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ABSTRACT. - We introduce the notion of a temperature state on the

Kac-Moody extension of the infinite dimensional Lie group Map
U, (N)) and on its subgroups. We show that for Map (IR, U (N)), by

utilising earlier work of one of us (A.L.C.) with S.N.M. Ruijsenaars, these
temperature states are associated with type III1 factor representations of
the group. In particular this may be interpreted as yielding type III1 factor
representations of Kac-Moody algebras. In the general setting of KMS
states on twisted group C*-algebras we address the question of uniqueness
of these temperature states and obtain both a general formula for such
states and a criterion for uniqueness. We find that uniqueness holds for
states on Map U (N)) but fails for certain subgroups leading to other
possibilities which have a natural physical interpretation in terms of Bose-
Einstein condensation.

RESUME. 2014 Nous introduisons une notion d’etat en temperature sur
1’extension de Kac-Moody du groupe de Lie de dimension infinie

U (N)), et sur ses sous groupes. Nous montrons en utilisant un
resultat anterieur de l’un d’entre nous (A.L.C.) et S.N.M. Ruijsenaars
que pour Map U (N)) ces etats en temperature sont associes a des
representations factorielles de type III1 du groupe. Ceci peut s’interpreter
comme la construction de representations factorielles de type III1 des
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220 A. L. CAREY AND K. C. HANNABUSS

algebres de Kac-Moody. Dans Ie contexte general des etats KMS sur les
« twisted group C* algebras » nous obtenons une formule generale pour
ces etats et un critere d’unicite. Nous montrons 1’unicite pour les etats sur

Map U (N)) mais qu’elle est fausse pour certain sous groupes ce qui
conduit a d’autres possibilites ayant une interpretation physique naturelle
en terme de condensation de Bose-Einstein.

1. INTRODUCTION

In this paper we are concerned with certain projective representations
of the gauge groups of 1 + 1-dimensional quantum field theory. These are
the infinite dimensional Lie groups Map G) of maps from R into a
compact Lie group G which, for simplicity we take to be U (N).
At the "infinitesimal level" these afford representations of affine Lie

algebras (cf [6], [17]). In the present paper we concentrate on representa-
tions suggested by ’quantum field theory at finite temperature’. (Our
concerns here however have little to do with heuristic work on the subject
cf Dolan and Jackiw [14].) Specifically we show that on a central extension
of Map (tR, G) (the "Kac-Moody" extension) there is a naturally defined
positive definite function satisfying the KMS condition for the translation
action of IR on Map (!R, G). This positive definite function we call a

temperature state on the gauge group. The representation associated with
this state generates a type III 1 factor. Such representations do not seem
to be accessible from the purely algebraic theory of Kac-Moody algebras,
nor do they fit easily into the framework of ’positive energy’ representa-
tions considered by Segal [31] (although they are closely related to them).
The technical tools needed to establish these facts are drawn from recent

work of one of us with S.N.M. Ruijsenaars [6]. There a ’strong-form’ of
the boson-fermion correspondence of quantum field theory is established
and exploited to prove the existence of hyperfinite type III1 factor represen-
tations of Map U (N)) associated with the theory of free massive Dirac
fermions.
To explain what is meant by the term ’strong form’ we need to digress

slightly. The basic idea of the boson-fermion correspondence in 1-space
dimension is that, given a representation of the canonical anticommutation
relations or CAR (i. e. of the fermion algebra) in which the local gauge
group ~ is implementable, one obtains, by restricting to those maps in ~
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221TEMPERATURE STATES ON GAUGE GROUPS

which take their values in maximal torus, a representation (of the Weyl
form) of the canonical commutation relations (CCR). The operators repre-
senting the Lie algebra can thus be interpreted as boson fields. This is the
easy half of the correspondence. On the other hand physicists have for a
long time written fermion fields (i. e. CAR generators) as formal functions
of boson fields.

To make mathematical sense of these formal expressions is difficult. It
was Garland [ 17] and Segal [29], [30] who recognized the role of vortex
operators from string theory and of Kac-Moody algebras in this connec-
tion. In fact Segal’s viewpoint [31] ] is that much of the quantum field
theory of solvable models in two space-time dimensions is the representa-
tion theory of infinite dimensional groups. This latter view also provided
the starting point for us (cf [8], [10]-[12]). The idea then is that one
consider particular gauge group elements called ’blips’ written y£. These
depend on the real parameter ~ in such a way that they become singular
as E ~ 0 but also such that there is a constant Cg with Cg r (yj (where r is
the representation of the gauge group) converging in a certain sense to a
fermion field.

This convergence is delicate. It was not discussed in [ 16] while in [ 10],
[30] where Map (S1, G) is considered, different methods are applied which
fail for G). Following the method of [6] however we can establish
strong convergence on a dense domain of our approximate fermion fields
giving our ’strong form’ of the boson-fermion correspondence.

In keeping with this group theoretical approach we investigate in section
4 the question of uniqueness of the temperature states we have constructed
on the central extension of the gauge group. We obtain a classification of
KMS states on a class of abstract twisted group C*-algebras with identity
which includes the case of loop groups (cf [10]) and the gauge groups of
this paper. In particular we ’explain’ the non-uniqueness of KMS states
on the CCR algebra and show how the group theoretic considerations
lead naturally to the KMS-states associated with Bose-Einstein condensa-
tion. This particular case of our analysis has been studied previously [28].

2. TEMPERATURE STATES

2.1. Gauge action on the Fermion algebra

We let H denote the Hilbert space L2 (f~, eN) (N =1, 2, ... ) 
denote the C*-algebra of the canonical anticommutation relations (CAR)

Vol. 57, n° 3-1992.



222 A. L. CAREY AND K. C. HANNABUSS

over H (often referred to as the fermion algebra) generated by the annihila-
tion and creation operators { a (g), a (g)* I g E H} satisfying

The time evolution on H is given by the one parameter group

There is correspondingly an automorphism group t ~ Lt of ~/ (H) with

and a (T, or temperature state 00] specified by (cf [5]):

where A~ is defined by its action on the Fourier transform by

with g x 1 f 
00 

~ k 2‘k" dk.g( ) 
)2 1t - 00

(Note: û)~ is often referred to as a quasifree state [5].)
For technical reasons which are explained later we take our gauge group

to consist of functions cp : IR ~ U (N), acting by multiplication operators
on H and such that the C-valued functions

for u, lie in the Sobolev space w1, 2 (~); ( 1= identity operator on
We write ~ for the group of such maps. We will discuss the role of

functions cp : IR ~ U (N) which are constant separately. Writing the action
of on g E H as we note that each such cp defines an

automorphism of j~ (H) by

We are interested in the representation of ~ which arises when we try
to implement the action (2. 5) on the G.N.S. Hilbert space corresponding
to the state 03C903B2 on A(H). In order to understand this we introduce the
usual ’doubling up trick’ by considering the projection

On H(3H, we think of ~ (H) as the subalgebra ~ (H Q+ (o)) of the CAR
algebra over HEÐH. Then the state 03C9P03B2 on A(H~H) defined

by Pp (cf [5]) restricts on A (H) to the state 
Let ~ denote the Hilbert space corresponding to It may be chosen

independently of P and to coincide with the Dirac fermion Fock space

Annales de l’Institut Henri Poincaré - Physique theorique



223TEMPERATURE STATES ON GAUGE GROUPS

which is the G.N.S. Hilbert space for 03C9P~ where

and 03B8(k)={
1 

The representation 03C0P03B2 of acting on F( ) p ~ ( ) g

restricts on A (H) to the representation (which we denote correspond-
ing to the state (Op (see [1] and [26] for more details on this). Moreover
the G.N.S. cyclic vector for 03C0P03B2 is cyclic and separating for

and o)p is a (T, P)-KMS state (cf. [5]).
Acting on by multiplication-operators is the group ~ consisting

of all functions cp : where with 
We think of G as embedded in G under the map

and hence think of G as acting on H(BH via this embedding. Note that G
acts by automorphisms of via

Noting that the spectrum of A~ is continuous for P 7~ 0, oo it follows

that is a type III1 factor. For readers unfamiliar with the

theory of quasifree states this may need some explanation which we now
briefly give.

Firstly Ap has continuous spectrum because the generator h of rt does
and this means that the Connes spectrum of the group t ~ r (rj imple-
menting Lt on F coincides with that of h, i. e. it is R. But one knows that

Ttp is a factor and hence by definition is type III1 (cf [25] for
more detail ) . Note that as usual the automorphism of defined

by 03C6 ~ G is said to be implemented in 03C4P03B2 if there exists a unitary operator:
Fp((p) : ~-~with

The necessary and sufficient condition for this is that

be Hilbert-Schmidt and this latter requirement is guaranteed by the fact
that each satisfies (2 . 4).

Since 03C0P03B2 is irreducible each is determined by (2.10) up to a
phase factor, so that cp -&#x3E; T~ (cp) defines a projective representation of ~.
When (p=(p31 we will write for an operator satisfying (2 .10). To
show how the phase factor can be fixed we pass to the corresponding
projective representation of the Lie algebra 2 of ~. The latter consists of
maps /: M ~ u (N)CM (N) with f = f1 e/2 and

Vol. 57, n° 3-1992.



224 A. L. CAREY AND K. C. HANNABUSS

[here M(N)=Lie algebra of U (N) which we take to consist of 

hermitian matrices in accord with the usual physics conventions.]
Thus:

We may complexify  and consider maps into where gl (N)
is the Lie algebra of GL (N, C) satisfying (2 . 11). Denote the complexified
Lie algebra by Then in section 2 of ~6] (cf also [22]) it is proved that ,

for each f ~ YC there is an operator J ( f ) on F (unbounded in general)
such that

and

where f.g denotes the action of f by multiplication on g. (Note that J (, f ’)
is denoted dh (12 in [6]). Then (2.12) implies that we may choose

r~ (cp) = exp i J (/) (since J (/) is essentially self-adjoint on a certain domain
in ~ which includes f1p [6], [22]). This fixes the phase of for those

cp of the form 03C6 = eif however there is no simple way of choosing the
phase of for general cp. 

-- 
--

We also have the formula ([6], [22]) for f~Y:

(1= identity operator on ~ and tr denotes the trace of a trace class

operator.)
This reduces, for the special case and fj~Y (the Lie

algebra of ~) to

(Tr denotes matrix trace).
One should recognize (2.15) as defining the central extension of ~

arising in the theory of affine Lie algebras (cf [ 17], [29]). We summarise
this state of affairs as

PROPOSITION 2 . 1. - The map f ~ J ( f ), f E determines a representa-
tion of the derived affine Lie algebra which is the central extension of Y
defined by the 2-cocycle 6 where

Remark 2.2. - Notice " that (2.15) is independent of P. We shall show
later in a special case " that the 2-cocycle " on G ’ determined by the projective "

Annales de l’Institut Henri Poincaré - Physique " theorique "



225TEMPERATURE STATES ON GAUGE GROUPS

representation cp ~ r p (cp) may be chosen to be independent of ~. The
relation (2. 15) establishes this for the connected component of the identity
of r;. It may seem surprising that the quasifree states of the fermion

algebra defined in [6] and û)~ all give rise to the same 2-cocycle on 2. We
note that for finite ~3 this is a special case of the following general
proposition.

PROPOSITION 2 . 3. - Let 03C0A1 and 03C0A2 be two quasifree representations
of A (H) for which the G-action is implemented. Then the 2-cocycles 03C31
and 03C32 on Y defined by

for j = 1, 2 are cohomologous whenever trace class

Proof. - We have "

by writing

and using cyclicity of the trace the second term in (2 . 16) vanishes. Thus

and the functional on the right hand side of (2. 17) is a coboundary as
required.
Remarks. - While the preceding proposition is formulated in the setting

of Lie algebra cohomology it seems likely that the most natural viewpoint
is that of Connes’ cyclic cohomology. Following [7], let ~ be a subalgebra
of the (Banach) algebra of operators X on H with PX - XP ~ Hilbert
Schmidt operators, where P is any orthogonal projection on H. Then the
pair (H, P) determines a 2-summable Fredholm module as in [13].
Now let p (X) = PXP and regard p as a homomorphism modulo the trace
class operators. Then p defines a cyclic 1-cocycle cp by

for XO, Xl ~ B (cf proposition 7 . 4 of [13] and [3,6 . 11]). It is then easy to
see that if P’ is a second projection with P’ X - XP’ Hilbert-Schmidt for
all then P’ also defines a homomorphism modulo the trace class,
say p’ with p~(X)=P~XPB

Vol. 57, n° 3-1992.



226 A. L. CAREY AND K. C. HANNABUSS

Let q/ denote the corresponding cyclic 1-cocycle, then cp and q/ are
cohomologous whenever p (X) - p’ (X) is trace class for all In the

latter case the map X°, (p - p’) ([X°, is a cyclic 1-coboundary.
In the context above, of a family of projections depending on the

parameter P, one can argue from the homotopy invariance of cyclic
cohomology to the conclusion that the cyclic cocycle defined by the map
pp : X ~ is independent of P in (0, 00].
We conclude this section with a comment on the constant maps from

IR to U (N). If cp is such a map then it is easy to see that p EÐ 1 is not

implementable in 03C0P03B2 as an automorphism 
However (p@(p is implementable (it commutes with P~) and consequently

if one is to represent the constant maps by operators on ~ they have to
be treated in a different fashion. For this reason we do not discuss their

action in the sequel. Nevertheless they indicate that a precise characterisa-
tion of the class of maps cp : IR ~ U (N) which are implementable is a

subtle question. Our choice of ~ is dictated by the fact that this is the

largest class for which technicalities are minimised.

2. 2. The canonical commutation relations

From (2 . 14) we notice that on restriction to the subalgebra 
where ~" consists of functions on L taking their values in the Lie algebra
of a maximal torus of u (N) one has

By taking the standard basis of CN denoted ..., N } we
may take the maximal torus with respect to this basis to be spanned by

Then if

where, with our choice of Lie algebra, all functions are R-valued, one
finds

where

Annales de l’Institut Henri Poincare - Physique " theorique "



227TEMPERATURE STATES ON GAUGE GROUPS

and

with

From this one has

with

Now the right hand side of (2 . 21 ) defines a non-degenerate symplectic
form on the subalgebra Moreover (2 . 21) is recognisable as the
canonical commutation relations (CCR) defined by this symplectic form
(see [5] for a discussion of the CCR from this viewpoint). Notice finally
that in the basis }f= 1 we may treat each subspace of consisting
of maps into the subspace of u (N) Q+ u (N) spanned by and 

independently of the others. Consequently for the purposes of the ensuing
discussion in this section we restrict to the case N =1.

Thus henceforth denotes the space of W1, 2 maps from R
into the diagonal real 2x2 matrices equipped with the symplectic form
defined by the RHS of (2 . 21) We denote the

representation of the CCR over .P 1 described above. Define a 2 x 2 matrix
valued function on 0 } by

Then for ~0,

where Roo(p) denotes R(p) with P=oo. Let Coo denote the complex
structure on Y1 given by

Vol. 57, n° 3-1992.



228 A. L. CAREY AND K. C. HANNABUSS

Let D~Y1 consist of functions whose Fourier transform vanishes on a
neighbourhood of zero. Introduce the operator C~ on !Ø of multiplication
on the Fourier transform by

Now we compute as in [6], [22] that for f~Y1

Finally introduce creation and annihilation operators by:

Now we check from (2. 24) and (2. 23) that

so that ~(/)Qp=0. We also find from (2 . 25) that

and then from (2. 26) and (2. 27) standard arguments give

One should recognise (2.28) as the generating functional for a Fock

representation of the CCR. We now summarise the preceding as

PROPOSITION 2 . 6. - (i) The cyclic of the CCR
over D generated from Qp is Fock with given by (2 . 24)
and (2.28).

(ii) These representations, for different P, are all 
Proof - Note that only (ii ) does not follow immediately from the

discussion preceding the proposition. However from the general theory of
Fock representations (ii ) follows easily using the simple observation that

is not Hilbert-Schmidt [32].
Remark. - One may interpret W (p) as defining an operator W on ~.

Then W is symplectic (i. e. preserves the RHS of (2 . 21 )) and by (2 . 22)
relates the representation of the CCR for finite P to that for P= oo . It is
not implemented however by virtue of the observation in the above proof.

l’Institut Henri Poincaré - Physique théorique



229TEMPERATURE STATES ON GAUGE GROUPS

2. 3. Temperatures states on the gauge group

Let A denote the von Neumann algebra generated (p e ~}
and let denote the von Neumann algebra generated by

Then the fact that

is well known (cf discussion in [1]). Moreover we clearly have

for all Hence In the next section we prove equality
of these algebras. For the moment we simply note that our automorphism
group t ~ Lt is implemented in Ttp by Ut where

Hence and both implement the automorphism
a (h) ~ a (cpt h) (h E H), where cpt (x) = cp (x + t). Thus

with c (p, of modulus one. [Actually one may show that c((p, ~)== 1.]
Hence Lt acts as an automorphism of the von Neumann algebra This

proves:

PROPOSITION 2.7.- The state 03C903B2|  is a (’!, on the

~.
Hence the map

provides an example of what we will henceforth refer to as a temprature
state on ~. We write for the right-hand side of (2 . 31). The rest of
this subsection is devoted to a discussion of the properties of the map
(p~0p((p).
As a corollary of proposition 2. 6 one has

for those cp of the form eif with f ~ T (i. e. f takes its values in the diagonal
N x N matrices). We supplement this with

PROPOSITION 2 . 8. - does not lie in the connected component 
identity of  then 
Proof - Consider firstly the case 03B2=~. The connected components

of ~ are labelled by the index map

i ~ : ~ -~ Z, ioo (cp) = Fredholm index (P 00 cp P 00)

Vol. 57, n° 3-1992.



230 A. L. CAREY AND K. C. HANNABUSS

(see [8]). (Note on the other hand that P 00 is a matrix-valued Wiener-

Hopf operator with Fredholm index equal to the winding number of the
function 8 -~ dct((p(tan 8/2)) where 8ES1, cf. [15].)

Introduce the index map

It follows then that if i03B2 (cp) = ioo (cp) for cp we will have the connected

components of Y labelled by i03B2 and moreover since we know by [8] that
i~ (cp) ~ 0 implies (Dp((p)==0 this will prove the result.
Hence let U~ denote the operator

Then and the operator U~ depends strongly continuously
00]. Thus the map 

-

is continuous in the strong operator topology. On the other hand the
is continuous in the Hilbert-Schmidt topol-

ogy whenever 03B2~ Pp cp ( 1- P03B2) is continuous in the Hilbert-Schmidt topol-
ogy. Now the latter statement is easy to prove except at P = oo and so
consider

Now is the operator of multiplication by a 2x2 matrix valued
function (in the Fourier transform) whose entries are all in Also
the matrix elements of cp -1 are in L 2 (IR). It follows by [27] (lemma
X 1. 20) that (p -1) (P~ - is Hilbert-Schmidt and

where Op is the L2 function:

Clearly Op -~ 0 in L2 norm oo proving that

is continuous and so from (2 . 32) is continuous in
the Hilbert-Schmidt topology Thus the 

depends continuously on P when we equip ~ with the topology introduced
in [9], namely we say in ~ whenever ~ p 00 P P 00 in the
strong operator topology and

Annales de l’Institut Henri Poincaré - Physique ° theorique °



231TEMPERATURE STATES ON GAUGE GROUPS

in Hilbert-Schmidt norm. Now i~ is continuous in this topology [8] and
so

as required.

3. THE CONVERGENCE ARGUMENT

3.1. Statement of results

In this subsection we state the first main theorem of the paper. The

proof, which is technical and depends on arguments of [6], we defer to
appendix 1. As we indicated in the introduction we are interested in a
rigorous proof of the boson-fermion correspondence of quantum field
theory (see [6] for a discussion and references to the physics literature).
To do this we need to choose a special family of gauge group elements.
We introduce the ’standard kinks’

with 11; (x) = 03C0 + 2 arc tan x Y and note that G is generated by functions
E

of the form exp f with , f ’ E 2 and the standard kinks. Consider the

operator

where the phase of is fixed as in equation (4 . 50) of [6]. Now
introduce the operator

where g : R ~ C has g smooth and of compact support. Denote by [Ø the
subspace of ff spanned by vectors of the form

where g~, h~ are with their Fourier transforms having compact support.

PROPOSITION 3. 1:

for where ’ ~(~)==(0, ..., g (x), ...0) Uth position).

Vol. 57, n° 3-1992.



232 A. L. CAREY AND K. C. HANNABUSS

The proof of this result is the same as that for the case of massive Dirac
fermions considered in [6]. Consequently to avoid excessive repetition of
technicalities we give a sketch of the argument in appendix 1 which should
be read in conjunction with [6] to obtain a full discussion.

THEOREM 3 . 2. - 

a type III1 factor M with M=A((0)~H)’.
Proo, f : - Following the proof of theorem 4 . 8 of [6] we have from

proposition 3 . 1 that if A is an operator which commutes with Fp (cp)
for all then Thus implying that
~~ ~ ~ (0(BH/. We have already noted in section 2 . 3 the reverse inclusion
hence the result.
Remark. - If Go is a subgroup of U (N) and ~o denotes the subgroup

of ~ consisting of functions taking their values in Go then we can consider
the subspace o of ~ generated from Qp by the action (p E ~ 0 }.
If .A 0 is the von Neumann algebra generated by {039303B2(03C6)| (p E r; o} acting
on :F 0 then Qp is cyclic and separating for ~o. Moreover the modular
automorphism group t leaves .A 0 invariant and so is a (’t, P)-
KMS state and hence, according to our terminology, a temperature state
on ~o. It should be possible in particular cases (e. g. G = SU (N)) to

determine the type of .A 0’ however we have not done so.

3. 2. The 2-cocycle

In the subsequent section we are interested in the question of unique-
ness of temperature states on gauge groups. For this we need to know

firstly that the 2-cocycle on T can be chosen to the [3-independent. We
concentrate on the case N =1 noting that the same method works for
general N and also for the representations of the U (1) gauge group arising
from the massive Dirac representation of the CAR (i. e. it proves that the

cocycle is independent of the fermion mass parameter thus affirming a
conjecture in [6]).

Let with respective winding numbers wl, w2. Write

1, 2) with Pj in the identity component ~o of ~. Assume
that some choice of phase for Fp has been made consistent with that

implied by (2.13) for o and that of the previous section for the ’kinks’.
Then we have

with o a 2-cocycle on r;. The 2-cocycle relations for (J show that

~l’ ~2 ~ ~2)~~(~i? ~2)/~(~2? ~1) is a bicharacter on ~. Hence

Annales de l’Institut Henri Poincaré - Physique - theorique °



233TEMPERATURE STATES ON GAUGE GROUPS

Since we already cp2) _ 03C3~(03C61, 92). where (j 00 denotes the 2-
cocycle when 03B2= oo , then it suffices to prove

for all from which it will follow that 6 = 6 ~ and hence that (J and
(J 00 are cohomologous ([4], [ 18]).
Write

and use the bicharacter property of o and 6 ~ to obtain

since (j and (j 00 agree on r; o. Now

By direct calculation we see that if 03C6 = exp if with/of compact support:

where

Substituting in (3 . 5)

Now r(2014 1) commutes with so letting g be in L2 we obtain

Now let ç, 11 E ~ and consider

From the discussion in Appendix 2 we have the limits:

For the last term in (3 . 7) we have the estimate

Vol. 57, n° 3-1992.



234 A. L. CAREY AND K. C. HANNABUSS

which combined with (3 . 6) and the definition of (S (p. (pg. g)* gives

This then gives, when combined with the preceding limits, the relation

for all ç, 11 E 22. Now is unitary and D is dense so we deduce that
this relation holds for a dense set of g ~ H and

so S cp =1. Finally this last equality holds for general / E 2 using continuity
of/ ~  ~ Fp 11 &#x3E; in the WI, 2 norm on 2.

3. 3. Correlation Functions

In our previous work [ 10] on temperature states on loop groups we
found that the boson-fermion correspondence as (embodied in a conver-
gence result such as proposition 3 . 1 ) gave rise to theta function identities.
They were obtained by computing

in two ways, firstly using the definition of the temperature state on the
CAR algebra and secondly by using the loop group elements to approxi-
mate the CAR elements and then exploiting the explicit formula for the
temperature state on the loop group.
The same procedure applied here does not yield interesting identities

except as a method of calculating determinants. In fact the correlations
calculated in terms of the temperature state on the gauge group are just
products of gamma functions and an elementary relation between the

l’Institut Henri Poincaré - Physique theorique



235TEMPERATURE STATES ON GAUGE GROUPS

gamma function and the hyperbolic functions yields the relation:

~(1) = (8~, ..., 8~)) which is exactly the expected result.

4. UNIQUENESS OF TEMPERATURE STATES AND
APPLICATIONS

4.1. Uniqueness

In Section 2 we saw that the KMS state of the CAR algebra A (H) gave
rise to a KMS state cop of the algebra M generated by a cr-

representation 039303B2 of the gauge group G, and in Section 3 we showed how
to reconstruct the CAR algebra from cop. However, in order to have a
completely satisfactory correspondence between the fermion and boson
theories we should like to know that is the only (L, state of

(That is certainly true for the corresponding boson theory on S 1, [ 10].)
This uniqueness question is of sufficiently wide interest that we shall

consider it more generally for KMS states associated with automorphisms
of twisted group algebras. The strategy will be as follows. We let G be a
(possibly infinite dimensional) abelian Lie group with a continuous 2-
cocycle (or multiplier) a. (It will be convenient to introduce the notation:

where S is any subset of G. (S a) is always a closed subset of G.) The
twisted group algebra M (G, cr) consists of the finite linear combination
of 8-functions on G multiplied by the rule

and with the involution

(This amounts to constructing the twisted group algebra of G as a discrete
group. It can be given a C*-norm and completed in the usual way, but
we shall follow [5] in using the KMS condition on a dense subalgebra
only, so that the completion is not needed.)

In appendix 3 we show that, for the examples considered in this section,
any 1-parameter group of automorphisms of G, say which preserves
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the cohomology class of o induces automorphisms also denoted {03C4t} of
M (G, ?). We can look for non-degenerate states co of M (G, a) which
satisfy the (L, condition. Now any state is defined by its values
on individual 8-functions; abbreviating 03C9 (03B403BE) to co (ç) we may regard co as
a o-positive function on G. (The topology of G has so far played no role
but we shall henceforth assume that 00 is regular, that is continuous on

every one-parameter subgroup.) Under suitable conditions on 03C3 the KMS-

condition provides a functional equation for co, (Prop. 4. 1). This forces
co to vanish outside the set (F a) where F is the fixed point set 
(Prop. 4.2). On the other hand it also gives an explicit formula for co on
a large subgroup of (Fa), denoted by D.L, (Prop. 4 . 4).
The problem of determining 03C9 is therefore reduced to finding any non-

vanishing extensions of the formula beyond CB We shall tackle this by
showing that the KMS state itself determines a natural pseudometric on
D.L, (4. 5-4. 8), and that the support of co (as a function on G) must lie in
a completion Gc n (F o) of D.L, (4 . 9). If Gc n (F o) coincides with 
the set on which the state was already known then 00 is unique. (This is
the case for the group G of Sections 2 and 3, as we shall see in Section 4 . 2.)
In general, however, co can be extended from to (F a) in a variety
of ways, which are characterised in Theorem 4. 13.

To prepare notation for what follows let us write for (peG,
We shall assume that a extends to a multiplier, also denoted 0-, on

the semi-direct product IR 0 G. (This is automatic for the examples consi-
dered here as we show in appendix 3.) Then there is an R-action on the
twisted group algebra M (G, 6) given by

where

(and 6 (t, cp) = 6 ((t, 1 ), (e, cp)) where e is the identity of G).
Since co is assumed to be a (T, P)-KMS state, the KMS condition implies

that for each pair cp, the function

admits an analytic continuation to t = s + i P and there equals

Replacing cps by cp we see that we may as well take ~=0. Substituting
cp -1 ~ in place we then obtain the condition that it must be possible
to analytically continue the function
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to ~==~P, and that its value there must be 00(0/). We write this symbolically
as

Using the cocycle identity for (j we finally arrive at

A 1. Now in the case of the Weyl algebra the analytic continuation
can be done explicitly by complexifying the underlying vector space and
extending the action of IR to an action of C. In the examples which interest
us complexification is also possible: maps into a semi-simple Lie group K
can be complexified to give maps into its complexification Ke. We assume
therefore that our abstract system has the same property: that G has a
complexification Ge on which the R-action defined by ’! extends to an
action of C and that 0" extends analytically to a (non-unitary) cocycle on
C 0 Ge. (The extension is sometimes possible only on a certain domain D.
However, the arguments are unaffected provided that Ge is replaced by
D throughout.)

PROPOSITION 4.1. 2014 Under the assumptions made about G, 1 and 0", CO

is a (1, state for the twisted group algebra if and only if

E G, cp E Ge.

Proof - Since 6 in (4.2) admits an analytic continuation in t, if 03C9 is
a KMS-state it must also admit such a continuation. Then the formula
itself is just a rearrangement of (4.2) and so it certainly follows if 03C9 is a
KMS state. However under our assumptions each step in the argument
can be reversed to show that the preceding formula for o implies the
KMS condition.

Proposition 4. 1 provides a functional equation for 03C9 whose solution
we now derive. Tho this end we introduce the subgroup

If cp E F~ Gc then clearly, by analytic continuation the functional equa-
tion force gives

A 2. In the systems of interest to us
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and by analytical continuation

To simplify the analysis we include this as an extra assumption. Then
(4. 3) becomes

From this we deduce

PROPOSITION 4 . 2. - The support, supp of 03C9 is contained in the

set (F a).
It will turn out that the dual fixed point set is also a useful tool so let

G denote the dual of G, on which M acts by transposing the action on G
and set 

B

Let 1&#x3E;.1 be the subgroup of G annihilated by all 

PROPOSITION 4. 3:

where ’ (F the identity component in (F o).

Proof - t i then for all cp E G, 

so that

By analytic continuation

Under the natural map cp ((p, .) from G to G, the subgroup F maps
into 1&#x3E;. Since the annihilator of the image is (F cr) we have

Finally note that, since the action of [R cannot map elements from one
connected component to another, p - 1 cpt, which the above argument shows
is in(Fo), always lies in the identity component (F 6)0. Consequently,
whenever (F 7)o is contained in the kernel of x,

for all Hence implying 
Remark. - A 3. In all the examples we consider it is true that
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and so we now add this to our list of assumptions. (An argument like
that above shows that 1&#x3E;1- is connected.) This brings about a remarkable
simplification of proposition 4.1 which tells us that ffi is determined on
each coset of 1&#x3E;1- by its value at a single point.

PROPOSITION 4 . 4. - Under the above assumptions i, f ’ ffi is a KMS state
on the twisted group C*-algebra of G then, writing any 03BE E 1&#x3E;1- in the form

and 03C9 (B(1ç) = õ- (cp, B(1) 00 (B(1) ill (B(1, ç). Conversely if values 03C9 (B(1) for one
point ~ in each 1&#x3E;1- coset are given and these two equations are used to
define 00, then 00 defines a KMS state provided it is positive.
Proof - If co is a KMS state then taking B(1 =1 in proposition 4 . 1 gives

the first equation. The second equation follows by substituting into the
general form of proposition 4. 1. For the converse we need to consider
first the case where B(1 = 11 = 8 -18~~. The equation defining 00 on 1&#x3E;1. then
gives

Hence

So we have

Consider now the case where W = Àll for À a coset representative at which
o is known. By definition:

which is precisely the condition of proposition 4. 1.
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Remark. - While positivity is a more delicate matter it can be shown
that co is automatically hermitian on 0B To derive the hermitian property
in general the value of 03C9 at the coset representative must be chosen
carefully. Positivity imposes a still stronger constraint which is enough to
specify the support of 03C9 completely. To this end we record some technical
results.

LEMMA 4 . 5. - ~et H be a group and H -+ [0, oo) satisfy

for n E 7L. Then d (~, 11) = ~ (Ç11-1) defines a pseudometric on
H invariant under right translation.
Proof - Clearly for , ~)=A(1)=A(~)=0 I by (i ). Also

for ~, 

Finally for ç, 

LEMMA 4.6.- For T) E 0~ 100 ’ I = ~) ~ aM~

Proof - Setting 11 = ~ ~ in (4 . 6) we obtain

Hence

for any p ~ Z. More generally (4 . 6) gives

so that for any p, q E ~

Taking logarithms we see that for q ~ 0

The inequality now follows by considering the discriminant of this qua-
dratic in (p/q).

COROLLARY 4 . 7. - d(~, ,,) _ [- ln I 00 (~r~ -1) I 1/2 defines an invariant

pseudometric on 1&#x3E;-1-.
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Proo, f : - By Lemma 4 . 6

Also

So Ll (ç) = [ - In I 00 (ç) I] 1/2 satisfies the conditions of lemma 4 . 5 proving
the result.

Remark. - If 03C9 were a Fock state on a vector group then d would just
be the Hilbert space metric used to define (D.

In general we can now restrict 03C9 in terms of d.

PROPOSITION 4 . 8. - For C0(B)/)=0 unless the map taking
~ E ~1 to ~) I (using the notation of proposition 4 . 4) is well defined
and continuous with respect to the pseudometric topology on 
Proof - The pseudometric is translation invariant so the given map is

continuous if and only if it is continuous at the identity. Now if

!; -~ o (cp, B)/) ~ I is not continuous at ç =1 then for some M &#x3E; 1 and any
L E (0,1) there exists ç E 1&#x3E;1- such that |03C9 (ç) &#x3E; L but

(This is just an exponentiated version of the continuity condition.)
By inverting ç if necessary we can assume Now, given

any K &#x3E; 0 choose a positive integer n with Mn &#x3E; 2 K and pick ç E 1&#x3E;1. such
that loo(ç)I&#x3E;2-1/n2 but 

But then 100 (W)  for any positive K proving the result.
Introduce the notation Gc for the set of 03C8~G such that 6 (cp, W) = 1 for

all cp E Gc satisfying cp = and such that the map ~ -~ 6 (cp, W) I does
define a continuous function on 1&#x3E;1-, Gc is clearly a subgroup of Fa. We
shall also henceforth make the simplifying assumption that 1&#x3E;1. is divisible

(for locally compact groups this would be a consequence of connectedness).

COROLLARY 4 . 9. - 
,

Proof - This follows from proposition 4. 8.

Remark. - In the examples we consider later there are no further

restrictions on supp (co) so this seems to be the best possible result.
The pseudometric on 1&#x3E;1. often has an extension to the whole of Gc.

We note therefore the following boundedness condition for continuity.
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PROPOSITION 4 .10. - For each d-continuous homomorphism À from
~1 into IR + there exists L E (o, oo) such that Iln À (ç) I ~ L [ - ln I 00 (ç) I ] l2.
Conversely if there exists L for which this inequality holds then À is

continuous.

Proof - If À is continuous we can find, for any E &#x3E; o, a 8 such that

[ -In I 00 (ç) 1~2J  8 implies that Iln À (ç) 1 E. If now I 00 (ç) I ] 1~2 ~ 8
then choose n a positive integer such that

Since 1&#x3E;1- is assumed divisible we may choose 03B6~03A6 satisfying çn = ç. Then
by lemma 4. 6

so

If [ - ln o (ç) I] 1/2  8 choose n a positive integer such that

Then

So we can take L=28/8. The converse is straightforward.

COROLLARY 4. 11. - 

Proof - For ~ E 1&#x3E;1- lemma 4 . 6 gives

so ~ -~ o (cp, 11) is continuous by the converse part of Proposition 4 . 10.
As we are assuming that 1&#x3E;-1- is divisible we may define for 03C8~ Gc

PROPOSITION 4 .12. - The function 03B4(03C8,~) defines a pseudo-
metric on G~ extending d on ~1.

Proof:

whence it follows that 1B (B(/") = 0394 (B)/). Also
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So that

The fact that 8 is a pseudometric follows from lemma 4. 5. From (4.8)
we see immediately that

On the other hand the equation preceding (4. 7) gives

whence ~ (~ [ - In (ç) I ] 1/2 . We see therefore that for ç E 1&#x3E;-1-

which implies that ð and d agree on 
Before giving the main theorem characterising KMS states we need two

more assumptions:
A 4. is 8-dense in G~ U (F 
A 5. o is 8-continuous.
Remark. - By definition |03C3| I is continuous and in the vector space case

that is sufficient to ensure continuity of a itself.

LEMMA 4. 13. - Under the assumptions A 1-4 the pairing

exten s to a ~-continuous bicharacter on (F 0)0. The function ~
defined on Proposition 4.4 extends to a function 000 on
Gc n (F 0)0 satisfying ,

for all ç and K in (F 

Proof - We have "

11) defines ad-continuous bicharacter in

It therefore extends to a bicharacter P as required. We note that by
continuity ~ (11, 11) E [1, (0) for all (The lower bound fol-
lows from the fact that in 1&#x3E;.1 we have the identity 1= [3 (r~, 11) I 00(11) ~.)
The construction of 000 proceeds by a Zorn’s lemma argument. We

consider pairs (H, o) consisting of a subgroup H ~ 1&#x3E;1. and an co satisfying
the desired identity for all ç and K in H. These can be ordered by
(H, co) when H  H and M restricts to 03C9 on H. Each chain 
has an upper bound (U Hj, co) with on Hj. We can therefore find
a maximal element If then we choose
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11 E (F Now choose coo (11) so that (Co (11) 12 = p (11, 

for s&#x3E;0, and

for ~0. Finally set

for 03B6 E 1&#x3E;1-. It may be checked that this defines 000 on the subgroup
generated by ~ and H, in such a way that the equality still holds. This
contradicts maximality so H = G~ n (F 0")0. Since we have incorporated all
the equations which were equivalent to it, the KMS condition will be
satisfied by mo.
THEOREM 4 . 14. - Under the assumptions A 1-4 the most general KMS’

state 00 has the form 00 0 p where p is lifted from a function of positive type
on G~ n (F 0")0/1&#x3E;1-. In particular, if G~ n (F 0")0 = 1&#x3E;1- and a KMS state
exists then it is unique and is given by Proposition 4 . 4. If G~ n (F 6)0/~1
is locally compact then the positive function can be written in the form

where m is probability measure on C.

Proof - By Corollary 4.9, co is supported in Gc n (F and by
Proposition 4 . 4 the only freedom in the definition of co is to define co (0/)
on one point of each 1&#x3E;1- coset. The most general KMS state must therefore
be of the form co p is lifted from (F 

For any ~ and ç in (F 0)0 we therefore have:

the last simplification following from Lemma 4.13. Moreover, for any
ç E ç 1&#x3E;1. and ~ E 11 1&#x3E;1. the constancy of p on 03A6-cosets gives

We also note that the original definition of 1B means that for ç E 1&#x3E;1- we
have 000 (Ç) = exp ( - 1B (Ç)2) and continuity enables us to extend this to

more general ç and deduce that coo never vanishes. ,

The positivity of 03C9 means that given any ..., zk~C and

~1’ ~2’ n (F 0)0 we have
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Using our earlier identity we see that if this yields

By the density of D~, for any ç E (F we can find a sequence { ç(n)}
of elements of which converge to ç in the 8-topology. We now set
03BE1=(03BE(n)1)-103BE1~03BE103A6, so and take çj=çj for j&#x3E; 1. For j ~ 1
we converging to one as and so

~ (Çl’ Çl) = I 000 (Çl) 1- 2. Proceeding to this limit, we see that

where and for j&#x3E; 1. We now repeat the argument with Ç2
running through a convergent sequence and so on to arrive at a situation
in which all the (ç)j can be replaced by one. This gives

and shows that p is a function of positive type.
Finally if Gc n (F is locally compact we may use Bochner’s

theorem to represent p as an integral over its dual, which can be identified

Remark. - This result extends the work of Rocca, Sirugue and Testard
classifying KMS states for the canonical commutation relations, [28].

4.2. Examples

The theory of the preceding section can be illustrated conveniently by
four interesting physical examples. (We omit details of checking the various
assumptions however since these are straightforward.)

Example 1. - In [ 10] we considered the loop group U (1))
with the rotation action of IR and multiplier

(see also [ 11 ], [ 16], [31 ]). In this case F is the subgroup of constant functions
and (F cr) is the identity component Go of G. The map cp -~ P - 1 cpt maps
G onto Go so that the invariant characters are those which annihilate Go
and D1- = Go. Since (F cr) = 1&#x3E;1- we see immediately in this case that the
KMS state is unique.

Example 2. - More traditionally one would consider (instead of the
group of example 1 ) IR) and again impose the rotation action
of IR and the multiplier
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F is again the subgroup of constant functions and now (F cr) is the whole
group. By considering the Fourier series of/eG:

we see that the invariant characters are those of the form

for some a. Thence

The KMS state on 1&#x3E;1- is (by calculation using proposition 4.4)

The pseudometric is therefore a weighted l2 metric and one readily sees
that Gc = G. The freedom in the KMS state is to multiply by an integral

that is by a positive function 

Example 3. - For the free bose gas we take (real-valued
Schwartz functions) with the translation action of IR and

This is very similar to the previous example except that the constants do
not lie in so that F is trivial and We can identify 0 with
the constant distributions and

V

where/denotes the Fourier transform of f. So,

Using proposition 4. 4 we find that on 

One can now check that G~ = G and much as in the previous example the
freedom in o is the freedom to multiply by a function of/(0).

Extra factors of this kind have been introduced to describe Bose-Einstein
condensation (see Araki-Woods [2], Lewis-Pule [20], Lewis [21]). Since

only/(0) appears in the additional term this change only affects the zero
energy mode and thus permits the physical interpretation of corresponding
to macroscopic occupation of the ground state.
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Example 4. - Finally we consider the case where G is the subgroup g-
of Y and 03C3 as in the earlier sections of this paper with the R-action given
by translation. Once more F is trivial and (Fcr)=G. Proceeding as in
Example 1 we find that ~ = Go the identity component of G. On the
state is again given by the formula

However this time only elements of the identity component are continuous
with respect to the pseudometric, so that Gc = Go. (Note that the pseudo-
metric is again clearly the restriction of an L2 metric so that continuous
linear functions must be given by appropriate L2 functions. The standard
kinks, which may be taken as 1&#x3E;1- coset representatives, do not give L2
functions so that they, and therefore the entire coset, cannot be in G~.)
This fact was of course known from proposition 2. 8 but it is interesting
to see how the group theoretic treatment arrives at the same conclusion.
Since 1&#x3E;1- = Gc n (F a) the KMS state is unique.

4.3. Bose-Einstein Condensation

In the previous section we saw that the KMS states for ~ and for
U ( 1 )) are unique, although those for their identity components

are not. In this section we shall consider more carefully the relationship
between states on the full group and those on a subgroup.

PROPOSITION 4.15. - Let G, a be as in theorem 4. 14 and suppose that
Let G’ be a closed 03C4-invariant subgroup of G, which contains Gc, j’

the restriction o, f ’ 03C3 to G’ and let G;, 1&#x3E;’, F’ be the subgroups of G’ defined
in the corresponding way to the subgroups and F in G. Then there is
a natural projection from a subgroup of

onto G~ n (F cr)/I&#x3E;1-.

Proof : - We have F’ = F from which it follows that (F’ = G’ U (F ?).
Identifying with G’ we have

and so 1&#x3E;’.1 ~ 1&#x3E;.1 U G’ = 1&#x3E;.1 by (corollary 4.11). It therefore follows that

Taking quotients we see that G~, which projects onto is
a subgroup of G~/~’1.
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COROLLARY 4 . 16. - Let 1&#x3E;’ satisfy the condition (A 3). Under the condi-
tions of proposition 4 .15, i.f’ G’ has a unique (i, state then so does

G, but not necessarily conversely.

Proof - Assumptions (A 1) and (A 2) automatically held in G’. The
result therefore follows from theorem 4.14 since the proposition implies
that if n (F’ cr’)/I&#x3E;’1- is trivial so is Gc n (F but not conversely.
Remark. - Corollary 4. 16 covers both the examples: ~ (~) ~ ~ and

Coo ~) ~ Coo U (1 )).
We shall now show how to construct families of KMS state on G’ from

a single KMS state 00 on G. Firstly we also denote by 00 the restriction of

the state to G’. Conjugation by ~Y, y E G, produces a new state OOy on G’
via

where, in a non-abelian group

But, since G is abelian, this reduces to

If ye(G’ o) then and conversely. Now,

Suppose now that lies in (G’ a) for all t E M. Then

PROPOSITION 4. 17. - If 03C9 satisfies the ’ KMS condition on G, and
1 E (G’ all then my satisfies the ’ KM S condition on G’.

Proof.

from which the result follows.

Example. - The case where and G’ its identity component is
not illustrative since then (G’ o) is trivial and there are no y ’s satisfying
the condition of the proposition. However when U (1)) and
G’ its identity component then (G’ o) = F, the constant functions. The
group elements y for which is constant are those in the subgroup
generated by F and the functions ~(8)=~(~= ±1, ±2, ...).
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In this way an infinite series of KMS states of G’ can be generated from
a single KMS state of G. This can be carried still further by introducing
an element R of the twisted group C*-algebra of G, such that 00 (R* R) = 1,
for we can then modify the state co to ooR where

Taking we obtain

Since co is supported in the identity component G’, the terms with 
vanish leaving

THEOREM 4.18. - and 00 is a ’ (T, P)-KMS state on
n

Coo (SB U (1)) then ~R defines , state on the ’ identity component.
Writing

we have

Proof - Since the formula (4 .10) expresses mR as a convex combination
of KMS states it is clear that ooR is itself KMS. Moreover,

Remark. - The function p is of positive type normalised so that p (0) = 1
and periodic. The general theory of section 4.2 example 2 tells us that

multiplication by a function of f0 is the only freedom, and the positivity
and normalisation are necessary conditions for a state. We deduce that

every (T, P)-KMS state on G’ can be expressed in the form oA As noted
in Section 4 . 2 p can be interpreted as a Bose-Einstein condensation term
and the theorem shows how such terms can be generated by applying
charge-raising operators r (en) to the vacuum Qn.
We conclude this section with a comment on the effect such condensa-

tion terms have on the correlation functions for fermions constructed as
limits of loop group representatives. Without going into too much detail
we introduce some notation from [10].

Let B (g) = denote a typical generator of the

CAR algebra over L2 (SI). Here Bex is an unsmeared fermion operator,
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that is a quadratic form, as in [10], [6]. This is the analogue of the formula

~r (g) _ (x) g (x) dx when one works with functions g E L2 

THEOREM 4.19. - The correlation coefficients are given by

where Ck(03B11, ..., 
... 

the conven-

of [10] regarding the distribution on the right hand side. In particular,
.

Proof - By definition

now

using Formula (2. 12) and Section 3 . 1 of [10]. We can therefore write

Now (Op ((B?, o)* Bal ... B~1 Bo, o) is the limit of

as and j ’s tend to 1 (notation as in [10]).
However this correlation coefficient can be calculated directly as in

[6], [ 10] and the formula then follows by rather laborious algebra.
When M = N there is some simplification and we obtain

using proposition 3 . 6 of [9], whence the second formula is immediate.

Remarks. - 1. Notice that while the even correlations change only
slightly, the state (0~ is no longer an even function.
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2. Just before submitting this manuscript we received a preprint by
K. R. Parthasarathy and K. B. Sinha entitled "Boson-fermion relations
in several dimensions". Using stochastic integrals they obtain a rather
different type of boson-fermion correspondence relating non-zero temper-
ature representations of the CAR and CCR. The connection with our
approach is unclear.

APPENDIX 1:

Proof of convergence

( proposition 3 .1 )

The first step is to note that it is sufficient to consider the case N =1 as
the general result follows immediately from that.

so that and we have an isomorphism of with

via

Similarly is also isomorphic to L 2 (IR) via

Now let Q + be the projections onto the first and second summand resp.
in and so Introduce
the notation for U a unitary operator on

Suppose that U+.+LL+ is Hilbert-Schmidt and

with Then

Hence the operators
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have bounded inverses as operators on L2 (~). Finally we need the operator
Z on L2 obtained by setting

The operator Z enters into the definition of the operator r (U) which
implements the automorphism of the CAR over defined

by U in the representation determined by Q _ . Since we are simply
following the argument of [6] section 3 we prove the analogues of the
essential lemmas 3.4, 3. 5 and 3.6 of [6]. We are interested in the case
where

LEMMA AI. 1. - With U given by (A 1 . 7) the operators U03B403B4’ are integral
operators in L2 with kernels given by

Proof - This is a direct calculation based on the preceding definitions
and the fact that

LEMMA Al.2:

wheYe

with

(where T denotes the gamma function).
Proof - Firstly solve the integral equation

for g~L2(R) by converting to the differential equation
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where Now (A 1. 13) has a unique (up to a
constant factor) solution in The corresponding equation arising
from (U* _ 2014 Q_)~= 2014~ has only the zero solution. Thus e _ is the solution
of (3.18) normalised to have norm one and is the appropriate
normalisation factor.

LEMMA A 1. 3. - The following estimates holds 

where hE L2 (IR) with h of compact support.

Proof - These estimates all follow by direct calculations on the integral
kernels given in lemma A 1.1. The arguments are the same as those in
the proof of lemma 3 . 6 of [6] where analogous estimates are proved and
so we omit them. Note that it is useful to have the explicit evaluation

and minor variations thereof.

Now we indicate how the previous lemmas combine to prove
proposition 3 . 1. To explain in detail the convergence of

as 8 -~ 0 we use the explicit formula for r~ which is given by equation
(4. 50) of [6]. To save a lengthy excursion into notation we will not repeat
this formula here remarking only that it involves the operators Zg g.. The
estimate (A 1. 16) is used to replace Z + + and Z _ _ where they occur in
the formula for by - U + + and -U*_. The estimate (A 1. 15)
shows that the terms involving converge to the identity operator so
that combining this with (A 1.17) and (A 1.18) leads to the conclusion
that (g) F converges as E ~ 0 to the same limit as 03C0P03B2 (a ( f£)*) F where

so that f~~H~H. However it is trivial that
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in HEÐH proving that

as s ~ 0. The argument for ~ ((g) F is similar.

APPENDIX 2:

Here we explain briefly how
the limit as E ~ 0 is taken in (3. 7)

Careful examination of the proof of Lemma 4. 7 of [6] reveals that the
estimates we established in section 3 . 2 suffice to control the limit as ~ ~ 0

of the first two terms in (3 . 7). The only tricky point arises from the fact
that (as in proposition 3 . 1 ) it would seem necessary to know that 

and have Fourier transform with compact support. However in (3 . 7)
we are considering weak convergence and for that one can relax this last
constraint (which is fortunate since neither S(p.g nor have this

support property).
To amplify a little on this point in the case of the second term we note

that the worst possible terms which arise in proving convergence by the
method of lemma 4. 7 of [6] involve integrals of the form:

where ZCP (p, l) denotes the kernel of the Hilbert-Schmidt operator
(p-+ pt~1 and gl, g2, hl are functions in whose Fourier transform

has compact support. Now the JE in front of this integral will force the
contribution of this term to be zero (as it should) provided we can
establish that the integral is bounded independently of E. Since is

in L2 and ZCP (p, l) is a Hilbert-Schmidt kernel it follows immediately that
this is so.

APPENDIX 3

In Section 4.1 we assumed that the multiplier 6 could be extended
from G to M O G. We shall now show that for an abelian Lie group G
which is the product of a discrete group D and connected component Go,
this is automatically true when the R-action preserves the class of the
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multiplier on G. (We also remark that if G/Go is a free abelian group
then G is certainly a direct product. To see this we just pick elements of
G which project onto the generators of G/Go These will generate a free
subgroup D isomorphic to G/Go and such that G = D x Go.)

PROPOSITION. - Let G be the direct product discrete abelian group
D and a connected abelian Lie group Go (possibly 
Let 03C3 be a continuous multiplier on G and it a one-parameter group of
automorphisms G which preserve (7. Then (y extends .f’rom G to a borel

multiplier (also denoted by cr) on IR @ G. S’etting a (cpt, t) = 6 (cpt, (t, p)
and it (Õcp) = 6 (cpt, t) for cp E G induces an automorphism of M (G, cr).

Proof - We first observe that, by [24] Theorem 8.1 and the subsequent
discussion, the simply connected covering group of Go is isomorphic to
the additive group of its Lie algebra, that is to a vector group V. Thus
Go can be identified with V/L for some discrete subgroup L in V. Let us
introduce the double cover V/2 L. We may lift cr to a multiplier (also
denoted by o) on G=D x Go, and we may similarly lift the R-action to a
continuous action on G.
From x, y in Go we obtain well-defined elements of x1~2, y1~2 in Go so

that we may define

’! is in the same class as a. Thus as in proposition 1. 1 of [ 18] there must
exist a borel function ~, on G such that for all a, b in G

(Note that the discussion of [ 18] needs only the existence of multiplier
representations of G.)

Since the R-action on G preserves the multiplier class of (j it must leave
cr invariant. The last three factors in the formula for 03C4 are therefore

invariant under the action of tR. We also have

Now the continuous R-action can only change ç E D to an element of the
form ~t = ~ . ~t, where t E Go. So

The r~t)/i (~, 11) depends continuously on t and is 1 when ~=0,
so we deduce that it is identically 1. Coupled with our previous observation
we see that ’t is invariant under the action of [R.
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Thence for any a, bEG, 

At first sight the function 6 (a, t) _ ~, (at)/~, (a) is a borel function on
Gx [R. However, if kEG lies in the kernel of the projection onto G, we
note that k is t-invariant and that o (a, k) = 1 = a (k, a) for all a E G by
construction. Thus

In other words, 03C3(a,k,t) = 03BB(atk) = 03BB(at)=03C3(at, t ) and o 6 a t) is lifted o
À (ak) À (a)

from a function on G x IR. Since

by a trivial calculation, the desired result now follows by using [23]
Theorem 9 . 4 on the general form of multipliers on IR (s) G.
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