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ABSTRACT. - A frame independent formulation of Classical Analytical
Dynamics in the language of jet-bundle theory is developed. The geometri-
cal environment is general enough to accomodate arbitrary "ideal" non-
holonomic systems, independently of any assumption of linearity, through
a suitable implementation of Gauss’ principle of minimal constraint. The
resulting dynamical scheme is analysed in detail. Comparison with other,
more traditional formulations, is examined.

RESUME. 2014 On presente ici une formulation de la Mecanique Analytique
en termes de jets, independante des choix du repere. La généralité de
l’impostation geometrique permet de traiter des systemes non holonomes
« ideaux » arbitraires, sans aucune hypothese de linearite des contraintes,
par une utilisation adequate d’un principe de minimalite des contraintes
du a Gauss. On etudie de façon detaillee Ie schema dynamique qui en
resulte, en comparaison aussi d’autres formulations plus traditionnelles.
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INTRODUCTION

A major source of difficulty in the extension of Analytical Mechanics to
arbitrary non-holonomic systems comes from pretending that a purely
statical definition of the class of ideal constraints - the celebrated D’Alem-
bert Principle ([ 1 ], [2]) - is powerful enough to cover all admissible cases,
thus excluding at the outset any involvement of Kinematics at a constitutive
level, even in the presence of arbitrary (possibly non-linear) kinetic
constraints.

The implementation of this viewpoint meets unavoidably with the pro-
blem that - apart for the holonomic and linear non-holonomic cases - there
is no "natural" algorithm allowing to translate the restrictions

placed by the constraints into geometrical conditions on the virtual displa-
cements of the system.
One is free, of course, to settle the question on axiomatic grounds,

through an a ansatz, concerning the very definition of the concept
of virtual displacement in the presence of kinetic constraints. Significant
in this sense is the contribution of N. G. Chetaev ([3], [4]) (see also [5], [6]
for more recent developments).
The resulting scheme, however, is not entirely satisfactory - at least

from a foundational viewpoint - since, rather than moving from "first

principles", it reflects essentially the consequences of the definitions adop-
ted.

All drawbacks indicated above may be overcome at the outset, simply
by dropping D’Alembert’s principle as one of the cornerstones of Analytical
Dynamics, and replacing it by the more powerful principle minimal
constraint of K. F. Gauss ([7], [3], [8], [2], [9]).

In this paper, we propose a detailed discussion of this point. The plan
of presentation may be traced as follows:

In Section 1 we review the foundations of Classical Mechanics in the

language of jet-bundle theory ([ 10], [ 11 ]), with special emphasis on the
invariant, frame-independent aspects. The concept of dynamical flow will
be singled out, as the natural object involved in the description of the
interactions. Various aspects connected with the geometric representation
of the constraints will be worked out in detail.

In Section 2 we discuss the implementation of the principle of determi-
nism in the presence of constraints, through the introduction of the concept
of constitutive characterization of the reactive forces. A general criterion
of ideality, valid for arbitrary holonomic and non-holonomic systems,
independently of any requirement of linearity, will be formulated, on the
basis of a suitable revisitation of Gauss’ principle of minimal constraints
([7], [3], [8], [2], [9]).

Annales de l’Institut Henri Poincaré - Physique theorique



513CLASSICAL DYNAMICS OF NON-HOLONOMIC SYSTEMS

A comparison with D’Alembert’s principle will show that the latter -
completed with Chetaev’ prescription on the definition of the virtual

displacements in the non-linear, non-holonomic case - is automatically
embodied into the newer scheme as an ordinary theorem.
The Section will end up with the indication of a possible "differential"

formulation of Gauss’ principle, similar in form, but intrinsically different
and definitely more satisfactory than D’ Alembert’s one, based on the use
of a new class of virtual objects, expressing the virtual variations of the
velocities of the system.

Finally, in Section 3 we shall discuss the representation of the equations
of motion, first in an intrinsic formulation, and then also in a more
traditional Lagrangian language, the second alternative involving the

description of the reactive forces due to the kinetic constraints, through
the introduction of suitable Lagrange multipliers.

Various aspects of the resulting dynamical scheme will be briefly consi-
dered : among others, the invariance of the equations of motion under
arbitrary changes in the representation of the constraints, the interplay
between first integrals and kinetic constraints, etc.
Throughout the paper, special attention has been paid to the founda-

tional aspects, mainly in connection with the construction of a geometrical
set-up particularly suited to a frame independent formulation of Dynamics,
an aspect that - in the authors’ opinion - is seldom covered in the literat-
ure.

Non-holonomic constraints appear in the literature at the end of the
XIX century, through the pioneering works of Ferrers [12], Neumann [ 13],
Maggi [ 14], Appell ([ 15], [ 16], [ 17]), Voronets [ 18], Jourdain [ 19], Volterra
[20], Chaplygin [21] and others. These Authors extended the holonomic
Lagrangian formalism to linear non-holonomic systems, in order to

embody, e. g., the rolling of rigid bodies. A systematic treatment of this
subject may be found in several textbooks among others, the classical
treatises of Levi-Civita [2], Whittaker [9], Pars [22], Hamel [8], Gantmacher
[23], Neimark and Fufaev [24]).
The representation of the equations of motion for linear non-holonomic

systems in Lagrangian form, and the related problem of the existence of
a variational formulation has been treated by Chaplygin [21], Khmelevskii
[25], and Iliev [26]; the same problem has been dealt with by Novoselov
([27] to [31]) and Sumbatov ([32], [33]), making use of the so-called
Helmholtz conditions [9].

Finally, the argument has been analysed by Moshchuk ([34], [35]), within
the context of Hamiltonian systems, and by Rumiantsev ([36], [37], [38],
[5], [39]), Khmelevskii [40], Naziev [41 ] and Pignedoli [42], also in connec-
tion with the extension of Hamilton-Jacobi theory to the non-holonomic
case.

Vol. 55, n° 1-1991.
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More geometrically-oriented contributions to the theory of linear kinetic
constraints have been given by Cattaneo [43], Clauser [44], Ferrarese [45].
Further references on these topics may be found in [42].

Levi-Civita [2], Appell ([15], [ 16], [ 17]), Delassus ([46], [47], [48]), Hamel
[8], Neimark and Fufaev [24], have discussed the problem of motion in
the presence of non-linear kinetic constraints; other Authors, such as
Valcovici ([49], [50], [51]), Ghori [52], Duo San [53], Kirgetov ([54], [55]),
Kuznetsov [56] have extended the analysis to the case of constraints

involving higher order derivatives.
All these approaches rely more or less directly on Gauss’ principle of

minimal constraint ([7], [8], [9]). In this respect, they are most closely
related to the line of thought followed in the present paper.

Alternative approaches to the equations of motion, based on Chetaev’
definition of the virtual displacements in the presence of non-linear non-
holonomic constraints, may be found in Kirgetov ([54], [55]), Pozharitskii
[57], Pironneau [6] and Rumiantsev [39].
Among other topics, we mention the problem of stability for the equili-

brium positions and for the orbits of non-holonomic systems. A possible
approach, outlined e. g. in [24], is based on the linearization of the equa-
tions of motion and on the subsequent determination of the characteristic
exponents. Other results, mainly for merostatic and periodic motions, have
been obtained by Semenova [58], Salvadori ([59], [60]), Rumiantsev [61 ],
Karapetyan ([62] to [65]), Fusco and Oliva [66].

In spite of its relatively old origin, Mechanics of non-holonomic systems
is still an open field of research. Among the most recent contributions, in
addition to those already mentioned in the text, we recall the works of
Polyakhov [67], Vershik [68], Weber [69], Fufaev ([70], [71 ]), Fam Guen
[72], Benenti [73], Virga [74], Cardin and Zanzotto [75].

1. FOUNDATIONS

1.1. Free systems

(a) In Classical Physics, aframe-independent description of the mechani-
cal behaviour of a material point P may be based on the introduction of
a 4-dimensional affine bundle ’t" 4’ called the space-time, fibered over the
real line fR (the "time-axis"), with projection t : ’t" 4 -+ IR yielding the usual
absolute time function.
The choice of an arbitrary frame of reference F determines a corres-

ponding representation of ’t" 4 as a cartesian product ’t" 4 = !R x &#x26; 3’ &#x26; 3
denoting the reference space associated with J. The resulting projection
x : ’t" 4 -+ &#x26; 3 will be called the relativization of ’t" 4 induced by J.

de l’Institut Henri Poincaré - Physique theorique



515CLASSICAL DYNAMICS OF NON-HOLONOMIC SYSTEMS

Through the previous construction, each fiber t = const. in ~ 4 can be
made into an euclidean three-space, isometric, via x ( . ), to the reference
space C 3’ According to the Axiom of absolute space, the resulting geometry
is in fact independent of the specific choice of J, and is therefore an
intrinsic property of the space-time manifold ~ 4’
For dynamical purposes, it is convenient to embody the inertial mass

of P into the fiber geometry, by all distances by a common
factor m, according to the convention

(~, ~ E ’Yi’4, t (~) = t (~)).
An entirely similar set-up may be introduced for a material system !/

formed by N point particles ... , PN, with masses ml, ...,~.
In place of V4 we have now the (3N+1)-dimensional manifold
t : f 3N+ 1 -+ !R defined as the fibered product of the space-time manifolds
associated with the points of ~. -

Once again, the introduction of an arbitrary frame of reference F
determines a representation of f 3N + 1 as a Cartesian product
[R x 83 x ... x 83, thus giving rise to a relativization process

N times

{ ~ 3N + 1 -~ ~ 3 ~ i =1, ..., N } assigning to each configuration
the positions Xi (9) of the points of ~, at the in

the reference space 83 associated with V.
Exactly as in the case of a single point P, the axiom of absolute space

is summarized into the fact that each fiber t = const. in f 3N + 1 can be
given an intrinsic euclidean geometry, with a "distance function" d now
expressed by the relation 

-

for all possible choices of the relativization process Xi ( . ).
In what follows, we shall indicate by V ("f" 3N + 1) the vertical bundle over

"f" 3N+ l’ defined in the usual way, as the sub-bundle formed

by the totality of vectors U tangen t to the fibers t = const. ([ 10], [ 11 ]).
The scalar product on Y(~3N+i) induced by the metric ( 1.1 ) will be

denoted by ( , ). Every local coordinate system t, ç 1, ... , ç 3N in 
consistent with the fibration t : "f" 3N+ 1 -+!R (i. e., including the absolute
time t among the coordinate functions), will be called admissible.

In admissible coordinates, the verticality of a vector field U ("f" 3N + 1)
is expressed by the condition

Vol. 55, n° 1-1991.
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In a similar way, the representation of the scalar product between vertical
vectors relies on the introduction of the quantities

çl, ..., ç3N) denoting the relativization to an arbitrary
frame of reference f.

In particular, as a consequence of the stated definitions, it is easily seen
that assigning a vertical vector is mathematically equivalent
to assigning an N-tuple of ordinary vectors Ul, ..., UN in the three-space
$ 3 associated with f, on the basis of the identification

with inverse

~(.) denoting the differential of the map x,(.). The proof is straightfor-
ward, and is left to the reader.

(b) Any evolution of the system !7 is represented by a corresponding
section y : [R -+ ~3N+ 1 and conversely. This leads to a natural identification
of the first jet bundle j1(V3N+1) with the velocity space of !7. The jet-
extension of the section y will be indicated by j1 (y): IR ~ j1 (V3N+1).
The argument is completed by the following remarks:
(i) the jet-projection 03C0 jl (V3N+1) -+ r 3N+ 1 makes jl (r 3N+ 1) into an

affine bundle over j/ 3N + l’ modelled on the vector bundle V(~~.~)[10];
(ii ) every frame of reference F determines a corresponding global sec-

tion o: V3N+1~j1(V3N+1) assigning to the state of
instantaneous rest of the system !7 in the configuration in the frame of
reference J.

Properties (i ) and (ii ), together give rise to a frame-dependent identifica-
tion of the velocity spacer (j/ 3N + 1) with the vertical bundle V (r 3N + 1)’
i. e., in view of equation ( 1. 4 a), to a representation of each element of

terms of a corresponding N-tuple of spatial vectors

v1, ..., vN, expressing the relative velocities of the points of F in the given
frame of reference.

In addition to this, another important implication of property (i ) is the
fact that the fibration ~:7i(~3N+i)~~3N+i determines its own vertical
bundle As it is well known [10], the latter
is essentially identical to the vector bundle obtained by
pulling back the vertical space through the projection Tc. Its

Annales de l’Institut Poincaré - Physique theorique
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fibers are therefore isomorphic to those of V (~3~+1)~ thus inheriting from
these a natural operation of scalar product.

(c) Every admissible coordinate system t, ~1, ..., ç3N in ’Y 3N+ 1 induces
jet-coordinates t, ç1, ...,ç3N, ~1, ..~,ç3N an obvious

way.
The resulting group of jet-transformations has the form

thus ensuring the invariance of the 1-form dt, as well as of the module
ç¿ 1 generated locally by the 1-forms

Given any frame of reference J, the corresponding relativization pro-
cess, extended to the velocities of the points of y in the sense indicated in
(b), is expressed by the equations

The verticality of a vector X~Tx(j1 (’Y3N+1)) is characterized by the
conditions 

.

mathematically equivalent to the representation

while the identification of the fibers with the fibers of

V (’Y 3N + 1) is expressed by the correspondence

In particular, the scalar product on V ( j 1 (~3N+i)) is based on the identifi-
cations

Together with equations ( 1. 3), ( 1. 6), these yield the explicit formulae

Finally, we have again the result that assigning a vertical vector X on
7i is mathematically equivalent to assigning N vectors Zi, ..., ZN

Vol. 55, n° 1-1991.
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in the three-space 83 associated to an arbitrary frame of reference J, the
correspondence being now expressed by the relation

with inverse

[see the analogous equations (1. 4 a), (1. 4 b)]. The proof follows from
equations ( 1. 7), ( 1. 8), and is left to the reader.

(a~ Exactly in the same way is characterized in terms of
velocities, the second jet bundle j2 (1/ 3N + 1) admits a natural interpretation
in terms of accelerations.
Once again, the argument is completed by the following remarks:
(i) the jet projection  j2 (~3N+ 1) -~’i (1/ 3N+ 1) makes j2 ("1/ 3N+ 1) into

an affine bundle over jl (’Y~’3N+ 1)~ modelled on the vector bundle

~(/i(~3N+i))- As such,~(~3~+~) is canonically isomorphic to the sub-
. manifold of T (jl (~3N+ 1)) formed by the totality of vectors tangent

to jet-extensions 7i(y) of sections on the basis of the
identification

Ç¿1 denoting the module generated locally by the 1-forms ( 1. 5).
(ii ) every frame of reference J determines a corresponding section

~7B(~3N+i)-~2(~3N+i). assigning to each the unique
element A (x) E ~ -1 (x) expressing the (istantaneous) vanishing of the rela-
tive accelerations of all points i =1, ..., N in the kinetic state
described by x in the frame of reference J.

In view of (i), every section Z:7i(~3N+i)-~2(~3N+i) determines a
one-to-one correspondence P~7’2(~3N+i)-~Y(/’i(~3N+i)). sending each

into the difference

the identification ( 1.10) being implicitly understood. We call pZ the vertica-
lizer induced by Z.
Comparison with equation ( 1. 9 a) shows that every verticalizer accom-

plishes a representation of the elements of j2 (1/ 3N+ 1) in terms of N-tuples
of ordinary vectors.

In particular, taking assertion (ii ) into account, it is easily seen that
every frame of reference J determines its own verticalizer pA, thus yielding
back - through equation ( 1. 9 a) - the corresponding representation of the
elements as N-tuples a1, ..., aN of relative accelerations.

Annales de I’Institut Henri Poincaré - Physique theorique
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More generally, every section Z : j 1 (1/ 3N+ 1) ~ j2 ("~3N+1) may be viewed
in relative terms as a prescription

assigning the accelerations of the points in the frame of reference J
as functions of positions, velocities and time.
On the other hand, due to the identification ( 1.10), Z is automatically

also a map j1 (3N+1) -+ T (11 (3N+1)), i. e. a vector field over j1 (3N+1):
as such, Z will be called more specifically a free dynamical flow for the
system ~.

It is then an easy matter to verify that the determination of the integral
curves of the field Z is precisely what is meant by solving the system
( 1.12), viewed as an inverse 
The situation is made more transparent by referring ~(~3N+i) to local

jet-coordinates t, ç0152, ç0152, 03B1. Every section Z:j1(3N+1)~j2(3N+1) is
then described locally through the equations

mathematically equivalent to the vector representation

From this one sees once again that a vector field over jl (’~3N+ 1) is a
dynamical flow if and only if its integral curves are jet-extensions of (local)
sections of ’f’" 3N+ l’ and that, given any dynamical flow X, a necessary
and sufficient condition for Y to be a dynamical flow too is that the
difference X - Y be a vertical vector field on i1 (~3N+i)’

Given any frame of reference J, the relativization process for the
accelerations is summarized into the identifications

ç, ç) denoting the relative velocities (1. 6).
In particular, in view of equations ( 1.13 a), ( 1.13 b), the distribution of

relative accelerations ( 1.12) associated with an arbitrary dynamical flow
Z may be written explicitly as

The same result may be stated more geometrically in terms of the vertical
vector field P A (Z) : = Z - A associated with Z through the verticalization
process induced by the frame of reference J. Indeed, denoting by

T = - 1 03A3mi v2 the relative kinetic ener g.Y in the given frame of reference,
2

Vol. 55, n° 1-1991.
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and recalling equations ( 1. 6), ( 1. 9 a), ( I . 9 b), ( 1.13 b), one can easily
verify that equation (1.15) is mathematically equivalent to the identifica-
tion

The proof is straightforward, and is left to the reader.
(e) The previous remarks are especially relevant in a dynamical context,

the assignment ( 1.12) being then determined by the knowledge of the
total forces Fi acting on the points Pi in the frame of reference J, through
Newton’s second law

In this respect, the problem of motion for the system !/ has therefore a
natural, frame-independent counterpart in the study of the integral curves
of a suitable dynamical flow Z, completely characterized in terms of the
interactions.

In the following we shall systematically pursue this dynamical viewpoint.
The vertical vector henceforth denoted by F, will be called
the total force acting on T in the frame of reference J.
Comparison with equations ( 1. 9 a), ( 1. 9 b) yields the identifications

with inverse

The special dynamical flow Zo expressing the complete absence of
interactions on the points of T will be called the inertial flow associated
with g.

According to the principle of inertia, the equality Zo = A characterizes
the class of the inertial frames of reference. More generally, the total force
Zo - A determined by Zo in an arbitrary non inertial frame J provides a
description of the "apparent forces" in J.

All this can be conveniently embodied into the geometrical set-up, by
including Zo among the attributes of the manifold ~3N+i. The resulting
geometrical object - still denoted by be called the dynamical
space-time associated with the system g.

In terms of Zo, any other dynamical flow Z may be decomposed into

Annales de , Henri Physique théorique
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The splitting ( 1.18) has now an intrinsic, frame-independent character. The
vertical vector

provides an invariant description of the interactions, and is in fact related
to the real physical forces Fi acting on the points Pi through the identifica-
tions [analogous to equation (1.17~), (1.17~)]

We let the reader verify that the previous arguments summarize the
content of Relative Mechanics.

1.2. Constraints

(a) By definition, the presence of constraints upon the system !/ is related
to the existence of restrietions placed on the set of possible evolutions of
~, i. e. on the set of admissible sections y: !R -+ "1/ 3N+ r

Quite often, the situation may be geometrized by introducing two sub-
manifolds (without boundaries) i : ’~’n+ r ~ f 3N + 1 ("1/ 3N + 1)’
both fibered over R through the absolute time function, and satisfying the
requirements:

(i ) the totality of time evolutions allowed by the constraints coincides
with the totality of sections y : !? ~ "1/ 3N + 1 whose first jet-extension j1 (y)
has image contained (j~); 

.

(ii) j~ is a fibered manifold over ~’’n+ ~, diffeomorphic to a sub-bundle

Using j1 and 03C0 to denote jet-extensions and projections respectively, the
stated properties are summarized into the commutative diagram

in which all columns denote fibrations, while h is an embedding, fibered
over the identity map.

In what follows, we shall restrict our attention to the class of cons-
traints indicated above. Following the standard usage, we shall denote
by t, g~, ... , q’~ a local coordinate system on ~’n + ~, and by t,

Vol. 55, n" l-t991.
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q 1, ..., qn, q 1, ...,~" the associated system on~(~+i). Also, we shall
denote by t, ql, ... , q", zl, ..., zr a local coordinate system on j~,
fibered over t, ql, ..., qn.
Keeping the same notation as in Section 1.1 for the coordinates on

7i(~3N+i)~ the various maps indicated in the diagram ( 1. 20) are then
summarized into the equations

Equivalently, equation ( 1. 22) may be replaced by the implicit represen-
tation

with rank ... , gn - r)I (a (q 1 ~ ...,~)!!=~-~-.
Given an arbitrary frame of reference J, the relativization process ( 1. 6),

restricted to the will be written

synthetically as

The further restriction to the submanifold h : ~ -~ j 1 (’~" + 1 ) is then

achieved in the obvious way, either by pulling back the through
equations ( 1. 22), or by subjecting them to the implicit conditions ( 1. 23).
For simplicity, we shall systematically identify j~ with its image

A(~)~7i(~+i). manifold "1/ n+ 1 will be called the configuration
space-time of the system ~; the will be called

the space of admissible velocities of ~; a section y : IR -+ f n + 1 will be said
to be consistent with the constraints or admissible if and only if the

corresponding jet-extension jl (y) has image contained in j~; the totality
of admissible sections of ’f’" n + 1 will be denoted by ~ (’~’n + 1).
With these definitions, it is easily seen that the totality of time evolutions

of !/ allowed by the constraints is in one-to-one correspondence with the
class of admissible sections through the composition 
As already pointed out, the previous framework embodies a large class

of constraints both of positional and of kinetic character, provided only
that they are two-sided and sufficiently smooth.

Annales de l’Institut Henri Poincaré - Physique theorique
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Concerning the effect of the inclusion ~ ~ j 1 (’~n + 1 ), the simplest situa-
tion occurs when the equality ~ = jl (~Y~’n+ 1) holds. In this case !/ is called
a holonomic system with n degrees of freedom ; any section y: IR -+ ’~’n + 1 is

automatically admissible, in agreement with the fact that the restrictions
imposed by the constraints are merely positional.
The strict inclusion ~ cjl (~’n+ 1) indicates, on the contrary, the pre-

sence of kinetic constraints, i. e. of restrictions placed directly on the
velocities of the points of the system.
Depending on the type of problem in study, these may include integrable

constraints, as well as truly non-holonomic ones, possibly of non-linear
nature: all cases will be dealt with on a unified basis in the subsequent
discussion.

This flexibility is reflected in the fact that, in general, the same physical
situation may admit several different geometrizations, each involving its
own choice of the the freedom relying on the
possibility of replacing arbitrary positional constraints with equivalent
integrable kinetic ones, and conversely.
As a result, in the case ~ c j 1 (~n + 1 ), the dimension of the manifold

~’n + 1 has no longer a definite physical meaning. In particular, the concept
of number of degrees of freedom of the system is now less immediate than
in the holonomic case, and has to be related with the dimension of the

slicing (if any!) induced in ’~’n + 1 by the equivalence relation

(b) The geometrical concepts discussed in Section 1.1 in the case of
free systems have obvious counterparts in the presence of constraints. Let
us examine the situation in detail:

(i ) the distance ( 1.1 ) determines a Riemannian structure on each fiber
t = const. in ’Y~’n + 1 or, what is the same, a scalar product for vertical
vectors in ’~’n + 1 (verticality being here understood with respect to the
fibration t : ’~n + 1 -~). Using equations ( 1. 3), ( 1. 21 a), ( 1. 24), we get the
explicit representation

with

(ii) both and ~i7i(~+1)~~+1 determine
their own vertical bundles, denoted respectively by 
and V ( j 1 (~~ +1)) c= T (/B (~Y~’n + 1 )) ~ The differentials of the maps

Vol. 55, n° 1-1991.
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h : sf -~.~1 (’~n+ 1) and jl (i) : :7B (~,~+ 1) -~j~ (’f’" 3N+ 1) are easily seen to pre-
serve this type of verticality, thus giving rise to injective immersions

In view of these, each fiber of v ~~j may be regarded as a vector
subspace of a corresponding fiber in (~+1)), and the latter, in turn,
as a vector subspace of a fiber in V(/B(~3N+i)~ both submanifolds j~

thus inherit from j 1 (’~3~ + 1 ) a natural operation of scalar
product for vertical vectors.

In local coordinates, introducing the differential forms

as well as their pull-backs

we have the representations

or explicitly

The effect of the injections ( 1. 27) is summarized into the identifications

Together with equations ( 1. 8), ( 1. 22), ( 1. 24), ( 1. 26), these yield the

representations

If, rather than the description ( 1. 22) for the submanifold j~ (~+1),
one adopts the implicit one (1.23), equation ( 1. 31 ) provides an identifica-
tion of the vertical bundle with the subspace (’~’n + ~ )) formed

Annades de I’Institut Henri Poincaré - Physique theorique
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by the totality of vectors X=X-(W). 
satisfying the conditions

The scalar product in v (A) is then expressed directly in terms of equation 
i

(1. (c) 35). For dynamical purposes, it is important to characterize the admissi-
ble accelerations of the s Y stem ~ in the presence 

of constraints.

Matters are quite straightforward in the holonomic 
case, the relevant .

space being then the second jet-bundle j2 C’f/" n+1)’ Indeed, in local jet-
coordinates, starting with equation ( 1. 24), and proceeding as in

Section 1. 1, is easily seen that every 
frame of reference J deterimnes a

corresponding representation of the points of j2 (1’ n+ 1) in terms of N-
tuples of relative accelerations, through 

a standard relativization process,

now given explicitly by .

Once again, j2 ("I’ n+1) is an affine bundle over j1 ("I’ n+ 1)’ modelled

Once again, j2(n+1) is U1 ("I’ n+ 1))’ and canonically isomorphic to aon the vertical bundle V(j1(n+1)), ano 
ca y 

submanifold of the tangent space 
through the usual identi-

fication

with .- defined by equation (1.28).Every section :j 1 ("Ií ,,+ 1) -+ j 2 ("Ií ,,+ 1)’ 
viewed as a vector field over

j1 
for the system . In local

this corresponds to the representation

with Zi=Zi(t, q1, ..., qn, q1, ..., tin).Exactly as in Section 1.1, every holonomic flow  is easily seen to
determine a corresponding verticalization 03C1:j2(n+1)~V(j1(n+1)),
sending each 

into the difference

the identification (1.39) being implicitly understood. 
At the same time, taking equations (1.24), (1.38) 

into account, the

flow Z may also be viewed in relative 
terms as an assignment
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expressing the admissible accelerations of the points of !/ with respect to
J in terms of (admissible) positions, velocities and time, admissibility
being considered here solely with respect to the restrictions placed by the
holonomic constraints.
Once again, as a consequence of equation ( 1. 42), one can easily recover

the identities

T denoting now the relative kinetic energy of T, restricted to the subman-

Conversely, for any given distribution ql, ..., qn, ..., qn)
of relative accelerations, the determination of a corresponding holonomic
flow Z relies on the solution of the (over-determined) system ( 1. 42) for
the unknowns Zh. In this respect, the compatibility of the equations is the
mathematical counterpart of the requirement of admissibility of the ai’s.
Moreover, for admissible ai’s, the system ( 1. 42) is algebraically equivalent
to the subsystem ( 1. 43), thus showing that the entire information on the
original distribution of accelerations is summarized into the knowledge of

the n quantities We shall return on this point in Section 3.q ~ ~ ~ 
aq k~ 

p

(~) When the kinetic constraints are explicitly accounted for, the space
of admissible accelerations for the system !/ does no longer coincide with
the entire jet-bundle j2 (’Y~n + 1 ), but is restricted to the subset

03C4(A)~j2(n+1) formed by the totality of vectors Y tangent to jet exten-
sions j1(03B3) of admissible sections 

Regarding both T(d) as subsets this

corresponds to the identification

In local coordinates, recalling equations ( 1. 29), ( 1. 39), we have the explicit
representation

From this, taking equations ( 1. 31 ) into account, it is easily seen that
’t (j~) has the nature of an affine bundle over j~, modelled on the vertical
bundle V (~). In the following we shall refer i (~) to local coordinates t,
qk, zA, zA, the functions ZA denoting the formal time derivatives of the 
(A =1, ..., r), defined in the usual way by the requirement

for all admissible sections 
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Exactly as it happens the choice of an arbitrary frame of
reference J gives rise to a representation of the points of 03C4(A) as N-
tuples of relative accelerations, the correspondence being now expressed
by the equations

with qk given by equation ( 1. 22).
A vector field Z on j~, with values in t (j~), will be called an effective

flow for the system ~. In local coordinates, taking equation ( 1. 44) into
account, we have the representation

With Z A = ZA (t, q1, ... , Z1, ... , Zr).
Once again, every effective flow Z : ~ ~ i (~) may be viewed in relative

terms as a prescription

assigning the admissible accelerations of the points of !/ in the frame of
reference J in terms of (admissible) positions, velocities and time, admissi-
bility being now understood with respect to the entire set of constraints.

Conversely, given any distribution zA) of relative acceler-
ations, the determination of a corresponding effective flow Z relies on the
solutions of the (over-determined) system ( 1. 47) for the unknowns ZA.
Once again, the compatibility of the equations is the mathematical counter-
part of the requirement of admissibility of the ai’s. When this is the case,
taking equation ( 1. 36) into account, the system ( 1. 47) is algebraically
equivalent to the subsystem

thus showing that the knowledge of the r quantities as

functions of t, qk, zA summarizes the whole information contained in the
original distribution of accelerations.

(~) The differentials of the maps /r~-~i(~,+i) and

7i (i): (1/ n+ 1) ~ j1 ("1/ 3N+ 1) give rise to injective immersions
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By abuse of language, we shall regard the latter as effective inclusions,
thus identifying the spaces ’t (A) and j2 (n+1) with their respective images.
Keeping the same notation as in Section 1.1, this means e. g. that, if

~Ji(~3N+i)~72(~3N+i) is any free dynamical flow for the system ~,
the difference makes sense at each x~A and for each 

[as well as at each and for each and is

automatically a vertical vector on j1(3N+1). In a similar way, if Z is
any holonomic flow on j1 (N+1), the difference Yx - Z x, YxE tx (A)
is a vertical vector on j1 (n+1), etc.

All this is easily rephrased in terms of the "verticalizers" ( 1.11 ), (1.41).
A straightforward argument shows that, at each the image space

is an affine space, modelled on the vertical space Vx (j~), i. e. a plane in

(~3N+i))~ not necessarily containing the origin, and parallel to the
subspace (~3~ +1)).
From this, one can easily infer the existence of an element of minimal

norm in namely, the unique element orthogonal
to Vx (~). The same reasoning also implies that Nx depends differentiably
on x, since both pZ (ix (~)) and do.

The unique section Z : d -~ ’L (~/) defined by the requirement

will be denoted by (Z), and will be called the orthogonal projeetion of
the flow Z on the submanifold j~.

Quite similar results apply to the image spaces

and

Z denoting any holonomic flow In addition to ~~ (Z), we
may therefore introduce two further orthogonal projections acting on
flows, namely

with an obvious meaning of the symbols.
We let the reader verify the composition rule

All this will playa central role in the construction of a dynamicat seheme
in the presence of constraints.
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2. REACTIVE FORCES

2.1. Mechanical determinism

In this section we shall examine the implementation of the principle of
determinism within the framework described in Section 1.

To this end, we shall consider once again a constrained system ~,
formed by N point particles ..., PN, moving under the action of
given active forces.
The geometrical set-up will therefore include:
(i) the dynamical space-time ’f’" 3N + 1 associated with ~, with all the

attributes indicated in Section 1.1 (vertical metric, inertial flow, etc.);
(ii ) the fiber bundle 03C0 : A ~  n+1, summarizing the geometrical and

kinematical restrictions imposed by the constraints, and related to the
dynamical space-time ’f’" N+ 1 by the fibered map

(iii ) the (unconstrained) dynamical flow

expressed as the sum of the inertial flow Zo and of the active force F in
accordance with equation (1.18).
Within this framework, the idea of mechanical determinism may be

identified with the requirement that, for each choice of the initial data
consistent with the constraints (i. e. for each the subsequent evolu-
tion of the system - expressed as a corresponding admissible section

Y E ~f (’~’n+ 1) - be uniquely determined.
According to the discussion in Section 1.2 this is automatically accom-

plished through the introduction of a suitable effective flow Z on ~. More
precisely, we may say the implementation of the principle of M7M 
the presence of constraints is mathematically equivalent to the introduction

rule ~ assigning to dynamical flow Z a corresponding effective
flow Z = x (Z), expressing in a frame independent way the equations of
evolution of the system.
Such a rule will be called a constitutive characterization of the constraints.

As it is clear from the previous discussion, the latter is not included in
the geometrical set-up described above, but represents an additional piece
of information, accounting for the influence of the constraints on the
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dynamics of the system, and therefore depending explicitly on the physical
properties of the devices involved.

This viewpoint is formalized by considering the difference

between the effective dynamical flow and the original, unconstrained one,
evaluated at each and therefore viewed as a field on A with values

in T (jl (~3N+ 1))~
For each choice of the constitutive characterization ~, the field (2. 3) is

automatically vertical. Therefore, in any frame of reference J, it determines
an N-tuple of vectors Ci, ..., applied in the points ..., PN, on
the basis of the identifications

the notation being implicitly understood [see the

analogous equation (1.19)].
The interpretation of the vectors as reactive forces follows at once

from equations (2.2), (2.3). In view of these, in fact, the effective flow
Z = x (Z) may be expressed as

thus showing that, in the presence of constraints, the physical forces acting
on the points of !/ are described by the sum F+(p, rather than by F
alone.

By abuse of language, the field cp itself will be called the reactive force.

2.2. Ideal constraints

Within the scheme indicated in Section 2.1, we shall now describe a

special constitutive characterization, essentially equivalent to Gauss’ criter-
ion of minimal constraint ([2], [7], [8], [9]).
As we shall see, in addition to being geometrically simple, the latter is

powerful enough to cover a wide variety of applications, and to provide a
natural extension of Lagrangian Dynamics to arbitrary non-holonomic
systems, independently of any assumption of linearity of the constraints.
To start with we observe that, in view of equation ( 1. 50), no matter

how one chooses the constitutive characterization 3(, the reactive force

cp = x (Z) - Z associated with an arbitrary unconstrained dynamical flow
Z is necessarily subject to the inequality
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since, by definition, x itself belongs to ix (~).

DEFINITION 2.1. - A set of constraints is said to be ideal if and

only if the equality sign holds identically in equation (2 . 6), i. e. if the

corresponding constitutive characterization x satisfies

for all 
Note 2. l. - Recalling the connection between the vector cp and the

reactive forces ~1, ... , acting on the points of the system, as well as
the definition ( 1. 9) of the scalar product for vertical vectors, it may be
seen that the requirement (2 . 7) is indeed equivalent to the original formul-
ation of Gauss’ Principle of minimal constraint:

"For a natural system subject to ideal constraints, the actual motion under
the action of given external forces is selected among the totality of the
kinematically admissible evolutions, as the one for which, at any instant t,
the quantity

attains a ’ minimum" [2].
With the terminology introduced o at the end o of Section 1. 2, the condition

(2. 7) may be " expressed o more " synthetically as

being the orthogonal projection defined through equation (1. 50).
Also, in view of equation ( 1. 51 ), the correspondence Z -+ X (Z) may be

factorized into two subsequent steps, the first one

yielding an intermediate holonomic flow Z on jl (’~n+ ~) in terms of the
original free flow Z and of the holonomic constraints placed on the system,
and the second one

expressing the effective flow Z = x (Z) in terms of the holonomic one, and
the additional kinetic constraints.

In this connection, it is also worth noticing that, by the very definition
of the projections ~~1 ~~n+ l and ~~, both steps (2 . 9 a), (2 . 9 b) are separ-
ately characterized by a corresponding "minimality criterion" of Gauss’
type. We shall return on this point in Section 3.

In terms of reactive forces, the characterization (2. 8) is mathematically
equivalent to the orthogonality condition i.e.
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Now, as pointed out in Section 1. 2 [equations (1.33), (1.34), ( 1. 37)],
the most general vector may be written locally as

with the components X~ subject to the restrictions

mathematically equivalent to the representation

for arbitrary XA, A = 1, ..., r.
The content of equation (2.10) is therefore summarized into the relation

for all choices of Xk consistent with equations (2.11~), (2.11 b).
In any frame of reference V, recalling equations ( 1. 24), (2 . 4), equation

(2.12) may be given the more expressive form

Concerning the representation (2.13) of the principle of minimal cons-
traint, some comments are in order. First of all, from equation (2.13) one
can easily recover the traditional principle of virtual work, by performing
the formal substitution Xk -+ and defining the virtual displacement

... , of the system !/ on the basis of the equations

with the subject to the restrictions coming from equations (2.11 a),
(2.11~), namely

With this definition - which yields back the standard one in the holon-
omic and linear non-holonomic cases, and agrees with Chetaev’ one in
the more general case ([3] to [6]) - equation (2.13) takes the familiar form
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for any virtual displacement of the system ("principle " of virtual work").

Following § a slightly different procedure, one " might equally well intro-

duce " the virtual velocities

and then regard equation (2.13) as requiring the vanishing of the virtual
of the reactive forces, for any choice of the consistent

t

with equations (2.11 a), (2.11 b) .

The previous discussion points out the complete equivalence between
Gauss’ principle of minimal constraint and the principle of virtual work,
provided one embodies Chetaev’ condition (2.15) into the definition of
the virtual displacements. -

In this respect, one might therefore choose to reverse the logical order,
by assuming the principle of virtual work as the starting point for an
axiomatic characterization of the class of ideal constraints, and then
proviug Gauss’ minimality criterion as an ordinary theorem.
As a matter of fact, this is precisely the plan of presentation almost

universally followed in the literature (see e. g. [2]). Such an approach,
however, suffers from the major drawback that - with the exception of
the holonomic and linear non-holonomic cases - the concept of virtual
displacement as described by equations (2.14), (2.15) has no intrinsic
geometrical meaning, and has to be accepted on an a priori basis, the
ultimate motivation being essentially that, in this way, equation (2.16)
reproduces exactly the content of equation (2.13).

In this respect, therefore, the line of approach based on Definition 2.1
is definitely more natural.
An alternative "differential" formulation of the principle of minimal

constraint, more directly related to the geometrical set-up developed so
far, is obtained by introducing a new class of "virtual" objects, namely
the virtual variations of the velocities of the system at any point 

These - not to be confused with the virtual velocities (2 .17) - are defined
according to the equations

with the quantities 8~ subject to the conditions
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mathematically equivalent to

for arbitrary ðZA [see the analogous equations (2 .11 a), (2 . 11 b)].
With this definition, equation (2.13) may now be written in the equiva-

lent form

for any virtual variation ..., 

Of course, giving up the principle of virtual work (2.16) in favour
of the (almost identical) formulation (2.20) may look a rather poor
improvement, suggested mainly by personal taste.

This is indeed the case as long as one restricts his attention to the class
of holonomic and linear non-holonomic systems.
However, as pointed out in the previous discussion, as soon as one tries

to improve the applicability of the scheme, by extending it to a wider
class of systems, the concept of virtual displacement loses most of its
effectiveness, due to the lack of a direct geometrical interpretation for the
Chetaev condition (2.15) in the presence of non-linear kinetic constraints.
The quantities (2.18), on the contrary, are always perfectly meaningful,

as differences - up to higher order terms - between pairs of velocity distri-
butions (v l’ ... , and (v + 03B4v1, ..., VN + bvN), both consistent with the
constraints, and issuing from the same spatial configuration, at the same
instant.

In this respect, the concept of virtual variation of the velocities is easily
recognized as the natural "infinitesimal" counterpart of the concept of
vertical vector on j~, thus confirming that equation (2.20) is in fact
identical to the original equation (2.10).
To sum up we conclude that, unlike the principle of virtual work, the

analogous principle based on equation (2.20) may systematically be used
in place equation (2. 7) as an equivalent, fully satisfactory definition of the
class of ideal constraint, without any loss in generality or difficulty of
interpretation.

3. THE EQUATIONS OF MOTION

3.1. Intrinsic formulation

In this Section, we complete our analysis, by discussing the equations of
motion for a material system // subject to ideal constraints.
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For simplicity, we shall systematically stick to the representation (2. 20)
of the constitutive characterization, regarding the frame of reference J as
given, and denoting by F1 and respectively the active forces (including
the inertial effects, when required), and the reactive ones.

In other words, we shall regard the accelerations of the points of !/
relative to J as determined by the equations

with the satisfying the conditions

for any virtual variation of the velocities.

By equations (3. 1), (3 . 2) we obtain the symbolic equation

Making use of the parametric representation ( 1. 22) for the submanifold
~/, the latter may be written as:

for arbitrary i. e.

[The same result could have been obtained more directly by a straightfor-
ward comparison of the equations of motion (3 .1 ) with the orthogonalitity
condition (2.10)].

Equation (3 . 4) determine a unique effective flow Z : ~ -+ ’t (j~) for the
system ~. This conclusion, already implicit in equation (2. 8) is most

easily verified by inserting the content of equation (3.4) in the result
(1.48). Denoting by aAB the inverse of the matrix aAB, we obtain the
explicit representation

with
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In a more traditional language, the previous arguments show that, if
we put together equations (3 . 4) and the equations

coming from the representation ( 1. 22) of the constraints, the resulting
system of n + r first order differential equations for the unknowns qi = qi (t),

gives rise to a well posed Cauchy problem, in agreement with
the requirement of mechanical determinism.

3.2. Connection with the Lagrangian formalism

An important feature of the dynamical set-up discussed above is that,
in the study of the problem of motion, the effect of the holonomic
constraints may be singled out, and summarized into a constitutive pre-
scription Z -+ Z, assigning to each free dynamical flow Z a corresponding
holonomic flow Z on i 1 (n+1).
The subsequent evaluation of the effective flow Z : j~ -~ t (j~) then

relies entirely on the knowledge of Z, and involves only the part of the
diagram ( 1. 20) referring to the kinetic constraints, namely

This aspect, already pointed out in Section 2 . 2 [equations (2 . 9 a),
(2 . 9 b)], is easily recovered, starting once again with the symbolic equation
(3 . 3), but considering separately the effects of the restrictions on the 03B4vi’s
coming from the positional constraints and from the kinetic ones.
At the first stage (positional constraints only), the definition (2.18)

requires

for arbitrary Together with with equation (3 . 3), this yields the condi-
tions

written more synthetically as
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with the identifications

The fact that equations (3.8) do indeed determine a unique holonomic
flow on j 1 (~’,~ + 1 ) is well known, and is, in any case, a straightforward
consequence of equations (1.43).

Denoting by ahk the inverse of the matrix we have the explicit
representation

with

The same conclusion may be stated in more traditional terms, by
observing that, in view of the identities

valid all over~(~~+.) [with!!.. denoting the formal time derivative overL ~

7i (~H+i) ? the determination of the integral curves of the flow (3.11 ~) is
mathematically equivalent to the solution of the Lagrange equations

Of course, all this is nothing but a re-statement of the fact that, as far
as the holonomic constraints are concerned, Gauss’ criterion of ideality is
completely equivalent to the principle of virtual work.

Pursuing the analogy with Lagrangian Dynamics, we shall now embody
the holonomic part of the constraints into the formalism, starting at the
outset with the configuration manifold 1/ n + 1 as the natural environment
for the study of the system ~, and summarizing into the holonomic flow
Z the global dynamical effect resulting from the composition of the active
interactions, and of the reactive forces due to the holonomic constraints
themselves.
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Among other advantages, a useful aspect of this line of approach is
that the geometrical set-up is now completely independent of the value of
N, thus allowing a straightfoward extension of the formalism to mechanical
systems with a "finite number of degrees of freedom", independently of
any restriction on the finiteness of the number of meterial points.

In the presence of kinetic constraints, taking the definitions (3.10), as
well as the representation (2.18) of the into account, the content of
the symbolic equation (3 . 3) may be rephrased as

in which the bqk’s are now subject to the admissibility requirements
expressed by equations (2 .19 a) or (2 .19 b), depending on the type of
representation adopted.

In particular, in the alternative (2 .19 a) - corresponding to the parame-
tric representation ( 1. 22) for the submanifold Aj1(n+1)-the condi-
tion (3 . 14) yields back equations (3 . 4), now written more simply as

Making use of the identities (3 . 12) we conclude that, in the case in study,
the equations of motion for the system ~ - expressed in the form of n + r
first order differential equations for the unknowns 

be given the explicit representation

consisting of r linear combination of the Lagrange equations (3.13),
completed with the the representation ( 1. 22) of the restrictions placed by
the kinetic constraints.
The geometrical meaning of the previous equations, as well as the well-

posedness of the associated Cauchy problem, have already been discussed
in Section 3 . 1.

On the other hand, if we stick to the implicit representation (1.23) for
the submanifold .91, the symbolic equation (3.14), and the restriction
(2 .19 b) on the can be put together by means of the method of
Lagrange multipliers, thus giving rise to n independent relations

with rank" a (gl, ..., (ql, ... , qn) ~ - n - r (see section 1 .2).
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Exactly as it happened for equation (3.9), equations (3.16) too deter-
mine a unique dynamical flow on j1 (’f’" n + 1)’ now expressed as the sum

Z denoting the holonomic flow (3 .11 a), (3.11 b).
[As a matter of fact, the notation is slightly abusive, the effective flow

Z associtated with !/ being in fact identical to the restriction of the field
(3.17) to the submanifold j~.]

Collecting all previous results, and making use of the identities (3 .12),
we obtain a representation of the equations of motion, in the form of a
system of 2 n - r equations

for the unknowns ~,~ _ ~,~ (t).
The scheme resembles very closely the standard Lagrangian one, the n

quantities ~ ~,6 playing the role of the Lagrangian components of
the reactive forces due to the kinetic constraints.

Concerning the nature of the system (3.18), some comments are in
order.

In the first place, the determination of the multipliers ~,a relies on the
requirement that the dynamical flow (3.17) be effectively tangent to the
submanifold j~. In terms of the implicit representation ( 1. 23), this gives
rise to the conditions

everything being evaluated on the hypersurface g6 = 0

The same conclusion may be obtained in a more traditional way, as

the requirement of algebraic consistency of the system originating from
equations (3 .18), with each equation ~=0 replaced by the corresponding

formal time derivative 2014=0.
dt

In any case, due to the positive-definiteness of the matrix and to

the condition on the rank of the Jacobian (~g03C3), equations (3.19) can beq ( )

solved uniquely for the 03BB03C3’s as functions of t, q, q. Introducing the notation
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we have the result

Together with equation (3.17), this yields a description of the effective
flow Z in the presence of kinetic constraints in the explicit form

involving only the holonomic flow 2 and the representation ( 1. 23) of the
constraints themselves.
As a check of inner consistency, let us consider in particular the case

of a holonomic system ~, and let us assume that the associated holonomic
flow Z (now identical with the effective flow) admits a first integral of the
form f (t, q, (/) = 0).
At the same time, let ~’ be a second system having the same holonomic

flow Z on j~ (~Y~’n+ 1) and subject to the const.,
imposed now as an a priori constraint, of non-holonomic type.

Then, in view of equation (3.20), the effective flow Z associated with
, satisfies

in agreement with the idea that imposing a first integral as an a priori
constraint should have no effect on the dynamical behaviour of the system.

Notice that, although entirely obvious, the previous conclusion can be
effectively verified only due to the ability of the formalism to deal with
arbitrary kinetic constraints, independently of any assumption of linearity.
The same ability stays also at the basis of another qualifying property

of the present scheme, namely the fact that, unlike the more traditional
one, it handles all types of constraints - including the non-holonomic
ones - in a truly geometrical way, focussing attention on the submanifold
Aj1 ("1/ n + 1)’ independently of the specific choice of the functions invol-
ved in its representation.
As a concluding remark, we shall finally examine a special class of

non-holonomic systems, namely those systems for which the associated
holonomic flow Z is derivable from a Lagrangian function in

the usual way.
Let

denote " the corresponding £ Hamiltonian.
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Then, taking the kinetic constraints into accounts, and denoting by Z
the resulting effective flow (3.17), the evolution law for H is given by

use having been made of the identity

In particular, if all funetions gP happen to be homogeneous of the same

degree P with respect to the qk’s - namely qk~g03C1 ~qk=pgp, p~R+,

p = 1, ... , n - r - equativn (3 . 21 ) reduces ta

whence Z(H)=2(H) on j~.
This shows that, for the given class of systems, the evolution of the

Hamiltonian H is not affected by the imposition of homogeneous kinetic
constraints of arbitrary degree.
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