Potentials wells in high dimensions II, more about the one well case
Annales de l'I.H.P. Physique théorique, Tome 58 (1993) no. 1, pp. 43-53.
@article{AIHPA_1993__58_1_43_0,
     author = {Sj\"ostrand, Johannes},
     title = {Potentials wells in high dimensions {II,} more about the one well case},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {43--53},
     publisher = {Gauthier-Villars},
     volume = {58},
     number = {1},
     year = {1993},
     mrnumber = {1208791},
     zbl = {0770.35051},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1993__58_1_43_0/}
}
TY  - JOUR
AU  - Sjöstrand, Johannes
TI  - Potentials wells in high dimensions II, more about the one well case
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1993
SP  - 43
EP  - 53
VL  - 58
IS  - 1
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPA_1993__58_1_43_0/
LA  - en
ID  - AIHPA_1993__58_1_43_0
ER  - 
%0 Journal Article
%A Sjöstrand, Johannes
%T Potentials wells in high dimensions II, more about the one well case
%J Annales de l'I.H.P. Physique théorique
%D 1993
%P 43-53
%V 58
%N 1
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPA_1993__58_1_43_0/
%G en
%F AIHPA_1993__58_1_43_0
Sjöstrand, Johannes. Potentials wells in high dimensions II, more about the one well case. Annales de l'I.H.P. Physique théorique, Tome 58 (1993) no. 1, pp. 43-53. http://www.numdam.org/item/AIHPA_1993__58_1_43_0/

[BL] H. Brascamp and E. Lieb, On Extensions of Brunn-Minkowski and Prékopa-Leindler Theorems, Including Inequalities for log Concave Functions, and with an Application to the Diffusion Equation, J. Funct. Anal., Vol. 22, 1976, pp. 366-389. | MR | Zbl

[SiWYY] I.M. Singer, B. Wong, S.T. Yau and S.S.T. Yau, An Estimate of the Gap of the First Two Eigenvalues of the Schrödinger Operator, Ann. Scuola Norm. Sup. Pisa, (4), Vol. 12, 1985, pp. 319-333. | Numdam | MR | Zbl

[S] J. Sjöstrand, Potential Wells in High Dimensions, I, Ann. Inst. H. Poincaré, Phys. Théor., Vol. 58, 1993, pp. 1-41. | Numdam | MR | Zbl