@article{AIHPA_1992__57_4_385_0, author = {Hayashi, Nakao}, title = {Smoothing effect of small analytic solutions to nonlinear {Schr\"odinger} equations}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {385--394}, publisher = {Gauthier-Villars}, volume = {57}, number = {4}, year = {1992}, mrnumber = {1198983}, zbl = {0766.35052}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1992__57_4_385_0/} }
TY - JOUR AU - Hayashi, Nakao TI - Smoothing effect of small analytic solutions to nonlinear Schrödinger equations JO - Annales de l'I.H.P. Physique théorique PY - 1992 SP - 385 EP - 394 VL - 57 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1992__57_4_385_0/ LA - en ID - AIHPA_1992__57_4_385_0 ER -
Hayashi, Nakao. Smoothing effect of small analytic solutions to nonlinear Schrödinger equations. Annales de l'I.H.P. Physique théorique, Tome 57 (1992) no. 4, pp. 385-394. http://www.numdam.org/item/AIHPA_1992__57_4_385_0/
[1] Local smoothing properties of dispersive equations, J. Amer. Math. Soc., Vol. 1, 1988, pp. 413-439. | MR | Zbl
and ,[2] Decay estimates for Schrödinger equations, Commun. Math. Phys., Vol. 127, 1990, pp. 101-108. | MR | Zbl
,[3] Global existence of small analytic solutions to nonlinear Schrödinger equations, Duke Math. J., Vol. 60, 1990, pp. 717-727. | MR | Zbl
,[4] Analyticity and global existence of small solutions to some nonlinear Schrödinger equations, Commun. Math. Phys., Vol. 129, 1990, pp. 27-42. | MR | Zbl
and ,[5] On solutions of the initial value problem for the nonlinear Schrödinger equations, J. Funct. Anal., Vol. 71, 1987, pp. 218-245. | MR | Zbl
, and ,[6] The nonlinear Schrödinger equation and the nonlinear heat equation: reduction to linear form, Commun. Pure Appl. Math., .Vol. 44, 1991, pp. 1067-1080. | MR | Zbl
and ,[7] Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, 1971. | MR | Zbl
and ,[8] Oscillatory integrals and regularity of dispersive equations. Indiana Univ. Math. J., Vol. 40, 1991, pp. 33-69. | MR | Zbl
, and ,[9] Regularity of solutions to the Schrödinger equation, Duke Math. J., Vol. 55, 1987, pp. 699-715. | MR | Zbl
,[10] Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc., Vol. 102, 1988, pp. 874-878. | MR | Zbl
,