@article{AIHPA_1993__58_3_343_0, author = {Pennisi, Sebastiano}, title = {A covariant and extended model for relativistic magnetofluiddynamics}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {343--361}, publisher = {Gauthier-Villars}, volume = {58}, number = {3}, year = {1993}, mrnumber = {1222947}, zbl = {0771.76078}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1993__58_3_343_0/} }
TY - JOUR AU - Pennisi, Sebastiano TI - A covariant and extended model for relativistic magnetofluiddynamics JO - Annales de l'I.H.P. Physique théorique PY - 1993 SP - 343 EP - 361 VL - 58 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1993__58_3_343_0/ LA - en ID - AIHPA_1993__58_3_343_0 ER -
Pennisi, Sebastiano. A covariant and extended model for relativistic magnetofluiddynamics. Annales de l'I.H.P. Physique théorique, Tome 58 (1993) no. 3, pp. 343-361. http://www.numdam.org/item/AIHPA_1993__58_3_343_0/
[1] Convex covariant entropy density, symmetric conservative form, and shock waves in relativistic magnetohydrodynamics, J. Math. Phys., 22, 1981, p. 1824. | MR | Zbl
and ,[2] On the mathematical structure of test relativistic magneto-fluidynamics, Ann. Inst. Henri Poincaré, 46, 1987, p. 27. | Numdam | MR | Zbl
and ,[3] Wave propagation and symmetric hyperbolic systems of conservation laws with constrained field variables. I. - Wave propagation with constrained fields, Il Nuovo Cimento, 101 B, 1988, p. 1. | MR
,[4] Wave propagation and symmetric hyperbolic systems of conservation laws with constrained field variables. II. - Symmetric hyperbolic systems with constrained fields, Il Nuovo Cimento, 101 B, 1988, p. 19. | MR
,[5] Extended thermodynamics of classical and degenerate ideal gases, Arch. Rational Mech. Anal., 83, 1983, p. 285. | MR | Zbl
and ,[6] Relativistic thermodynamics of gases, Ann. of Phys., 169, 1986, p. 191. | MR
, and ,[7] Method of Lagrange multipliers for exploitation of the entropy principle, Arch. Rational Mech. Anal., 46, 1972, p. 131. | MR | Zbl
,[8] Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math., 7, 1954, p. 345. | MR | Zbl
,[9] Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. U.S.A., 68, 1971, p. 1686. | MR | Zbl
and ,[10] sur l'existence et la recherche d'équation de conservation supplémentaires pour les systèmes hyperboliques, C. R. Acad. Sci. Paris, 278, Series A, 1974, p. 909. | MR | Zbl
,[11] Struttura dei sistemi alle derivative parziali compatibiliti con un principio di entropia, Suppl. B.U.M.I. del G.N.F.M., Fisica Matematica, 4, 1985, p. 5.
,[12] Main field and convex covariant density for quasi-linear hyperbolic systems; relativistic fluid dynamics, Ann. Inst. Henri Poincaré, Phys. Théor., 34, 1981, p.165. | Numdam | MR | Zbl
and ,[13] Mathematical characterization of functions underlying the principle of relativity, Le Matematiche, XLIV, 1989, p. 173. | MR | Zbl
and ,[14] Wave and shock velocities in relativistic magnetohydrodynamics compared with the speed of light, Continuum Mech. Thermodyn, 1, 1989, p. 47. | MR | Zbl
and ,[15] Covariant radiation hydrodynamics, Ann. Inst. Henri Poincaré, 56 (1), 1992, p. 49. | Numdam | MR | Zbl
, and ,[16] On the laws of relativistic electromagnetofluid dynamics, Comm. Pure Appl. Math., 27, 1974, p. 749. | MR | Zbl
,[17] The Einstein evolution equations as a first order quasilinear symmetric hyperbolic system, Comm. Math. Phys., 28, 1972, p. 1. | MR | Zbl
and ,