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ABSTRACT. - We investigate the behaviour of a simplified two-dimen-
sional non-linear under Wilson renormalization group
transformations in the small coupling region. It can be controlled rigor-
ously by suitable bounds on polymer activities uniformly for all field

configurations, i. e. there is no need for a separate discussion of large and
small field domains. This investigation provides us some preliminary
insights to the renormalization group flow of and to phase space expansion
methods applied to the complete 03C3-model.

RESUME. 2014 Nous deerirons Ie comportement par Ie groupe de renorma-
lization de Wilson d’un model03C3O(N) simplifie a deux dimensions dans
la region de couplage faible. Le modele peut etre controle rigoureusement
par des bornes sur les activites de polymeres uniformement pour toutes
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546 A. PORDT AND T. REISZ

les configurations de champ, i. e. il n’y a pas besoin d’une analyse separee
pour les domaines de grands champs et de petits champs. Ce travail
apporte des indications preliminaires sur la coulee du groupe de renor-
malisation et sur les methodes de developpement en espace de phase
appliquees au modele a complet.

1. INTRODUCTION

Two dimensional non-linear for N~3 serve as toy
models for non-Abelian gauge theories in four dimensions. They share
renormalizability and ultraviolet asymptotic freedom, at least within per-
turbation theory ([ 1 ]-[3], [22], [25]). One should expect that the most

powerful non-perturbative investigation is by the Wilson renormalization
group (RG) [4]. To be specific, let us put the model on a lattice. For a

single RG step the lattice field is decomposed in to a block spin
and a fluctuation field 11 (x) of block mean zero according to

[5], [6]

where the sum is over the blocks, and x denotes sites on the basic lattice
A~, of lattice spacing say. Because of the non-locality of the kernel
j~ (although exponentially decaying) ([7], and references therein), long
range correlations must be controlled very carefully, and this makes the
investigation unduly complicated.
For a first principal discussion of the behaviour of the full model under

the RG it is meaningful to consider mathematically simplified models, so
called hierarchical or ultralocal ones ([8], [9]) which are more easily to be
dealt with and which are expected to share the properties of interest with
the full model, such as ultraviolet asymptotic freedom (for hierarchical
approximations of other than o-models c. f. e. g. [10]-[17], [24]). Such a
hierarchical non-linear (9 (N) o-model is presented in Section 2. It has

already been investigated by K. Gawedzki and A. Kupiainen [8] (and
corresponds to the "ultralocal" o-model studied by P. K. Mitter and
T. R. Ramadas [9]). They gave a rigorous construction of the continuum
limit and proved ultraviolet asymptotic freedom. Their approach is based

. on a partition of field space into "small and large field" domains. In the
small field region, where perturbation theory applies, bounds on the
effective action are given, whereas in the large field domain appropriate

l’Institut Henri Poincaré - Physique theorique



547RENORMALIZATION GROUP ITERATION

stability bounds for the Boltzmannian allow one a systematic discussion
of the flow of the effective couplings under successive RG transformations.
Here we follow a different strategy ([5], [6], [18]). Instead of partitioning

configuration space we apply a polymer expansion to the effective partition
functions and give suitable bounds on the activities in this expansion. For
the hierarchical model under consideration, only monomer activities are
different from zero. Each of them is written as a sum of a "relevant" and
an "irrelevant" contribution. For field configurations near the minimum
of the effective action, the first one gives the corresponding perturbation
expansion to a given order in the running coupling constant, whereas the
latter is small of higher order, in the coupling as well as in the deviation
of the fields from the minimizing configurations. On the other hand, both
terms have bounds uniform for all possible field configurations. In order
to make successive RG transformations managable, the bounds must be
such that they are stable under the RG. In this paper we state such
uniform bounds and prove that they are actually stable, at least if the
effective coupling constant is sufficiently small, i. e. in a neighbourhood
of the expected Gaussian fixed point.
The method used in this paper is in the spirit of phase space expansions,

in particular polymer expansions on the multigrid ([5], [6], [19]). An inves-
tigation of a hierarchical SU (2) gauge model in four dimensions by these
methods can be found in [16], [17]. We were motivated by the hope that
the method can be refined (as e. g. for cp4 theory [20]) to such a degree
that it applies also to the full non-linear 0(N)o-model, beyond the
perturbative level [21]. This paper will be continued by a further one which
contains the polymer representation of the hierarchical nonlinear 0 (N) (J-
model on the multi grid without ultraviolet cutoff. The existence of and
bounds on Green functions will be investigated. Polymer activities will be
estimated by using the same methods as presented here.

2. THE HIERARCHICAL MODEL

First of all we introduce some notations. For integer j, n, 0 _ j _ n, let
Aj be a two-dimensional lattice of lattice spacing and volume V2,
say, for some V EN. L is some large integer to be specified later on. We
identify Aj as the L2-block lattice of An, i. e. every x~j is
identified with a block Furthermore, for any xEAn
let xt be the unique element of which contains x in the sense just
explained.

Vol. 55,n’ 1-1991.



548 A. PORDT AND T. REISZ

The partition function of the full non-linear (9 (N) 6-model is given by

where

x

The vector field cp is real valued. ~ denotes a unit vector in ~-direction,
~=~2. g(a) and Z(a) are bare coupling constant and wave function
renormalization, respectively, to be chosen in such a way that the a -+ 0,
i. e. n -+ oo limit exists in some specified sense. The normal 8-constraint
form of F which would fix (pM to the (N -1 )-sphere Z (a) cp 2 (x) =1 has
been replaced by a "8-itcrating" function ([8], [9]) because anyhow it
would be destroyed after the first RG step. It is reproduced for large X.
Action and measure have a global (9 (N) symmetry.
Now we introduce effective actions on the coarser lattices Aj (sealer),

0  j  n, and the corresponding block spin decomposition.

where v is the covariance (propagator) derived from equation (2. 1). The
effective Boltzmannian or partition function on "scale y" is then given by

where denotes the Gaussian measure of covariance wi and mean zero.
These effective partition functions are recursively related by the
RG transformation

As alluded to in the introduction we now replace the exact covariance by
a simpler one which is not too far away from the exact propagator. For

Annales de I’Institut Henri Poincaré - Physique theorique



549RENORMALIZATION GROUP ITERATION

where and y)n denotes the number of blocks on all coarser
lattices which contain both x and y. Then

For "almost all" x, ’ we have ’

thus not too a bad approximation of the true propagator.
The resulting hierarchical model has no independent wave function

renormalization. We set

to get most notational coincidence to the approach of Gawedzki and
Kupiainen[8].
We are led to the following iteration

with initial condition

Because of 0(N) symmetry we write for real fields 
If we parametrize in (2.7) 11 = + jr, 71:’ Bf = 0, the RG iteration becomes

The normalization factor is chosen in such a way that at the minimum

fj-1 of the effective action - logZj-1(rj-1, 0), we have (fj-1, 0) =1.

Vol.55,n°l-1991.



550 A. PORDT AND T. REISZ

Complex analyticity in field space for different field theory models has
been pioneered by Gawedzki and Kupiainen (e. g. [7], [8], [ 10], [ 11 ]). In
the following we will use complex analyticity in the "radial components",
exploiting (9 (N) symmetry (reasonable bounds for arbitrary oriented com-
plex fields do not seem to iterate in our approach without additional
effort). This is sufficient for our investigation. Anyhow in the end only
real fields are of interest (in this model). Considered as a function of

Zn 0) is complex analytic. It will be shown here that if for some
j, 0) is analytic in r~, and if 1t) is smooth and satisfies
suitable bounds, so does Z~ _ 1, at least for sufficiently larger (running f
on scale j). In what follows we consider 0) on the domain 
(in order to allow application of Cauchy formula for proving iteration of
stability bounds).
To prove UV-convergence on each physical ( = finite length) scale we

have to show that for an appropriate choice of the inverse bare coupling
~~)=~ n

exists (at least pointwise), where Zj derives from Zn by n -j RG iterations
(dependence onfn is implicit). It is expected [8] that (a = L -n)

which is denoted as asymptotic freedom. In this case the bare Boltzmanian
F (q» reproduces the 8-constraint because of (2 . 6), already for finite À. In
this paper we are mainly concerned to investigate the RG transformation
without performing a separation of large and small field domains.
Our treatment is as follows. We split the partition function Z~ into a

perturbatively determined, so called "relevant" part and a remainder in
such a way that both contributions have a reasonable bound for all
possible field configurations. Near the configurations where the effective
action takes its minimum, the relevant part should reproduce the standard
perturbative expansion [to a given order (9 ( f -4)]. It is then shown that
this pattern is preserved under RG transformations. In particular the
bounds are stable. We may write the RG step (2. 7) as

Because of bounds on Zj, the RG transformation IRG is continuous (with
respect to pointwise convergence) on the set of such functions. That we
succeed in avoiding a partition into large and small field domains in this
toy model confirms our hope to successfully iterate the complete o-model
on the multigrid and to investigate it by methods similar to those in [20].

Before we are going to study the RG iteration in detail, let us note that
the fields o/j are dimensionless in two dimensions. That means interactions

Annales de I’Institut Henri Poincaré - Physique theorique



551RENORMALIZATION GROUP ITERATION

with arbitrary powers of the fields are marginal under (2. 7). Actually the
minimum of the effective action - log 0) for real rj is located at some
non-zero f~, at least for the starting action (where it is f ). To make
perturbation theory available for studying the RG flow we should consider
an expansion about this minimum.
Thus let f be the location of the minimum of the effective action

and ~=(l+2yc~)~. Write in (2 . 9) and substitute

We get

We take care of not to write Zj ( f~ + a + ~ p, ~) for complex p because
we only prove bounds if imaginary and real parts of the argument are
collinear. We don’t need prove analyticity of Zj for arbitrary oriented
complex fields. On the finest lattice ~==~, we have f" = f, c2, n = ~,/2 and

That means the saddle point expansion is an expansion in powers of f-1.
oo there is a fixed point

For finite f corrections must be taken into account, which will come out
to be of order 9(/’~). At least justified by perturbation theory, we see
that close to the critical point,

For large L this is a small number. That means the RG transformation

(2.14) has only one marginal direction, which described the Gaussian
fluctuations about the minimum on each scale.

Vol. 55, n° 1-1991.



552 A. PORDT AND T. REISZ

3. PROPERTIES OF THE PARTITION FUNCTIONS Zj

We list properties of effective partition functions Z J which are maintai-
ned under RG transformations (2. 7), (2.14) (with the obvious replace-
ments of the running couplings), as described by the theorem below. Let
O~’~.

(AO) Z~ (~) is an ~ (N) invariant smooth function of

. 

we write Z,(B)/)=Z~, 0) and for Zjel and Rj
in analogy.

fJ and c2, ~ are defined by

and

~- ~ J

respectively, where we have assumed normalization Z~(/~0)=L For
v = 3, ... , 9, (v ~ 8) let

Then are related to according to Lemma 3 .1 below. The coeffi-
cients e,,, J satisfy the bounds

Annales de l’Institut Henri Poincaré - Physique theorique
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(A 2) The remainder Rj (B)/) = Rj + p, 0) is a complex analytic function
in for is of order as 

and satisfies for those p the upper bound

with appropriate constants K1, K2 (N, y, L2).
The relations between c  are arranged in such a way that

and that and satisfies O ( f ~ 4) bounds uniformly in p.
The order of the coefficients are given by (3 . 6). The reason for
absence of a 03C18-term is that it is of the order O(f-4j), and we take
coefficients only to the order f-3j. The specific form (3 . 2) for the relevant
part has been chosen mainly for two reasons. First, it yields exponential
bounds for large real fields W, and secondly it is manifestly analytic in the
fields. If for instance we had chosen as the relevant part the first term on
the right hand side of equation (3 . 8), i. e. an expansion in p==~-/~ the
analyticity properties would not iterate via (2 .14).
We are allowed to omit the restriction Im p for validity of the

bound (3.7) by simultaneously including into the first term on the right
hand side of (3 . 7) a factor

but this will be of no use to us in the following. We remark that the
second term of the bound appears because we use analyticity by estimating
on Cauchy circles, and because of the fact that Rj increases very rapidly
with increasing imaginary fields. This is in contrast to D4 theory [20].

For the starting partition function (2 . 8), i. e. these conditions

are satisfied with

Vol. 55, n° 1-1991.
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if we suppose that

The upper bound on À is chosen just for simplicity in order to avoid
estimates uniform in (arbitrary large) À in the first RG step. Actually,
as the bare inverse coupling g - (a) increases according to (2 . 11 ),
r... _ À/8 g (a) ~ n as well, and that restricts the support of the bare partition
function to an arbitrary small neighbourhood of the sphere ",2 = g-1 (a).
We prove that the properties (A o)-(A 2) iterate under the RG transform-

ation (2. 7), (2.14) if the f~ are not too small. This statement is given in
the following

THEOREM 3 . 1. - There exists Lo (N, y) &#x3E; 0 and foY all L &#x3E;__ Lo there is

Fo (N, y, L2) &#x3E; 0 so that the following statement holds.
Suppose that for some j~ n the effective partition function Zj ("’) satisfies

the conditions (A 0)-(A 2) with some sufficiently large K1 (N, y, L2) and
K2 (N, y, L2) and with Then these conditions are true also for

("’) as defined by equation (2 . 7), with new coupling constants 
c2, ~ -1, given as follows:

G1, j&#x3E;0, G 2, j and 0394v, j are polynomials of and rational functions of
~ 

c2, ~. There are K (N, y, L2) and r(N, y, L 2) so , that

where U~ (v) denotes the order of Cy, resp. Cy in f~ 1, i. e. m (2) = 0, U~ (3) =1,
U~ (4) _ (!) (6) = 2, (!) (5) = C~ (7) _ (!) (9) = 3. The remainders are uniformly
bounded by

G 1, j is given by

in agreement with [8]. By uniform bounds we mean that ’t, K, C, etc. do
not depend on the specific values c2, ~, i. e. they are independent
of the RG step and depend only on external parameters N, y and on L2.

Annales de l’Institut Henri Poincaré - Physique theorique
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K1 and K2 sufficiently large means that they are fixed above a lower
bound. For instance, on the first lattice Rn = 0, so we could have set

K1= K2 = 0, but this cannot hold on the next coarser lattice. Similarly,
on the next to the finest lattice we could have chosen K~ ~0, but K~=0,
but this again would not iterate. The theorem just says that K1,
K2 (N, y, L2) are not too small.

Before we are going to prove this theorem we state the already announ-
ced lemma which relates and and gives bounds on cf. (3 . 8).

LEMMA 3.1.2014 Consider

Then

where Rrelj (p) = O (p8) is an analytic function o.f’ p, and the coefficients
are given by

Vol. 55, n° 1-1991.
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Suppose in addition that the coefficients satisfy the bounds (3.6) and that Ifj~2. Then there is a C (N, y, that

for all p satisfying Re p ~ ~/;" 1,~ Im p 
6, j and 7, j contain terms which are of order f-4j. These may be

absorbed in the remainder, yielding Rjel (p) = 0 (p6), but the bound (3.19)
still holds. That would be sufficient for our further investigations.

Proof : - We omit the scale index ~’.

Expanding the second exponential and collecting equal powers of p (up
to 9th order) yields (3 .17) with coefficients given by equation (3 .18). The
remainder is analytic in p, of order p8 and gets its contributions from
two terms. The first one collects higher orders of the expansion,

where P is a polynomial with bounded coefficients [because of (3 . 6)]. For
an appropriate C1 (N, y, L2)

where we have used (I . 3), cf. Appendix A. The other one is the Taylor
remainder of the exponential and is bounded by

Annales de Henri Poincare - Physique theohque .
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where 0 ~ e (p, /) ~ 1 and F is some polynomial. Thus

for some C2, and we have used (11), (12) of Appendix A. Choosing
C=C1 + C2 proves the lemma. []

4. PROOF OF THE THEOREM. FIRST PRINCIPLES

Let us write Z, f, c2, c~, etc. for Z~, f~, c2, ~, and Z’, f’, c2, c~ etc.
for Z~ _ 1, f~ _ 1, c2, ~ -1, In all what follows we assume L~2 and
/~2, and we use the inequalities stated in Appendix A without explicitly
referring to them. For any nonnegative f we define a subset by

First of all we notice that the conditions (AO)-(A2) together with
Lemma 3.1 and Lemma Bl state integrability of the partition function Z.
Hence smoothness of Z (V) implies smoothness of Z’(B)/). Also, Z’ has
O (N) symmetry. Let us introduce the Gaussian measure

for 03BB~C, and

where 0 _ s _ 1 +2y~)’~ Then the RG transformation (2.14)
can be written as

Vol.55,n’1-1991.
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We write Z = Zrel + R and expand the term which has only factors of Zrel
about the Gaussian measure, which yields

where

and

X~P

Derivatives of the Gaussian measure with respect to s are dealt with by
the formula [23]

for any differentiable function I which depends on 03C0 only by 03C02. This is
satisfied for Zrel. The differentiations can be done without problems
because Zrel is manifestly differentiable by construction.
Using the bounds (3 . 6) it is easy to see that a least every third derivative

with respect to the fields produce a factor of f-1. Thus to get/B c2 etc.

Annales de l’Institut Henri Poincaré - Physique theorique
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out of/, C2 to order f - 3, only Zi must be calculated explicitly, Z2 and
Z; being of order 0(/’~). All contributions to Z’ satisfy suitable bounds
for small as well as large fields p, as will be shown below. In Section 5 we
do the perturbation theory for Z~ and derive universal bounds on Z~ and
Z2. In Section 6 estimates of Z; and its derivatives are given. These
considerations provide the basis for proving that Z’ satisfies the conditions
(AO)-(A2) with the obvious replacements. In Section 7 the values of the
coupling constants on the next scale, /’, c2, c~, ~ ... . are derived within the
order of interest, and the conditions (Al) are reproduced. Finally, in
Section 8 we prove that the stability bound (A2) iterates, by using the
same methods as in Section 6. That completes the proof of the theorem.

5. PERTURBATION THEORY IN THE RUNNING COUPLING

CONSTANT f-1

We collect the results of this and the next section in

PROPOSITION 1. - There , is Li(N,y)&#x3E;0 I and for there , are

F1 (N, y, L2) &#x3E; 0 and K1 (N, y, L2), K2 (N, y, , that the conditions

(AO)-(A2) imply that for 

The do, d~~ are polynomials of cv, rational functions of c2 and

do =1 + O ( f - 2), d~~ = O ( f -’). They are uniformly bounded by

Vol. 55, n° 1-1991.
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for some , D (N, y) &#x3E; 0 1 and , C (N, y, L~)&#x3E;0. it is analytic in p and satisfies
the bound ,

Remember that D ( f ) is defined in equation (4 .1). Large coefficients
K1 and K2 in the bound (3 .7) means they stay fixed (for fixed L2) above
a lower bound. For K 1 it is determined by perturbation theory, whereas

H (L2) for an appropriate H~ 1, cf. below. Note that there is no
8th order term in p because it is of order 0(/’~). It follows from

Proposition 1 that the minimum of - log Z’ ( f + p, 0) is at some

( f -1). That means Co ~L2~2 = 1 + 0 ( f - 2) [remember that Co is chosen
in such a way that Z’ ( f + po, 0) =1 ] .

5 .1. Perturbation expansion for Z~

Using the identity

Zi can be calculated explicitly. The computation to order f - 3 is rather

long but straight-forward. The result is the following

LEMMA 5.1

where

The do, di~ are polynomials in Cv and rational in c2. The second index refers
to the leading order in f -1 and do =1 + O ( f - 2). There are F(N, y, L2)
and D (N, Y), C (N, y, L2) so that for f &#x3E;_ F, the do, d~~ satisfy the inequalities

Annales de I’Institut Henri Poincare - Physique theorique
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(5.2), and in the ’ domain Q(f), R~ (p) is analytic and , bounded according to

appropriate C &#x3E; 0 and for all v=0,..., 10.
Z’1, pert results from an explicit calculation. All contributions in Zi which

are of order O (f -4) are collected into R1. The proof of the bound (5 . 8)
for v = 0 is just a repitition of the proof of Lemma 3 .1. The bound could
be made even better because of additional factors of  and  ~ 4/L2 ~ 1,
but we don’t need do so. Also evident from the form of R~ we can
choose C so large that all derivatives to 10th order, say, satisfy the same
bound. Notice also that explicit powers of L2 appear as combinatorical
factors, so that C depends explicity of them. Below it is shown that Z2
and Z3 are uniformly bounded in p and are of order (9(V~).

5.2. Estimate for Z2

This part is the remainder of the perturbative expansion. It is given by

where for each i =1, ..., L2

The Pi are polynomials with coefficients bounded by some G (N, ’Y, L~)&#x3E;0.
Derivatives of Z2 with respect to p up to an order 10, say, are given by a
sum of at most (L2)10 terms of the form (5 . 9). We can choose G so large

Vol. 55, n° 1-1991.
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that their coefficients are still bounded by G (actually most differentiations
introduce powers of f- 1 or 2).
Bounds on integrals of the form (5.10) has been given in Appendix B.

According to Lemma B . 2 there are L (N, y) and C(N, "1, L2) so that for
and f~ 10 for any 0~s~1

for all pEQ(f). Thus

LEMMA 5 . 2. - There is L (N, y) and for there is C (N, y, 
10 and all v = 0, ..., 10

This completes the perturbative part of Proposition 1.

6. UNIFORM BOUND ON Z3

In this section we state bounds on possible nonperturbative corrections
to Z’, namely on Z;. Special care is needed in order to control combinatori-
cal prefactors, which tend the expressions to grow by the RG iteration.
We have to get additional factors which compensate for such effects.
These so-called downstairs factors result from a careful analysis of the
"irrelevance" condition of the remainder, i. e. R ( f + p, 0) = 0 (pg) as p -+ 0
(A . 2), together with analyticity in a strip around the real p-axis. In

contrast to the analogous discussion in 03A64-theory [24] derivatives of R
cannot be reasonably bounded by applying just Cauchy’s formula with a
big radius. This is because bound on R are worse away from the real
axis. Instead, powers of p combined with a fraction of fast decreasing
exponential prefactors produce the downstars factors needed, e. g. for real
p according to

and by C2 ’" L2.
We consider

Annales de I’Institut Henri Poincaré - Physique theorique
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where

and

Both 11 and I2 are analytic in p for Re p &#x3E; - f -1, Impf/6 because of
the assumptions (A O)-(A 2), Lemmas 3 .1 and B. 1. Zrel is known explicitly.
On the other hand, R(f+ p, 0) satisfies the conditions (A 2). In particular,
it is O ( f - 4) and 0 (p8). First of all we consider those terms in (6 .1 ) with
v~2, i. e. where there are at least two integrals of the type (6 . 2 b). The
term with Y= 1 is more tricky.

6.1. Bounds on 11 and 12. The case v~2

We first of all consider 11. In order not to get too a bad bound (I1 is
needed for the term with y= 1 also) we do not straightforwardly apply
Lemma B . 2. Instead we expand 11 about the Gaussian measure. This way
we get the leading term explicitly plus corrections down by f- 1 .

where ’ analytic and , satisfies

Proof. - 8~ ~(p) is obviously analytic in p. Suppose 
" that pEQ(f). We

first consider the case ’ ~=1. Let us write ,

where

Vol. 55, n° 1-1991.
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For sufficiently large L~L(N, y) there is D 1 (N, y, L2) so that

for 10. The proof of this inequality is just a repitition of the proof
of Lemma 5 . 2. Furthermore, there is D2 (N, y) so that for those f

This is a straightward consequence of the assumption (Al) and Lemma
3 .1. Finally, this result for ~= 1 extends to ..., L~ 2014 1}.

where for L~L and sufficiently large/

with some G1 (N, y, L~) &#x3E; 0. N

Now we come to the remainder integral I2. For real a, 1t, the induction

hypothesis (A2) tells us that R ( f + cr, 1t) is bounded by

Annales de l’Institut Henri Poincare - Physique - theorique -
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with ~, _ {( f’+ csj2 + ?L2)i/2 _ f and , cf. (3 . 7). Substituting j
~ -~ 6 + Re p, I2 is easily bounded 0 by

To the integral we apply Lemma B. 1 by writting 03C8 = ( f + Re p) BJ/, || = 1.
With some K (N, y) we get for sufficiently large y)

for Re p &#x3E;_ - f -1 10, where we have used that

cf. the proof of Lemma B. 2. For L2 &#x3E;_ 49

Thus

LEMMA 6 . 2. - There ’ are L (N, y»O I and , G2 (N, Y) so that for L~L
1

for all p satisfying Re p~ -/2014 1.
As a corollary of the last two lemmas we get a bound on the sum (6 .1 )

with the term v =1 omitted. Assume the bounds (3 . 7) to hold for given
constants K1 and K2.
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COROLLARY 6 . 1. - There are [(N, y) and FR 2 (N, y, L2, K1, K2) so’

A fraction f - 2 of the original f-8 is used to absorb "bad" coefficients.
K1(N, y, L2) and K2 (N, ’Y, L2) are given by assumption (A2). Clearly,
the larger we choose K1 and K2, the larger must be FR,2, i. e. f We retain
f - 6 instead of f-4 (which we finally want to have) just to simplify the
management of derivatives of the sum, cf. Section 8.

6 . 2. Improved bounds on 12. The case y= 1

We now consider the more delicate term of (6 .1 ) with y= 1,

where 11 and I2 are given by (6. 2). If compared to the other terms dealt
with in Subsection 6.1 above there are no more additional factors of

f - 4, which could be used to bend down big coefficients, in particular
those which grow as some function of L. Powers of 11 are controlled by
Lemma 6.1. The prefactor L2 must be compensated by so-called down-
stairs factors. They result from a more careful analysis of 12 than we have
done before in order to derive the bound of Lemma 6.2. We have to

exploit the inductive assumption of "irrelevance" of R, cf. (A2). As will
come out below, the first term of the bound on R with not too a good
exponent does not give us such downstairs factors, but the second does.
On the other hand, the first one mainly gets its contributions from the

perturbation expansion of the effective Boltzmannian Z and its remainder,
cf Lemma 5.1 and Lemma 5.2. It cannot be made better because part
of the exponential decay must be used to control increase of the expressions
by powers of the fields. Also, away from the real axis, the bound is rather
bad, so that we don’t get downstairs factors by applying Cauchy’s formula,
integrating on a circle of big radius.

Actually, this part of the stability bound behaves under the RG in such
a way that on the next scale it is bounded by an expression of the form
of the second part in (3.7). This term is well behaved under subsequent
iterations, as will be shown below.
The improved bound on I2 is as follows.
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LEMMA 6.3. - Let There , are G3(N, y»O and ,

Notice the downstairs factor L -8. For large L the coefficient of K2 can
be made arbitrary small (but normally the coefficient of K1 cannot)
without using a fraction of f4.

Proof. - Set

and for real ~, &#x3E;_ - f,

By induction hypothesis (A2), considered as a function of complex  R
("A) is analytic in Q(/), satisfies the "irrelevance" condition R (~,) = O (~,g)
(as "A -+ 0) and the corresponding bound (3 . 7). Assume the following
statement holds: There are D(y»O and so that for all

L~150,/~10

Then Lemma 6. 3 follows in exactly the same as we proved Lemma 6. 2.
Thus we have to prove (6.13). Because of

we have by Taylor’s formula

We apply Cauchy’s formula, estimating on a circle of unit radius with
midpoint ~~~ 2014~ Because of (A2) we get
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Hence for L2 &#x3E;_ 150

for appropriate D and H. That proves (6.13) and hence the lemma..
With the improved bound on I2 by Lemma 6. 3 and those on powers

of I1 by Lemma 6.1 we get the desired bound on the contribution to Z;
given by the v =1 term.

COROLLARY 6 . 2. - There are L (N, y)&#x3E;0, H(L2, y, L2)
and FR, 3 (N, y, L~)&#x3E;0, ~ that with all 3 and

all 03C1~03A9(f)

Remark. - "Bad" contributions coming from the iteration of the first
part of the bound (3.7) are absorbed in a term of the second form for
sufficiently large H. This latter part is stable under the RG.

Proof. - We apply to (I1)L2 -1 Lemma 6 . 1 and consider both of the
resulting terms separately. By Lemma 6 . 3 there are G (N, y), H (L2, y)
and FR, 1 (N, y, L2) &#x3E;_ 10 so that

where we have fixed K2 = K1 . Hand L~(2G)~. Here the downstairs
factors are of great importance. Similarly
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for sufficiently large f. .
The results of Section 6 can be summarized in the following

COROLLARY 6 . 3. - There exists LR(N, y) &#x3E; 0 so that for all there

are H (L2, 03B3) ~ l, K1 (N, y, L2) &#x3E; 0 and FR (N, y, L2) &#x3E; 0 such that with

K2=K1 .Hfor all f~FR

for all Furthermore, there ’ is y, L2) so that for
v = 0, 1, ..., 10 for all those p

Proof : - We collect the Corollaries 6.1 and 6 . 2 and notice that

Derivatives of Z; with respect to p are dealt with in a similar way, using
the representations (6 .1 ), (6 . 2), compare Section 5..

Proof of Proposition 1. - Z’(/+p) decomposes according to (4 . 4).
Lemma 5.1 states the asserted properties of the coefficients do, dl~ of the
expression (5.1). They result from Z~ alone. By the Lemmas 5.1, 5 . 2

and Corollary 6 . 3 there are L1(N, y)&#x3E;0, F1(N, y, L~)&#x3E;0, so that for
the remainder R (p) [cf (5.1)] is analytic in Q(/) and

bounded by

where for some H(L2, If we set K1 so large that it

satisfies
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the bound (5. 3) of Proposition 1 follows. Finally, derivatives of Z’ with
respect to p are bounded according to (5.4), where This
completes the proof of Proposition 1.

7. RUNNING COUPLINGS ON THE NEXT SCALE,
ITERATION OF (At)

We are going to determine the values of the running coupling constants
f, c2, CV on the new scale with the help of Proposition 1, up to order
9(/’~). According to this proposition, Z’ ( f + p, 0) is analytical in p for

and its derivatives with respect to pare
uniformly bounded. The coupling constants f’, c’2, ’v are defined according
to (Al) with the obvious replacements. Let us denote the O ( f - 4) correc-
tions to C~ ~L2~2, f ’, C2, ,..., ... , ?9 by rJ7J 9. respec-
tively. We suppose that f is sufficiently large, so that the equation 7.1
below has a unique solution. The location of the minimum of the effective
action - log Z’ (r, 0) on the nonnegative reals, r = f ’, is determined by the
equation

This implicit equation is solved iteratively in f-1, with the result

G1 and G2 are polynomials in 2~ rational in c2, and because of Equation
(3 . 6) they are bounded by some K 1 (N, y, L~)&#x3E;0. In particular,

The normalization factor Co ;£L2/2 is chosen in such a way that

According to Proposition 1 (bounds on derivatives of Z with respect to
p) and the implicit function theorem, the remainder ~0,~1, ... are

uniformly bounded by
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with some constant T (N, y, L2). Because of this, we infer from (7 . 2),
(7 . 3) for sufficiently large L&#x3E; [(N, y) that Gi&#x3E;0. Hence for sufficiently
large/

Furthermore c’2 = -! ~2Z’ (/+ p, 0)03C1=f ’-f is given by2 ~p

with 1B2 = L2 2 c2. Hence

In particular that means ~&#x3E;0, i. e. the effective action -logZ’(/+p, 0)
actually has a minimum at p ==/’ 2014/~
The coupling constants 2~ v = 3, ..., 7, 9 are determined by

They are computed according to Appendix C in terms of derivatives of
Z’. As a result

where A~=J~r~=6~(/ ~~), and Tlv are polynomials of at most third
degree in as given in Proposition 1, which themselves are polyno-
mials in Cv and rational in c2, satisfying the bound (5.2) for c2, Cv in the
domain (3.6). According to this, for sufficiently large f, the Av are

uniformly bounded by

with some K2 (N, y, L2) &#x3E;0. (9 (v) denotes the order of Cy respectively Cy
in f -1, i.e. (9(2)=0, (~ (3) = l, (9(4)=(9(6)=2 and (9(5)=(9(7)=(9)=3.
Furthermore, the bounds (3 . 6) on c2, c~, hold, with f replaced by f ’  f.
We collect the results of our perturbative discussion in

PROPOSITION 2. - There exists L2 (N, y) &#x3E; 0 and for L ~ L2 there is

F2 (N, y,- L2) &#x3E; 0 so that for all ~ F2 the following relations and bounds
hold.
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G1, G2, h are polynomials in Cy, rational in c2. There ’ are constants

K (N, y, L2) and , C (N, y) so that

where C~ (v) denotes the order o, f ’ cv, resp. Cv in f ’ -1. The new coupling
constants satisfy -

This proves that the assertions (Al) hold for Z’ (~r), where the new
"relevant" part is given by

for all 03C8~RN.

. 

8. ITERATION OF THE STABILITY BOUND (A2)

It remains to prove that

satisfies the conditions (A2) with the coupling constants f, c2, ... replaced
by the new ones f ’, c~, ... Here we have defined the new ("block spin")
fields by
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so that

The coupling constants c;" v &#x3E;_ 3 are related to the c~ as defined according
to by Lemma 3 .1 with the obvious replacements.
The results of this section are summarized in

PROPOSITION 3. - R’ ( f’ + 11, 0) is analytic for ~ E Q ( f ’) and satisfies
R’ ( f’ + 11, 0) = O (,,8) as ~ -+ 0. Furthermore, there are L3 (N, y) &#x3E; o,
K1, K2 (N, y, L2»0 and F3 (N, ’Y, LZ) &#x3E; 0 so that for L~L3, f &#x3E;__ F3 and
all ~ E Q ( f ’)

Combining the Propositions 2 and 3 we see that the properties (AO)-
(A2) of the effective partition function iterate, and that the bounds on
the coefficients stated in the theorem hold. This proves the theorem with

Lo = max (L2, L3) and F3). In the remainder of this section
we prove Proposition 3.

8.1. Outline of the proof of Proposition 3

By Proposition 1, R’ ( f’ + 11, 0) as given by (8 .1) is analytic in ~~ Q (/’).
Furthermore, again by Lemma 3 .1 and the definitions of/’, c2, ~

where (R’)rel(~)=O(~8) as " ~ 0, is obviously analytic in ~ and satisfies
for some positive C (N, y, L2j
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for all ~ E SZ ( f’). From (8 . 5) we get

Now it is obvious that R’ ( f’ + r~, 0)=0(r~). It remains to prove the
desired bound on R’. This however is straightforward, by the same
methods as developed in Section 6 above, using analyticity of Z’ and the
bounds of the Sections 5, 6 and Proposition 2 (on Co We are thus

very scetchy in the following.
Let us introduce the notations

For some Ko (N, y, L~)&#x3E;0,

Furthermore, there are L’ (N, y)&#x3E;0, F’(N, y, L 2) &#x3E; 0, so that for 
and  F’

Remember and that 

implies p E SZ ( f ). According to the decomposition (4 . 4) of Z’ we write

with

All four terms in (8 .11 ) are well behaved separately, as will be seen below.
is already done, cf. (8 . 6).
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8.2. The perturbative part again

LEMMA 8. 1. - There exists La (N, Y) so that for L ~ La there are

Fa (N, Y, L2) and C1 (N, y, L2) such that for f &#x3E; Fa and for all 11 E Q ( f’)

Proof - According to Lemma 5 .1 we decompose

and make use of

Both of these terms as well as derivatives of R~ and Z; are bounded
according to the Lemmas 5.1 and 5. 2..

8.3. The nonperturbative part

LEMMA 8.2. - There are Lp&#x3E;0, H(L2)~1, K1(N, 03B3, L2) and

Fp(N, y, that with K2=K1.H for L~L03B2 and f~F03B2
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The Lemma is a consequence of the two following inequalities.

and

for all 11 satisfying r~ E S2 ( f’). The first one follows from Corollary 6 . 3,
noticing that for sufficiently large f

and that because of (8 . 9) and (8 .10),

So we have to prove the bound (8.18). We cannot just refer to

Proposition 1 and Corollary 6. 3 because we have to be careful in order
to get the right downstairs factors. Nevertheless, (8 .18) is a straightforward
consequence of

LEMMA 8.3. - Let constant. There are L(N, y, A»O and
L~L; there are H(L2, y)~ 1, K1 (N, y, L2) and F(N, y, L2, 

that with K2 =K1 . H for /~ Fp and for all 

We split Z; into three parts, c/: (6.1):
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where

1~ 12 are defined in (6 . 2), and we have used the expansion of

[Ii (p )](L2 -1) according to Lemma 6.1. All the Ei are manifestly analytic.
Only E3 needs some care (we have to exploit irrelevance again). E1 and

E2 get additional powers and are straightforwardly bounded.
Applying Lemma 6 . 3, we get for sufficiently large L and 10

where we have used K2 = Ki H.

8.1, 8.2 and the inequality (8.6) and noticing that |c0 FL2/2|~9/8, the8.1, 8 . 2 and the inequality (8 . 6) and notieing that | eo FL2/2|~ 9/8, the
bound of Proposition 3 follows for K z ? 4 (C + 9 C 1 /8) and K2=K1H.

9. CONCLUSIONS

In the present paper we investigated a hierarchical model which serves
as a guide to two dimensional nonlinear O (N) sigma models for N~3. It
is defined in such a way that it does not show independent wave function
renormalization. This implies a considerable simplification for a study of
the model by Wilson renormalization group transformations, without

being too far away from the full sigma model.
A renormalization group study implies determination of the flow of

effective partition functions on different lenght scales, which result from

systematically integrating out high frequency modes. Of particular interest
is the determination of the corresponding effective actions and running
coupling constants. This can be done systematically at least in the neigh-
borhood of an ultraviolet stable fixed point, where the running coupling
constants are small down to a normalizing length scale.
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We were particularly interested to avoid a separate treatment of field
configurations which are in some sense out of range of perturbations
theory, the so called large field domains. The separate treatment of these
regions is at least partly responsible for the complex combinatorics in
renormalization group investigations of models with full wave function
renormalization. Instead, our study is in the spirit of polymer expansions
in field space. Typically in such an approach, effective partition functions
are expressed as a sum over products of activities corresponding to disjoint
subsets of the current "block lattice". These activities have to satisfy
appropriate bound, uniform in the fields, in order to guarantee conver-
gence of the expansion. Furthermore, it must be made sure that these
bounds do not destabilize under successive renormalization group iter-
ations.
At least in the hierarchical model under investigation, this procedure is

managable, although still nontrivial. This is because only monomer activi-
ties are different from zero, i. e. those which depend on the fields only at
one point. Bounds on them can be given explicitly, which are uniform in
the fields and which are actually stable under successive renormalization
group iterations.
Our results coincide with those obtained by Gawedzki and Kupiainen,

who investigated this model by renormalization group methods with a
separation of large and small field domains. In particular, the flow of the
effective coupling which determines the location of the minimum of the
effective action is exactly the same, as should be. Gawedzki and Kupiainen
also proved ultraviolet asymptotic freedom of the model. With some more
effort we can prove ultraviolet stability by our methods as well. For the
existence of the ultraviolet limit on each finite length scale, the bare

coupling constant behaves as

with b, (x&#x3E;0. We have not investigated this here explicitly because our
main interest was to get a feeling for a different method to investigate the
renormalization group behavior of sigma models in two dimensions.
For the hiearchical model the choice of methods seems to be just a

matter of taste, but we expect that in full models where we have to face
with the complete spectrum of mathematical difficulties of local field

theories, polymer expansions allow us a systematic investigation with
considerable reduced complexity if compared to other methods. Our aim
here was to get first principal insights into the difficulties which encounter
by applying polymer expansion methods to the twodimensional nonlinear
0(N) sigma model, considered for instance as a statistical system on the
multigrid, without facing at a whole the full mathematical complexity of
the model.
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Iteration of the hierarchical renormalization group equation leads to an
expansion on the multigrid ... + An (phase space expansion).
This expansion is represented in terms of polymer activities. The problem
of performing the continuum limit n -+ oo is related to the convergence of
the polymer representation on the infinitegrid lim .... Green

functions are expressed in terms of corresponding activities. These topics
will be investigated in a further paper as the next step towards a treatment
of the full 6-model.
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APPENDIX A.
SOME USEFUL INEQUALITIES

The following simple inequalities are used throughout. Let p be any
complex number, f &#x3E; 0.

Hence if in addition Im p 

(13) For any a &#x3E; 0 and any integer n there is C &#x3E; 0 so that

(14) For any real numbers a, b, positive a, E and integer n
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APPENDIX B.
INTEGRATION OF HIGH FREQUENCY MODES

We give strong bounds on the integration over the fluctuation fields
of a given scale. Integrals of this type occur frequently. The first one,
Lemma B. 1, cares about big angles between the block mean field and the
fluctuations. They effect a smearing of the partition about the minimizing
orbit. We take special care here not to introduce powers of (large) f in
the estimates (as e. g. in [8]). This we have to do because the bounds
should be effective for large and small fields simultaneously. Lemma B. 2
states bounds on fluctuation integrals of the relevant part of the partition
function on that scale. These estimates, too, hold for all real fields.

Consider the (9 (N) invariant integral

f, d are positive numbers.

LEMMA B.I. - 

IS (~) is uniformly bounded o in 1 by

In applications, d~ L2, where " L is a big £ positive ’ constant.
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Before proving the lemma we first of all give two preliminary statements.
The first one takes into account the angular distribution more carefully
in order not to generate a constant which grows with some power of f.

SUBLEMMA 1. - Let x ERN, r = x ~ I and r~ -1 dr dO.N -1 volume form on
RN. There is a constant C (N) sa that for any positive f and any ~r E RN

Using the mean value theorem of calculus,

The integral can be expressed by a Bessel
function of imaginary argument. Using corresponding bounds,

That proves the sublemma.

Big angles are suppressed in the sense that their integration yields the

f-l factors. They compensate corresponding factors of the radial integra-
tion, cf below.

SUBLEMMA 2. - ~S’uppose ~8 For any 

To prove this we have to check that
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holds for ~8, where

The left hand side of (B. 5) is equal to

For T== 1, A = 0 the last line vanishes, i. e. (B. 5) holds. On the other hand,
for T0 and ~=8/3~, we first observe that those two terms of order i2
of the second and third line cancel each other, and that the remaining
terms of the first two lines are not greater than zero. Finally note that

for 6 03B3 d~1 and 03BB=8/3n~1/3.

Proof of Lemma B . 1. - We write in the form

Using Sublemma 1 with/replaced by f/n and with r = (y s) -1 we get
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To the exponent we apply Sublemma 2 and get

The remaining Gaussian integral is easily estimated. As a result,

where P is a polynomial of order equal to the least integer greater or

equal to (N -1 )/2. Using a fraction of the exponential to bound the

polynomial we finally get (B. 2)..
When integrating relevant parts of partition functions, integrals of the

following type occur frequently.

where p is a complex number, 1, N~2, y,f, c2 are positive numbers

and ~=(1 +2yc2)’~. P is a polynomial with coefficients depending only
on N, y. Because of 2I’-1L-2, it is evident for RG recursions represented
by integrals of the form (B. 8) that there is only one marginal direction.
The other ones are irrelevant and contracted by the RG steps.

LEMMA B . 2. - Let c2~(L2-1)/803B3,/f~10. There is C (N, y) so that for
L2 &#x3E;_ 12
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for all 1 and all p satisfying Re " Im p ~y/6.
Proof - Substituting j in (B . 8)

we get

This is bounded as follows. For 0 _ s S 1 /2 and we use the
estimate

whereas for 1 /2  s  1 we substitute in the integral

We get a factor and in the polynomial P, p is replaced
by Re p. Furthermore, we bound P according to

where q denotes the degree of P. In summary
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where we have used that 2 c2  1 /2 y, and we have set

where  denotes an arbitrary oriented unit vector in RN. Now for

c~(L~-l)/8y and L2 &#x3E;_ 12 we have C2/8~1/6y. We can thus apply
Lemma B. 1. Using that for Re p~ -/-1, /~ 10

we get

For the last bracket is always greater or equal 1 /2. Finally,
using a fraction of the exponential to bound powers of Re p, the lemma
flows..

APPENDIX C.
DEFINITION OF RUNNING COUPLING CONSTANTS

Suppose we expand a (sufficiently smooth) function Z (~), (which
may be a partition function on a given scale) in the following form.

where ~’ denotes the location of the minimum of "the effective action"
and we assume that Z(/)&#x3E;0. For the cases under consider-

ation in this paper, f is real and unique above a lower bound. Let us
assume Z to be normalized by Z ( f ) = 1. f is determined by

Furthermore,
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The coupling constants dv are given by the following expressions.
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