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ABSTRACT. - We consider the problem of the planar motion of four
point vortices with intensities (1,1,1, E), in a Eulerian incompressible fluid,
as a perturbation of the problem of three unit vortices. The unperturbed
problem is reduced to a planar autonomous Hamiltonian system which
admits saddle connections. For s &#x3E; 0 and sufficiently small, we also reduce,
in a neighborhood of the above saddle connections, the problem to a
planar Hamiltonian system, which is no longer autonomous but periodi-
cally time dependent. The Poincaré-map of the perturbed problem presents
transversal intersections between stable and unstable manifolds of two
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100 M. S. A. C. CASTILLA et al.

hyperbolic points; this implies that there are new regions of chaotic
behavior, different from the ones previously found by Ziglin. In particular
our result yields a new proof of the non-analytic integrability of the four
positive vortices problem.

RESUME. 2014 Nous considérons le problème du mouvement plan de quatre
vortices avec intensités ( 1,1,1, E), dans un fluide parfait incompressible,
comme une perturbation du problème de trois vortices unitaires. Le pro-
bleme non perturbé est réduit a un système Hamiltonian autonome plan
qui a des connections de selles. Pour E &#x3E; 0 suffisamment petit, dans un
voisinage de ces connections, le problème complet peut être aussi réduit a
un système Hamiltonian plan qui toutefois n’est pas autonome mais

périodique par rapport au temps. La transformation de Poincaré du
problème perturbé a des intersections transversales de variétés stable et
instable de points hyperboliques; cela entraine l’existence de regions de
comportement chaotique different de la region obtenue précédemment par
Ziglin. En particulier notre résultat fournit une preuve nouvelle de la non
intégrabilité analytique du problème des quatre vortices avec intensités
positives.

1. INTRODUCTION AND THE GENERAL PROBLEM
OF N VORTICES

Many detailed presentations about the planar vortex model in fluid
mechanics are available in the literature. We refer the reader to Chorin
and Marsden [C-M], Marchioro and Pulvirenti [M-P] and also to [01].
In the present paper we are dealing with the vortex model in R2 (that
is, with no boundary). The vorticity is assumed to be concentrated in
N point-vortices, ..., N, and have constant inten-
sities (circulations) Ki, ... , KN, respectively. The velocity at

x = (x, due to the j-th vortex is given by

provided that we ignore the other vortices. When all the vortices are
N

moving, they produce at x the velocity field u (x, t) _ ~ uJ (x, t). Each
;
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101THE FOUR POSITIVE VORTICES PROBLEM

vortex ought to move as it was carried by the net velocity field of
the other vortices, that is each ..., N, moves according to the
equations

or, equivalently, for i, j =1, ..., N:

Because of the symmetries of the function H, system ( 1.1 ) above has the
four first integrals

The construction of the velocity field t) produces formal solutions
of the Euler’s equation in R2 and has the property that the classical
circulation theorems are satisfied (see op. cit. above).
The general problem of N vortices ( 1.1 ) is defined in an open and

dense set of R2N, since (collisions of vortices are not allowed ) and
becomes a Hamiltonian system presenting three first integrals independent

N

and in involution with respect to the symplectic 2-form A dya,’ 

M=l

where the canonical coordinates (x~, y~ are given by:

Indeed, as was observed by Aref and Pomphrey [A-P],

where { , } denotes the Poisson bracket. Therefore, the vortex system for
N = 3 is Liouville analytically integrable. The motion of three vortices was
completely analysed by Synge [Sy].

In the case of positive intensities &#x3E; 0, a = 1, ..., N) all the solutions
in the phase space are bounded (since 14 = Const. defines a compact set)
and defined for all time (since H = Const.); in particular, when N = 2 or 3
the phase space has regions foliated by invariant tori. Using carefully
KAM theory, Khanin [K] showed that in the phase space of any system
with an arbitrary number of vortices there exists a set of initial conditions
of positive measure for which the motions of vortices are quasi-periodic.

Vol. 59, n° 1-1993.
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On the other side, Ziglin [Z] considered the restricted problem of four
vortices, that is, three unit vortices and a fourth vortex with zero intensity
(that is, a simple particle of fluid). Let a;, i = 1, 2, 3 be the sides of the
triangle determined by the three unit vortices, and Ai, i =1, 2, 3, be their
opposite angles. Then the relative problem of the three vortices has the
following equations derived from ( 1.1 ):

System (1. 2) admits two independent first integrals: and

ai + a2 + a3 = c2. Substituting a3=c31 into (1. 2) Ziglin obtained the
al a2

system ~=F(~,~), ~=(~1,~ with a center that corre-

sponds to an equilateral triangular configuration; then, he took the

periodic solutions close to this elliptical fixed point which are given by a
one-parameter family of periodic functions; choosing properly a small
parameter v for this family, he substituted these periodic functions into
the two equations of motion of the fourth vortex. In this way he obtained
a periodically time dependent Hamiltonian system

where F = F (~ 11, T, v) = F 0 (ç, 11) + v F 1 (ç, 11, ’t) + ... The unperturbed
Hamiltonian system (v = 0) is defined by Fo (~, 11) and the corresponding
phase portrait has a hyperbolic homoclinic fixed point. As usual (see
Holmes [H]), for it is necessary to examine system ( 1. 3) in the

extended phase space {!;, ~, ’t (mod 21t)} and consider the Poincaré map
of the plane {r (mod 21t) = to itself, given by the cylindrical phase-
flow. If, for the homo clinic orbit of that hyperbolic fixed point splits
into the unstable and the stable manifolds which intersect transversally in
a (nondegenerate) homoclinic point, then the perturbed system presents a
chaotic behavior (see Moser [Mo] and Smale [S]) since a horseshoe appears;
in particular, no domain containing the closure of the trajectory of that
homoclinic point admits an analytic first integral. The existence of such
nondegenerate homoclinic point is assured, if the so-called Melnikov [M]
integral has a simple zero. Ziglin reduced the proof of this condition to
the nonvanishing of an improper integral and he succeeded in showing
this, by evaluating the integral by computer. In [K] (appendix), Ziglin, by

Annales de I’Institut Henri Poincaré - Physique théorique



103THE FOUR POSITIVE VORTICES PROBLEM

using only continuity arguments, extended the previous non-integrability
result to the problem of four-vortices with positive intensities (K1, K2,
K3, K4) sufficiently close to the intensities (1, 1, 1,0) of the restricted
case.

Many discussions appeared, after Ziglin result was published, but no
other proof was presented. We decided to come back again to the question
of the chaotic behaviour and the non-integrability of the four vortices
problem. Our approach is to consider the problem of four vortices with
intensities (1, 1, 1, E) as a perturbation of the problem of motion of three
unit vortices. This last problem admits saddle connections, and we reduce
it, in a neighborhood of a saddle connection, to the integration of a planar
Hamiltonian autonomous system. For 8&#x3E;0 small enough, we also reduce
the problem of the four vortices with intensities ( 1, 1, 1, E) to a planar
Hamiltonian system, which is no more autonomous but periodically time
dependent. The Poincaré map related to this system has still two saddle
points; the existence of a transversal intersection of the stable manifold of
the first one with the unstable manifold of the other one is proved (by
using the Melnikov method) by showing that a certain integral is different
from zero. This integral has been evaluated by numerical methods and
the accuracy of the result is assured by the boundedness of the integrand
function. Our result still implies that there are new regions of chaotic
behavior in the problem of four vortices with positive intensities ( 1, 1, 1, E)
and, in particular, gives another proof to the analytic non-integrability.

In [02] one of the authors of the present paper reproduced the content
of a survey talk which dealed briefly with the subject of this paper, by
that time in preparation.

In [K-C], Koiller and Carvalho presented an analytical proof of the
non-integrability of the four vortices problem, but in the case of two
opposite strong vortices and two advected weak ones.

2. THE CASE OF FOUR VORTICES WITH POSITIVE

INTENSITIES AND THE INTEGRABLE CASE

OF THREE VORTICES

2.1. Let us consider three vortices i =1, 2, 3, with unit
intensities and a vortex ?4.=(~, y4) with intensity s &#x3E; 0. Let Mo and M 1
be the center of mass of P1 P2 P3 P4 and P1 P2 Ps, respectively (the masses
are the intensities of the vortices). Then the following equalities hold:

Vol. 59, n° 1-1993.
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and in particular

Using these equalities, one can easily get:

Let us set:

and let us determine positive numbers ’11, a, P, y, such that the transforma-

tion which takes ((x1, y1), (x2, y2), (x3, y3), ~(x4, y4)) into y0, p1,
~ ~2~ 82, ~3’ 93) is a canonical one.

Then, one necessarily has:

and the transformation is given by:

Annales de l’Institut Henri Poincaré - Physique théorique



105THE FOUR POSITIVE VORTICES PROBLEN

If one makes s = 0, we have M1 =Mo, and the transformation above is
reduced to the canonical transformation which takes xo, yo, Pi’ 01, P2’ 0~
to the cartesian coordinates of the three vortices Pi, P2, P3 and to the
transformation

The Hamiltonian function H of the system is given by:

Ho being the Hamiltonian function of the three unit vortices problem.

2.2. The squares of the distances between the three vortices will be

expressed in the new coordinates as follows:

Therefore:

We remark that:

(a) Ho does not depend on xo, yo and therefore xo and yo are first

integrals of the three vortices problem;
(b) Ho depends on 81 and 0~ by their difference only; consequently

Pi + p2 is a first integral of the system of three vortices.

Vol. 59, n" 1-1993.



106 M. S. A. C. CASTILLA et al.

Let (pi ql, p2, qz) be new coordinates defined by the canonical
transformation:

The Hamiltonian function of the three unit vortices is expressed in the
new coordinates by:

and the equations of the motion of three vortices are written as:

By defining V as:

and introducing the new time:

[Ho is constant along the solutions of (2 . 2)], system (2.2) turns into:

Due to the definition of 51, P2 and to (2 .1 ), we will consider the
function V restricted to the set:

Annales de l’Insritut Henri Poincaré - Physique théorique
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3. THE REDUCTION OF THE THREE UNIT VORTICES
PROBLEM TO A PLANAR HAMILTONIAN SYSTEM

As p2 is constant along the solutions of (2. 3), the integration of system
(2. 3) is equivalent to the integration of the system:

with j positive parameter. The critical points of (3 .1 ), satisfying 0  ~,
are:

(I) = 0 equilateral triangle configurations;

(II) P1 - 3 ~~ sinQ1 = 0 collisions of P~ and P 3 or P 1 and P~;
4

(III) ~1= -~, sin ql = 0 collinear configurations P 1 P 2 P 3 or P 3 P 1 P 2;
4

The points (I) and (II) are centers and the points (III) are saddles. The
function V assumes the value 2014 ~ at the positions (III). Therefore, the
saddle connections are on the energy level V ql, 1.1) = - ~,3. As we
have:

the curve:

is a saddle connection of (3.1) contained in the set (2.4). The phase
portrait of (3 .1) is illustrated in the picture (see p. 108).
Now, we are interested in considering the solutions of (2.3) belonging

to a preassigned energy level:

V(~i~i~2)=-~0. (3 . 3)

Equation (3 . 3) can be explicitely solved with respect to p2 and we have:

Vol. 59, n° 1-1993.
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with the right hand side defined for 0/~~. The branch of (3.4)
containing the curve (3 . 2) is:

As, in a neighborhood of the separatrix (3.2), we have 2014~0, the
~2

solutions of (2.3) which satisfy (3.3) and whose orbits are near to (3.2)
can be parametrized by means of q2 and satisfy (3.5) and the system:

The solution of (3.6), having as orbit the curve (3.2), is obtained by
integrating the equation:

Annales de /’Institut Henri Poincaré - Physique théorique
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We have:

Let us set:

then we have:

with

and

We observe that F ( - x) = (F (jc)) ~, and, therefore s ( - x) = - s (x) .

Vol. 59, n° 1-1993.
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4. NEW REGIONS OF CHAOTIC BEHAVIOUR
IN THE PROBLEM OF FOUR VORTICES

Let us consider the Hamiltonian function of the four vortices as function
of the coordinates (pi, 91; P2’ 82; p3, 93):

with :

It is easy to check that:

with A, B and C defined as follows:

Now it is possible to evaluate ri4 . r34, and one obtains:

with ~1 and ~2 defined by:

Annales de 1’Institut Henri Poincaré - Physique théorique
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Let us denote the product E3~2 P2. We have:

By means of the canonical transformation:

the Hamiltonian function H turns into:

where W is defined by:

with and cr (s) expressed by means of the new coordinates. In particular:

The function W is defined for p3 &#x3E; p2, it is 2 n-periodic in q2 and it is

independent of q3. We have:

By using the new time T defined by:

Vol. 59, n° 1-1993.
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the equations of motion are written as:

System (4 .1 ) has the two first integrals:

p3= Const. W (Pi’ ql, p2, q2, p3, E) = Const.

As, for a fixed &#x3E;0,(~W ~p2)
_ 

= ~0 alon g the cu r ve (3 . 2), then the

equation:

is solvable with respect to p2 for ~&#x3E;0, 8&#x3E;0, E small, and in a suitable
neighborhood of the curve (3.2). We can assume that the solution of

(4. 2) takes its values in {p2:| p2- |03B1 2}, and it can be written as:

where x is 2 ~-periodic in q2. As (4 . 3) solves (4 . 2), we get:

and:

The solutions of (4.1), which are near to the curve (3 .2) and in the energy
level (4.2), satisfy the system:

Annales de l’Institut Henri Poincaré - Physique théorique
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System (4.6) reduces to system (3.6), which describes the motion of three
unit vortices, if we make E = o.
The Melnikov integral (see [M] and [H]), related with the solution of

(3.6), having as orbit the saddle connection (3 . 2), and the perturbed
system (4.6) is written as:

where represent the solution of (3 . 6),
defined by (3 . 2) and (3. 7) with xo = 0, that is:

with ql == x + 7~/2 and s (x) defined by (3 . 9).
Let us denote the pair (pl, ql) by z; then one has:

with z=~, 0B ?=~, A By (4.4) and (4.5), it follows that:B4 / B4 /

where

Vol. 59, n° 1-1993.
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Along the motion (4. 7) one has ho q1, J.1) = J.1, and therefore:

with

Now fix a = 1. Then one has:
2

Finally, by grouping the factors of sin 2 q2 and cos 2 q2, we have:

Annales de I’Institut Henri Poincaré - Physique théorique
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To have, for 8&#x3E;0 small, a transversal intersection of a stable manifold
with an unstable manifold, it is sufficient that 11 sin 2 q2 + I2 cos 2 q2 has a
simple zero, and, for this, it is enough to check that I 1 ~ 0. We have:

The value of 11 has been determined by computer and it was shown to
be non zero. The boundedness of the integrand function in 11 gives to the
result the necessary accuracy. Indeed, the value obtained for 1~ was 0.2621
with an error of the order 10 - 4.
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