)
A [T (o, 1) Y 9®H(s|A% 8, 8%)
2\/Re o? AcA(® 51,52 e
X (1S, 51,69 (6 8 OV H(A = 1) S5, 51 42, (5 53 0))
x Det. RL;S(O')I/Z, 4.3.1)
and therefore
3" (S, (; 5; ©) Det. R,.S(G)m)
—ipa
- 5y p (o, 1, Y °H(s| A% 8C,8))
Pe? () Ave )P 5!, 82595 CEP \/ e

x ) ci(A*)Sg[;:;El,éz]Q, 5; 5) Det. R,,,(0)"2, (4.3.2)

P

v
where 2 (I') is the set of partitions of T 0<c,(A*)<1 and giz*; 51,52
contains g, and, for each CeP, My \|1~S and Mg Vs ic Then one has

(") See for example [16], theorem 2.5.6.
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LEMMA. — For any K >0, one has, provided m is sufficiently large, (with
C not depending on K),
||6‘"sz {45 35 _1] (% s; .) Det. R, (. )l/zlle

h 8 5 1
<Jy(f )Clq|+lhl+lAI+|A(t)le K|Tjl
X l'[ m- 12 g~ (1-0m@IAg, 8y 1+d1A9,84 )
AleEg

x H m—1e—(l—g)m(uAg,a;z]+a[A3,5,§f21)

AzeEb
< [T Qail T2 U8 a0 1'D T (@) [A[P79958). (4.3.3)
Ape Ao AeA+

“4.1.7), depends on A only through AJeAj, and ther?:lfore can be
factorized; so, given EE/_\P one has

” Z H < i IAC>”LP

Ave A @F; A% =p CeP

<O Pl ] ( Y |B~1(Ap)]!

Proof. — The bound on Sg[A o5 with g_fm la 8, §1 , given by

-1
Ao €40 Se(/_\(L)I'Ao)E"(Ao)AGQI(;[H_AO|9 ]!
< T (et @ly Al @)
Ae(A@MIFa,

<@ Pl ] C|ZE—1(Ao)lelé(LN-AollellB_‘I(Ao)l(] B1(Ag) |N112
Ao eAo
écll‘lelé(gl n (|B—1(Ao)|!)1/2’
ApgeAo

[@ from (3.2.6); @ from (3.2.7), with A(D)[ 5,: ={A€A(®); AcA,} in
place of A(9)]. To achieve the proof, one bounds O°H (s|A; 8¢, 82) accord—
ing to (C.2.5); one notes that, for B, 8€2, P#6, one has
d[B, 8]=1,(d(B, 8)—1), so that, for any given t, if m is sufficiently large,
one has (?8)

n m - Yd e~ (1-)md[p, Blerd(B,ﬁ)él, (4.3‘4)
de 9o

therefore, if one choses 1, and accordingly m, sufficiently large, one can
conclude using (C.3.1), (C.3.3) with v=3/2, and taking into account
4.1.8). |

4.4. To compute the derivatives ( [[ D) 0" Zy, o+ (f), one applies

AeA+
o to the expressions (4.1.4), and (4.1.6). One obtains

(*®) The factor m~'/* is used to control the terms where d(B, 8)=1.
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LemMA. — For any K,>0, one has (*°), if m is sufficiently large,

|( n DZA)arZN. Psts (f)l

AeAy
SH (D CLAIFIAOIE aITE T (g |1y
Ape Ao - 0
x I1 ((qA!)lAI““”A), (4.4.1)
AEI}-;.
and

|C T[T D#) " Zy, (15N

AeA4
SH(YCINFIRQ Il Rt T ([g,, )12

Ag e Ao

x I] ((qA!)1/2|A|(1/2)_e)qA)

AeAy

x Y [IT des,y

X<Eg | X|€e2N AgeAp

x( Yy J11A_NA, D T |A]l 4.4.2

Pe?,(X) peP yeEN\X

Proof. — One applies 8" under the integral sign in the formulas (4.1.4)
and (4.1.6); one estimates the derivatives with respect to s of the different
factors by means of (4.3.3) and (C.3.4), with t chosen sufficiently large
and m such that (4.3.3) is satisfied; one concludes, taking (2.7.1) into
account. |

One completes the argument as in chapter 2, with the inequalities
(4.4.1) and (4.4.2) in place of (2.8.1) and (2.9.4) respectively, one
obtains from the theorem (A .0)

PROPOSITION.  —  The function Zy ). a,,(f) and their derivatives
’Zy ;A rs(f) converge, uniformly for seS,, as r— oo, to functions
Zy, o): a; s () and their derivatives, which satisfy

|0 Zy s (N | S () K1 181K T (4.4.4
where K, can be supposed arbitrarily large, provided m is large enough.

4.5. The application of the theorems (B.3) to (A; 8)—>Zy (. a;s(F)
and (B.4) to (A; s)>Zy (. a,s(f) Tequires to check that these functions
verify P-i to P-vi, and L-i to L-iv, respectively.

For sufficiently large m, P-v and L-iv come simply from the inequality
(4.4.4); next pr—>Zy ). a: 0 (F), which does not depend on Ay€ %, is

(?°) With the hypothesis of lemmas (2.8) and (2.9).
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. 3
continuous in {peC; |Arg p|§—z1t -n }, for any n>0, and equas 1 for
p=0, therefore given K,>0, for each >0, there exists R >0 (*°), such
that P-iv is satisfied whenever |Arg p|< 3—:——11 and |p|<R;; the other

conditions are easily checked on the function (A; s)—Zy . a, < (f), and
then transferred to the functions of interest, due to the uniformity of the
convergence as r — o0; in particular, the decoupling at s=0, (conditions
P-i and L-i), comes from the fact that, under the hypothesis of the
definition (B.2), the corresponding resolvent factorizes:

RA, r; 1S (G) = H RA n X, r; lmx,-_S(O')’

i=1

and the variables { o, 1, )’s which appear in different factors are mutually
independent; and the regularity at infinity, (conditions P-ii and L-ii), is
deduced from the lemma (C.2) by means of Lebesgue’s dominated conver-
gence theorem.

Therefore, one has, (with A= p?/8),

THEOREM. — Given m>0, for any n>0, there exists R, >0 such that,
3
if |Arg A|< Tn —n, |M|ER,, (and if 1, is sufficiently large), the functions

A= SN AN =2y a1, 4 (D) are well defined (®Y), and converge,
as A - R, to functions Sy , (f), analytic in ) and continuous at ,.=0, which
continue the functions defined by (1.1.7); moreover (3%)

EIETA)) 4.5.1)

Indeed, for m sufficiently large, this statement is only a paraphrase of
the previous analysis; one suppresses the restriction over m by a classical
scaling argument [4], that is, one remarks that, for £>0,

SN, m, 1 (X)= g2 Sn, @me3n (& '), (xeR)). ||

(3°) This constant is independent of m bounded from below.

(®*') That means that the denominator does not vanish.

(*?) With a possible change, [depending uniformly on (m, A) in any compact set], of the
constant which appears in the definition of A" (f).

One can also derive from (B.5.3) cluster properties for the ‘“truncated” Schwinger
functions.
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5. BOREL SUMMABILITY
FOR THE SCHWINGER FUNCTIONS Sy ; (f)

5.0. The functions (A, s)r—» d -2y, o a;s(f) do not decouple at
dp"

s=0 (3%), first one decomposes each of them as a sum of functions which
decouple.
For ueR?9, one sets

Ay u(0):= ) uy ) H(s|B; 3,8y

BeAo 31,82€ 99

x 3 <o, IBIA>M81N’,AX$A+$AX‘I”A]M823 (5.0.1)

AeA

so that, if teJ,, A (0)=A,,, ™ (c);, one notes Zy (,...s,.(f) the
functions obtained by substitution” of A,y to Ay, and Tor Be2g,
(neN, ex={1,..., n}), one sets

o
zg,(p,;g,m; =.p_"< 0 E,,.) Zuoronin (D (5.0.2)
J

then one has (3%)
d

ap v (N= Y B s (5.0.3)

BeA‘"

5.1. One computes the expressions similar to (3.2.4), (3.2.5) (%)
l—[ DqA) ZN Pt ’(f)

A€A+

= ¥ %, (I @™ @l-k)y ———)

keN20; 0<k <11 ker redo I1 At
- L AeA@;Acy

x X 2 )

{‘ii}léjéN;ZjI‘!j:‘l_ {kjl1<jsNs )E’Lv =k (hjeHb)i<jen

X[(—i)la_|+|25||;|,|a_|—.+|zl(y éo<| ky(Y)|)<|E_|lfg)yll_ ))
<R et w1 ()

AeA@®

(®®) See the definition (B.2) and the conditions P-i and L-i.

(**) One notes that Z- (N=0,if B(e) & Ao.

(®®) In this formula, "the’ fines 2, 3, 4 of the right hand side —and in the subsequent
formula the lines 2, 3, 4, S, 6, 7— are harmless.
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(Grw) I (o (v )

o« |A|
+\/ " |Z| (o, 1A>)
—— (o, 1,
X A,!—,[\(,) (\/Re.cxz <0 A >) 1_[ (_, Jg@w i},éi}ze:f@gﬁi

x {( H H(S|A'o; &ans 3jA')) ( l_[ H(5|A"O, 8]1A"’ S}A”))

A’'eEg, ""€Ep,
ng AeL,J

sy 659)

[hj; 85 .81

x Det. RE,(o)N/Z.e—ﬂ/z’“m-“z“‘*~"2’Aem'“"<°"A>2.v(dc)], 5.1.1)

where, for ke N2o, f ={k=(ks€N)acaqs |k[,|=k, (YeAo)}, and
(Il D Z . o)

AeA+

k!
- a8~ 01-k1) —* )
keNAo; Z_ - Eelf (yggo L g I1 ky!

L AeA@;Acy

j=4 XcEg |X|e2N {YjhzjsNs U Y;=E\X, YinY;=0
- T y q
X
> > >
'éN;§Ei—E {i_ljsH?-i]}léjéN {hj th&i)1§j§N

(_i)ZlgI—IXIHfI pllq_l"lxl—"‘rlkl
% -
2al-IX[+]k|

(1 (W)X
:QOH "— Il b

N
AeAy AeAQ
H gja! H kia!

ﬂ (e T (q, A) (kA))

acaw \ Ha / \hja

><( Y IT1ana D 1T 14

Pe?5(X) peP ysEq\X

o lA@I ka
() LI, (R o)
\/Re.ot P AeA® \/Re
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xn( ) ) )

’

8. 8je ok 87,5 ealni s} s}cafh
X{CTT Hs[A% 80 8,0)( [T H(s|A 88, 82))
AeEij A’ eEhJ
X( l_.[ H(s|A”0’ JA'" ]ZA))
A eEh,

XSpwuy s o)})

F1+my.8). 8%

G
Lo»
Lm

x Det. RL;S(G)N/Z e~ H2)(m .al/Re.az)Ae%@]A =1 <6'1A>2.V(d0):] (5.1.2)

5.2. One computes the derivatives ( [ D) o"Z
AeAy

estimation similar to that of lemma (4.4), gives, under the same hypothesis,

I( 1—[ DqA)ar N(p)ts(-f)’

AeAy

L(f), and an

N(P)t

§./V(fA)CLA|+|’l(9’+|“—|+"e_K2’”

 IT (BT I TT (g 4IN"

Y€AQ ApeAo
x TT (@b]aje-2s), .2.1)
AeAy

and

| T D& arZN ®nt s(-f)l

AeA+
g./V(fA)CLAI*"l(i"”q_”"e_KZ|r|

< [T ABT'MIN¥* T (gl a D'

veAo Ao eho
x T (@b2[a[m=o1). ¥ [T (Ig¥0l)
AeA+ XCEE;|X|52N Ape Ao
x( Y IL1a-na D I1 1AL 6.2.2)
Pe?3(X) peP yeEg\X

Then, by substitution of (5.2.1), (5.2.2) to (2.8.1), (2.9.4) in the proof
of chapter 2, one deduces

ProproSITION. — For all neN, BeD the functions Z" () and
their derivatives 0 Z" - . (f) converge, uniformly wzth respect to seS,
and to p in any compact set as r — oo towards functions Zg 0 A; J(f) and
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their derivatives, which verify
|or Z8 D=/ WC IT (B 1|1 ealrlzalrl (5.2.3)

N, A;s
s Ye Ao

with K, arbitrarily large if m is large enough,; moreover, from (5.0.3),

dll
- N= 2 Z L) (5.2.4)
e Zn, (o3 A oAt N (0); A;

5.3. Now, for neN, one sets e/ ={0,1,...,n}, and for vce,,
Be2g, one denotes by BI_ the restriction of to v ﬂ en; let

Oe
P oo ) {N(M’(n v } (5.3.1)
ZN(p);A;s(Q)’ if O¢o
and, with 2 (e;") the set of partitions of e,’,

F o nsto
SReiasHi= X (—1)"’"“(|P|~1)!1'1—M, (5.3.2)

Pe?(er) veP ZN,(p,;A;,(Q)

then if Sy ). 4, (f) 1 Zn, o); a; s (F)/Zn, (0); a: s (D), one deduces from (5.2.4),
;n,. Sn, ey as ()= B_E%e"SN o ass ) (5.3.3)
One now gives two estimates of SE: o ass
LEMMA. —  For any m>0, there exists R;>0 such that, if
|Arg p|< %t —n and |p|<R;, and if m is sufficiently large, then for all
neN, Be D¢, one has (*°)
N o) As JD[EX DT T (1B (D2

YeDo

Xe PEp (B} (ﬂ,,}l, (5_3_4)
where Xy is the set of segments of 9, which contain the support of at least
one function of f, and D is defined by (B.5.1).

Proof. — Due to the proposition (5.2), one can apply the theorem
(B.5) to the family {FN o0 }ocet, of functions linked to the

partition function Zy . (Q) (if | p| is small enough so that the condi-
tion P-iv is verified); here the family {2 }0< j<n of the theorem (B.5) is
given by Z,=3; Z;={B;}, (1<<n).

(®%) See note (32).
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One deduces (5.3.4) from (B.5.3) and (5.2.3), by means of the
inequality

Y (PI=D! T (|o|ys3n,

Pe? (e,'," ) veP
proved by recurrence over n. u

LemMA. — With the hypothesis of the precéa’ing lemma,
2 o as NIEXC TT (1B (D2 (5.3.5)

YeDo

Proof. — For §e€ 2} and ze C?0, following an idea of Spencer [14], one
sets

- 8t |\
Y@= 2 (11 (020 )

wcSv  ye9p |§|—w ('Y)I
z, EI Y -
8‘1/
e e @ €29

so that, from (5.0.2), for e 29, and wco,
5| alilw (€20}
v — ) Y2 0], 5.3.7
N ©: s (D)= (ygo azylél_w Tl ) N, % A"U ( )
therefore, for neN, e 2%, one has from (5.3.1), (5.3.2),
alBl M1\ ZBlen v ()
B = N, (p); A; s .
Sﬂ,(p);A;s(f) 2 ( l—[ - > £ ; (5.3.8)

- -1
veen \reo gz, 18v M1 Yg'(vp)M[O]

(the right hand side of (5.3.8) is meaningful, since
Ysﬁ, ) A;s [01= Zy, P Ass () #0,

so that Yg o Ass [z2] #0, for z in some neighbourhood of 0).
Now, if for 6€ 2}, y€ b (v), one sets
RE(1)=E|37 (v)| 7, (5.3.9)

one can choose the constant & sufficiently small so that, if |z, | SR3(y),
(y€d (v)), the function Y" y [z] is a partition function —definition

(B.3)— to which each functlgn ZB ( /) is linked — definition (B.4)—
provided m is sufficiently large. ~ '
Indeed, first, each function Z% o (D), (xe2y), is linked to

Zy. ;... (), and one has |ZZ3|Z|<( |, therefore, from (5.2.3) and
(B.4. )

7z (@)
Nl Ais T < vl -1 1372,
Zn onnis (D)~ yﬂo”“ W)
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thus, from (5.3.6),

) _ 18" 1|
Yﬁ, o Y;OE] Zx, @ 1:0(D) < ¥ IZY |jCj(j!)1/2§l,
ZN, [((UH v;O(Q) i=1 2
the last inequality if |z,|<R2(y), (and § sufficiently small), then, as
Zy, (o); v; 0 (D) satisfies P-iv, (written for Ky >K), one has

Ko

1
3 >_e” X
Y2, oI 0e

N, (0} 7; 0
and the function Y2 o5 2] verifies P-iv.

The other conditions P and L are easily checked.
Then, one deduces from (5.2.3) and (B.4.2), for Be@on, vce, if
|2,| <RETo (),

ZraN ()

S <A () C “1y) |92, (5.3.10
Ygl . s[O] (f) Ygo(lﬁfen\v (Y)l) ( )

(because
Zzprene () 2L S Zz8T e\ (1)1 2(2) U 2B 2 oy
so that | Zz8ren\o ) y81 || f|+m), but, from Cauchy’s formula,
(11 grer ! )Zﬂ‘:;\:;,m (1 126wl
yedo0z, 1Bl ] Y;l . 01 \yepw 2irn

Zlen\" .
Xj N(p)As(f) n dzv (5.3.11)
| zy |=RETv

1+ Ty
oY 2] vepw 2, TIRTT O

and one deduces (5.3.5) from (5.3.8), (5.3.9), (5.3.10) and
(5.3.11). n

5.4. Taking the geometric mean of (5.3.4) and (5.3.5), one obtains
ISR, o3: A s(/)|<JV(fA)C"("')”2 [T (B 'Y

y€ 2o
X e~ (LU2DEs (Br}- .-, B (5.4.1)
but, according to [2], there exists a constant Cy, such that
Z ( l—[ |E‘1 (»Y)I!)e‘(I/Z)D[Zp(Bl) ----- “’-”éC;;fn!, (5.4.2)

BePoén Y€ Do
therefore, from (5.3.3) and (5.4.1),
dl
d n

— SN, @ A; s(f)‘<JV(fA)C"("')3’2 (5.4.3)
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FB
Now, according to the theorem (B. 4), each function %‘M‘%conver-
N, (p); As s
ges, as A — R, uniformly for p in any compact set, therefore, from (5.3.2)
dll
and (5.3.3), e SN, (o) a (f), converges, uniformly for p in any compact
p

.. dn
set, to the derivative ;SN, @ (f), and, from (5 .4.3),
p

d—p" SN, ») (f')

Therefore, with a proof similar to that of theorem (3.3), one has

SN (f)CH (n!)*2 (5.4.9)

TueoreM. — The functions Sy, (f), analytic in the domain described in
the theorem (4.5), are of class C® at =0 in any sector

3
IArgM§7—n, (n>0);

their Taylor series are Borel-summable of level 1 in all directions except
that of negative real numbers, and, for any 1> 0, there exists R, >0, C >0,

such that, if[Arg?»l§37n—n, |M|=R,, then

n-1 k k
ROED) (%;SN,O@%

k=0

SH ) CrlAP (5.4.5)

COROLLARY. — The Borel transform of level 1 of A Sy, (f) is analytic
and exponentially bounded of order 1 (uniformly in any sector
|Argz|<n—m), in a cut plane C\]— 0, —ay]; for N=1,

1 /
—a,= —§m3 =—(2 sup {||#|la/C||A|Z2+]| A

he !

|%2)1/2 } )—4m3

is the Lipatov singularity, [15].

A. The phase-space expansion

One just summarises, in a “model independent” version, the main result
of the so called “phase-space expansion” (*7).

(37) This method, introduced in [5], has been used in one or an other form by different
authors: see for example [9]. Unfortunately there does not exist any written version to which
one can refer precisely.

One omits the proofs, which are more or less directly derived from the litterature; (they
are available as preprint).

Annales de I'Institut Henri Poincaré - Physique théorique



ANALYTICITY AND BOREL SUMMABILITY OF THE ¢* MODELS 189

A.0. Let E be an euclidean space of dimension d, one denotes by %,
the set of cells of a cubic lattice of spacing 1,, and, for r=1, by 2, the set
of cells of the lattice of spacing v™"1, obtained by subdivision of 9,_,,
(v is a fixed integer); one sets

2= 2,, 2.=U 2, 2= 2, .=\ 9,

r=0 r=1 s=0 s=1

For Ae 9, |A| stands for the volume of A, (so that |A|=v™m1, if Ae9,),
and, if A€ 9,,(r=1), A the unique element of &,_, such that AcA.
If Ais a finite union of cells of 2,, one sets A,:={A€P,; AcA},
(reN), and defines A, A,, A", A", in the same way as above.
One sets 75 :=[0, 1]4%, (rz 1), and 7 1= U T <0, 112+ (**);
rz1

for 1={15}sca, €7 5 one denotes by A () A the family defined by
VA GA: 1,,=0,

AeA® iff sanar,(ifAe/_m, (A.0.1)
EIAZgA: ta, #0,

then A (2) is a family of pairwise disjoint cells, the union of which covers A.

One the other hand, one sets DA=6£, and, for r=1, AeA",,
tA

b= Y D, (A.0.2)

AreAp; ApcA

and, if k={k} },>1 acar,, is a family of integers, one notes Q (k) the family
of the g={qy Jaca, such that [ J] Di= % [] D&.

rZ1 AeA”y 4eQ(k) AeA+

One has

THEOREM. — Let Z:( \U Z ,) — C a function, the restriction of which
A=Dg

to each T is of class C*, one supposes that there exist constants C,, C,
B, v and >0, such that, if te 7 5 and qe Q (k) verify t,=1 and q,=0, for
any Ae A, which includes strictly some element of A (f) *°), one has

|(n H ﬁsz)g@|§coclé(yl+llgl

) < T AGO[sI"(IT T KT |A[), (A.0.3)

ApeAo rz1l AepA”y

(®®) One imbeds naturally 7 in [0, 1]*+, (2,=0if Ae D,, s>7).
(*°) This condition is a restriction on the hypothesis: it suffices to check (A.0.3), only in
this case.
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where A(D[a,={AcAD; AcAy}; |A D], [resp. | A [ a1, is the number
of elements of A(2), [resp. A(?) on]; |A,| is the volume of an element of A,;
and |k|=) ) Kki; then )

rzl AeA”

(i) there exists a constant K, such that, for any A9, neN,
|,"Z’(1M)|§Coe""", (A.0.4)

where 1} €7, is the indicatrix function of Ay, and | A| the volume of A;

(i) for each A<D, the sequence { Z (1} )}, n is convergent; moreover,
if a family of functions %, satisfies (A.0.3) uniformly, then the sequences
{Z,(%,) },en are uniformly bounded and converge uniformly.

B. Summary (*°) of the “cluster expansion” of Glimm-Jaffe-Spencer

Let 4 and 7 be respectively the (countable) set of the lines and the set
of the vertices of a connected graph (*!) which has the following properties

— each line b e # has distincts ends,

— there is at most 1 line between two (distinct) vertices,

— each vertex o€ ¥ is the end of at most r, distinct lines.

B.1. One denotes by ¥ the set of the parts of &, by €, the set of the
finite parts, and by ¥, the set of the parts which are either finite or of
finite complement.

One says that a subset S, of S=[0, 1]% is stable if (**).

(i) S, contains the constant functions 0 and 1,

(ii) if seS,, teS are such that there exists T €%, so that 1.t=1p.s,
thenteS,, (I is the complement of I'= %, and 1 is the indicatrix function
of I'). One notes that, if S, is stable, and if seS*, then 1rs and 1y
belong to S, for any I'e %,.

Let S,=S be some stable subset, for any bed, one defines
6(b) O C by

3P f(8):=f(®—f(15y9), (feC>, seS,), (B.1.1)

(*°) This theory appears first in [4]; the paragraph (B.5) comes from [3]; one can find a
“model independent” version (with minor changes, and some oddities), and the proofs
collected in [11], appendix A.

(*!) In the usual situation—which is also that of this paper—there is given some cubic
lattice 2, in R%, and ¥ =9, and # is the set of common faces of two adjacent cubes. Here
one choses this more abstract presentation, having in mind situations where, (as in
appendix A), there is given a family 2 of lattices, with then ¥"=92, # containing bounds
between adjacent cubes of the same size, but also between A and A.

(*?) See note (**) below.
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[then (®)*=8", B§I§P=5D5" (a, beB)]; and, for Te¥,,
3: €5 = C> by

=189, if T#g; 82 f=f, (feC™). (B.1.2)

bel
DEFINITION. — One says that f € CY, (where S, is stable), is regular at
infinity if
f(®= lim  f(lps), (s€S,), (B.1.3)

I'eéo;I' - #

B.2. Let & be the set of the parts of ¥, and &, (Z{), the set of the
finite parts, (of the parts with #n elements).

For Xe X, one denotes by X_e¥, (X, €%) the set of the lines of # of
which the two ends, (respectively at least one end), belong to X.

If XeZ and I'e¥ one says that X is I'-connected if the subgraph
(X, I'MX_) is connected, X is said to be connected if it is #-connected,
[i.e. if (X, X_) is connected].

DEFINITION. — One says that Fe C¥0*S* (where S, is stable), decouples
at s=0 if, for any Ae %, s€S,, T'€¥,, and anyfzmte partition {X;}; <i<p
of ¥ such that each connected component of (¥, T') is included in one of
the (X;, X;_), one has

F(A, 1p5)=[] F(AN X, Ip .5, 9. (B.2.1)

i=1
B.3. Let S, =S be some stable subset, one sets

DEFINITION. — One says that Ze C*o*%* is q partition function if
P-i  Z decouples at s=0,
P-ii  for any Ae X, Z(A, )C—CS* is regular at infinity,
P-iii  for any seS,, Z(J, s)=
P-iv  there exists a constant KOZO such that |Z (A, 0)|=e %o, for any
Aexd,
P-v  there exist constants K, 20, K, 22 (K, +K, +3 ry), such that
[T Z(A, Ips) | IAIKITL (Aedy, Te%,, seS,), (B.3.1)
P-vi for any Ae X, there exists a,>0 such that |Z (A, s)|<a,, (se S,).

THEOREM. — Let Ze C*0*5* pe a partition function, then
1
|Z(A, 9)[2 e % 0IN>0, (Ao 5€S,).  (B.3.2)

B.4. Given a partition function Ze C%0*% one sets

DEFINITION. — One says that a function Z e C*0*S* is linked to Z if
L-i F decouples at s=0,
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L-ii  for any AeZ,, F(A, .)eC™ is regular at infinity,

L-iii there exists Ty ,€X, such that F(A, s)=Z(A,s), (s€S,), if
ANZg 1z= g,

L-iv  there exist constants C>0, K; =0, K,=2 (K,+K;+3 ry), such
that

|8"F (A, 1p5)|SCeKIAIK2IT1 (Aeq,, Te%,, seS,), (B.4.1)

and (B.3.1) are simultaneously verified.
One has

THEOREM. — Let Z be a partition function, and F a function linked to Z,
then
(1) one has

F(A, s)

<CeKotKi*3ro 12 21 AeZ,, seS,), (B.4.2
) ( 0 ) ( )

3 . JF(A,s)
(ii) the family {Z(A, 9
respect to S€S,.

Moreover, if {Zi}ie, is a family of partition functions, and if, for each
iel, F; is a function linked to Z,, such that P-iv, P-v, L-iv are verified with
constants independent of i€l, and that there exists Xe%, such that
2k, 12, X, for all i€, then the convergence is uniform with respect to iel.

} converges as A— V', uniformly with
AeZg

B.5. One supposes that is given a family { Y;€ %}, <;<,, one sets

D{Y;}icjcal:= =min{

N

ji=1

s XeX o, (U Yj>CX,

j=1
X is “connected mod. {Yj}léjé,,”}, (B.5.1)

where X is “connected mod. {Y;}, <;<,” means that, for any decomposi-
tion X=X, UX, of X into two nonempty unions of connected parts,
there exists some je {1, ..., n} such that Y; N\ X, #J and Y; N X, #J;
(if the Y;’s are connected, then X is connected).

On the other hand, let Ze C¥0*5* be a partition function, and, for each
uce,:={1, ..., n}, let F, be a function linked to Z, such that

T-i for each uce,, Zg,|;=Y,:= U Y,

jeu

T-i ifucvce,, then F,(A, )=F,(A, 8), (5€S,), f ANY =D

F
One sets, for each uce,, Su:=2", and

STi= Y (=DPI(P|-DI]S, (B.5.2)

Pe 2 (ey) ueP
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where 2 (e,) is the set of partitions of e,. Then

THEOREM. — With the hypothesis above, one has for any Ae %, seS,,

Se, A 9[=C Y (P[=D!TIC)

Pe 2 (ep) ueP
n

XeK0+K1+3r0)j§1|Yj|e—D[(Yj)1§j§,,], (B.5.3)

[where C, is the constant which occurs in (B.4.1), written down for F,].

C. The coefficients H (s|o; By, ..., By)

C.1. One now introduces some natural coefficients (*) which can be
helpfull in concrete applications of the theory summarized in appendix B,
(one uses the notations of B).

First, for I'e % and se S, one sets

Ar):=T]s. TT (A -sy) (C.1.1)

ael’ bel”

then Sy:={seS; ) Ar(s)=1}, is stable.
e®
Next, for a, Be ¥ and I'e ¥, one denotes by Z-(a, B) the set of the
XeZ, which are I'-connected and contain o and B; then, according to
(4], p. 219), one has |{XeZ(a, B); |X|=p}|=<r3®~Y, so that, if
1>2 logr,, the series

Gr(o, B):= )~ e7UXI7H (C.1.2)

XeZr (o, B)

is convergent, (of course Gr(a, B)=0 if Z (o, B)=(F); one notes
G(a, B):=Gg(a, B)-

Then one defines
GF ((X, B)

A (o; B):= G B’

Te¥; a, Be?), (C.1.3)
then, for each integer k,

k
AP (o By, - ., B =[] AL (o; B)), (TCe®; o, B;e?’), (C.1.4)
j=1

(*?) The useful fact is the existence of coefficients having the suitable properties, not the
particular realization.
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and last
® . . ®) (-
H (s o Bls R Bk)' rgtgAr(S)ﬁr (uw Bb LR Bk)a } (C1.5)
(s€Sy, a, B;e¥).

One has
0§H“"(s|cx; By, ...y BO=1, (C.1.6)
H(’"(lg,lcx; By .- B=1. (C.1.7)

C.2. First one has

Lemma. — For any o, B;€¥’, the function s—>H® (s|o; By, ..., By,

(s€Sy), is regular at infinity (**).
Proof. — From [11], lemma (B. 1), if f (s)= Y. Ar(s) f, (s€S,), with

Te®¥
some bounded function defined on %, then f is regular at infinity if and

onlyif = lim f. . forall Te®.

Ceb9;C— B
Therefore the lemma rests on the fact that Z (o, )= U Zr.c(@, B),
Ce%o
since the series (C.1.2) is convergent. .

Next, for I'e % one defines d.: ¥ x ¥ — N by

di-(a, B):=min { (| X|—1); XeZ,, o, B X, X is I'-connected }, } C.2.1)
(@ Be?), -

with dp (o, B):= + o0, if the set of the right hand side is empty; one notes
d=dg; then, for a€ ¥" and be %, one sets
D(a, {b}):=min{|X|; XeZ,, aeX, beX,, X is connected }, (C.2.2)
and, for I'e%,,

D(x, I):=maxD(a, {b}), if T#g; D(a, &):=0; (C.2.3)

bel

and on the other hand, for I'e %,
L(I):=min {(|X|—1); Xe&,, X_>T, X is connected }, if I'# ;
L(Z): =0. (C.2.4)

Then, if one sets 6"”=ai, (be®B), and for Teb,, "= [] 0P if T#,

Sp be%o

(0°=1),

(**) This property fails if one replaces S, by S; here is the main reason to introduce stable
subsets of S.
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THEOREM. — There exists a constant M such that, if n', 0" >0 and
121,>1 +n"+2log ry, one has for any Ce%y; a, B;e?’,
|0°H® (s|o; By, - -, B .

§M4k|C|e—r51 (t=2logrg—m'-m")[C|-n"L(C)—n"" D (x, C)etjgld(q’ ﬂf). (C2 5)

Proof. — From [11], lemma (B.2), if f, 1<j<k, are k bounded
k

functions defined on &, if /.= [] f{?, and if fP(s)= Y. Ar(s) /¥ and
e

J 'e¥
f()= Y Ar(s) fr, one has, for Ce%,,

Fe¥¢

Ff@= Y Arbvi

Fe¢;I'=C

k
x ( y ] 5 f(j)(l(r\C)uC,-)>a (C.2.6)

k j=1
(Cihigjsw Y CGi=C
j=1

where the sum over the C;’s contains (2*—1)!! terms (*°).

Now let fU(s)= ) Ar(s)Gr(a, B;), C;e%,, and I'e¥ such that
'e®
I'sC;, one has
G fP(Ip= Y, (—1)'*'Grp( B (€.2.7
B=C;

then if XeZr(a, B;) is such that C;¢X_, (C;#J), let beC\X_, for
any Bc<C; containing b, one has XeZr g(, B;) if and only if
XeZr\@\y»y) (@ Bj); therefore the term corresponding to X either does
not appear in G (@, B;) neither in Gr g\ p;)(o, B;),0r it appears in
both, with opposite signs; in all cases it disappears in 8% £ (1) which

consequently is a sum of terms of the form e "1 *I=1 where X_>C;.
k

Let X;eZ'r(a, B;) be such that X;_>C;, and X= U Xj; then X_>C,
ji=1
X is connected, since the X;’s are connected and contain o, and
k

YAX;| 1= 3 [XN{o}|=|X\{a}|=]|X]|-1; therefore one has
. =

j=1

(i) |X|-12D(a, C), since aeX and CcX_,

(ii) |X|=1=L(C), since CcX_,

(i) |X|—1Z|C|/ro, since |X|22|C|/ro, and, either |Cl|/ro=1, or
|C|/ro<1and | X |22, (if | X|=1, X_=J and |C|=0).

(*%) The C;’s are not pairwise disjoint.
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Therefore, from (C.2.6), (C.2.7), and due to )~ Ap(s)<1, one
Fe¢;I'=C
obtains

|6€ £ (s)|<M e o tx—2logrg=n'—n") | C|-n'L(C)=n"D(x C)

k
x Y [12'%), (C.2.8)
i=1

k
{Cihzjsw U Ci=C

j=1
o0

with M= ) e~ CGom2lgrop,

p=0
k
then the sum contains less than 2¢!¢! terms, one has ), |C;|<k|C|, and
‘ =
last, from (C.2.1), G(a, p))=e ™ P), therefore one deduces (C.2.5)
from (C.2.8). |

C.3. The factor e ™0 " 1€! of (C.2.5) is used to give a “small” factor,
the factor e "*© to sum over partitions, and the factor e "P® 9 to
dominate factorials, according to the following propositions.

ProposiTioN 1 (*6). — There exists a constant K such that, for any
n'z2r,
Y [[e " ©@<eKIT, (C.3.1)
Pe? () CeP

where P (I) is the set of partitions of T'.
Proof. — First, Y, []e ™©=<]]d +e @) <ecEre MO,

Pe® ) CeP CeP
Next, for each integer p, one has
C; CcT, L(C)=p}|L2|T|rdtr+D2rop* D) (C.3.2)
0

indeed, let C<T be such that L (C) = p, there exists some connected X e %,

such that |[X|=p+1 and C=X_ and there exists 3¢ 7", one end of some

line of T, such that & X; but there are at most 2|I"| elements of ¥~ which

are one end of some line of ', given & one of these points, there are at

most 2P+ 1 connected sets X such that |X|=p+1 and deX, and last,

for such an X, | X_|<ro(p+1) so that | { Ce%p; CeX_ }[£200PT D
Then, from (C.3.2), if n’ is sufficiently large,

Cer

0
Y e LOL2|T| Y Rt 2or TP =K. u
p=1

(#6) This proposition is sketched from [4], proposition (8.2).
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ProPOSITION 2 (*7). — Given v>0, if n''>(v+1)logry (*®), there exists
a constant K such that, for any T €€, and Pe Z(I), one has

Y [Te™ee® [T (o @) =T (C.3.3)

aev? CeP Bpev
Proof. — One has
Y [TePeco T (o @B

acyP CeP
é( l_[ Z e~ M /v 1) Dy, C))(Sup H (l)(P, o, '3))’

CePyev? EE'VP BeV;g_l(B)sﬁE
. - " > -
with §(P, o, By=e~ /D¢ 21 PEO(Ja™ (B) |

Then, first, from (C.2.3), D(y, C)2D(y, {4}), for all beC; but for
all e B, one has |{ye?; D(y, {b})=p}|L2rF~", thus

0
sup z e—(n"/(v+1))D(y.{b})§ Z 2r(()p—1)e—(n”/(v+1))p:=eK’,
beB yev p=1
and therefore [ Y e @/t IDMO L KIPIL KT

CeP ye?

Next, let €>0 be such that (1—g)n”">(v+1)logr,; given ae¥™?
and Pe¥’, one can suppose that g|a '(B)|=1, [otherwise
$(P, o, p)<e " :<¢€*"], and one denotes by n the largest integer such
that ry<e|a”'(B)], so that, on the one hand,

-1
s logla (B)I_(Ilogalﬂ)’
logr, logr,
and on the other hand, since | {be%; D(y, {b})<n}|<r, one has
[{Cea (B); DB, O)<n}|sriZe|a™ (B)],
thus | {Cea ' (B); DB, C)=n}|2(1—¢)|a" " (B)|, therefore

¢(P, a, B)ée*(vn“/(Wl))(l—s)lﬂ_l_l(ﬁ)!n(la—l(ﬁ) Y
Se—v«l—s)n”/(v+1)logro)—_1)IE_I(B)Iloglg_l(B)I

x gl —e) v /(v+ 1)) (| loge|/logro)+1) | o™ L@l

<supe V(@O /v+ 1) logro= 1) ulogu+((1 =) " /(v+ 1) (( loge /logro)+ D u. < K.
_uél . r= ’

but |{Be s [oa™* (B)|#0}|<|P|, therefore
sup [T 0@ o B IPI<es T =

aev? pevia ' P2 o

(*") This proposition is an adaptation of [4], lemma 10.2.

(*®) In many usual cases, | {be%B; D(y, {b})<p}|and |{ve¥"; D(y, {b})=p}|are poly-
nomialy bounded with respect to p, (in place of the general exponential bounds used here),
then it suffices to suppose n"' >0.
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One of the useful consequences is

CoroLLARY. — For any K >0, one has for sufficiently large 1 (*°),

af([] H® (s|ol; B, . . ., Bi})) <2 KITI] et 24 B) (C.3.4)

i=1

i=1

for any Te®,, neN, and o', Bie ¥v", (1<i<n, 1 <j<k).
Proof. — One has

ar(l__[ H(k)(S'oci; le’ e, B;‘))
=( Z Z l—[ CH® (siaw(c)’. Be © Be (C)))

Pe?(l) ogel(P,e,) CeP
([T HO(s]o’s B, - -, B,
leo Py

where I(P, e,) is the set of the injections of P into e,={1, ..., n}; but
if, for ye¥", n(y):=|{iee,; o,=v}|, one has, for any se ¥*,
[{@el(P, ¢,); a®©=38C, (CeP)}|

=11 (ﬂ)ﬁ“ml!é [I 2@ mlt=2"T] 187 (],

Yev |§_1(Y)’ ye¥ yev
therefore
Z l—[ e—nD(a‘MC),C)ézn Z H e—nD(BC,C) 1—[ |5_1(Y)|!,
pel(P,ey) CeP QE‘-‘/‘PCEP Yyey B
and one deduces (C.3.4) from (C.2.5), (C.3.1) and (C.3.3). u
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