Consequences of the validity of Huygens' principle for the conformally invariant scalar wave equation, Weyl's neutrino equation and Maxwell's equations on Petrov type II space-times
Annales de l'I.H.P. Physique théorique, Tome 54 (1991) no. 1, pp. 9-16.
@article{AIHPA_1991__54_1_9_0,
     author = {Carminati, J. and Czapor, S. R. and McLenaghan, R. G. and Williams, G. C.},
     title = {Consequences of the validity of {Huygens'} principle for the conformally invariant scalar wave equation, {Weyl's} neutrino equation and {Maxwell's} equations on {Petrov} type {II} space-times},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {9--16},
     publisher = {Gauthier-Villars},
     volume = {54},
     number = {1},
     year = {1991},
     mrnumber = {1102968},
     zbl = {0729.35075},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1991__54_1_9_0/}
}
TY  - JOUR
AU  - Carminati, J.
AU  - Czapor, S. R.
AU  - McLenaghan, R. G.
AU  - Williams, G. C.
TI  - Consequences of the validity of Huygens' principle for the conformally invariant scalar wave equation, Weyl's neutrino equation and Maxwell's equations on Petrov type II space-times
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1991
SP  - 9
EP  - 16
VL  - 54
IS  - 1
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPA_1991__54_1_9_0/
LA  - en
ID  - AIHPA_1991__54_1_9_0
ER  - 
%0 Journal Article
%A Carminati, J.
%A Czapor, S. R.
%A McLenaghan, R. G.
%A Williams, G. C.
%T Consequences of the validity of Huygens' principle for the conformally invariant scalar wave equation, Weyl's neutrino equation and Maxwell's equations on Petrov type II space-times
%J Annales de l'I.H.P. Physique théorique
%D 1991
%P 9-16
%V 54
%N 1
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPA_1991__54_1_9_0/
%G en
%F AIHPA_1991__54_1_9_0
Carminati, J.; Czapor, S. R.; McLenaghan, R. G.; Williams, G. C. Consequences of the validity of Huygens' principle for the conformally invariant scalar wave equation, Weyl's neutrino equation and Maxwell's equations on Petrov type II space-times. Annales de l'I.H.P. Physique théorique, Tome 54 (1991) no. 1, pp. 9-16. http://www.numdam.org/item/AIHPA_1991__54_1_9_0/

[1] J. Carminati and R.G. Mclenaghan, Determination of all Petrov Type N Space-Times on which the Conformally Invariant Scalar Wave Equation Satisfies Huygens' Principle, Phys. Lett., Vol. 105 A, 1984, pp. 351-354. | MR

[2] J. Carminati and R.G. Mclenaghan, An Explicit Determination of the Petrov Type N Space-Times on which the Conformally Invariant Scalar Wave Equation Satisfies Huygens' Principle, Ann. Inst. Henri Poincare, Phys. Théor., Vol. 44, 1986, pp. 115- 153. | Numdam | MR | Zbl

[3] J. Carminati and R.G. Mclenaghan, An Explicit Determination of the Space-Times on which the Conformally Invariant Scalar Wave Equation Satisfies Huygens' Principle. Part II: Petrov Type D Space-Times, Ann. Inst. Henri Poincaré, Phys. Théor., Vol. 47, 1987, pp. 337-354. | Numdam | MR | Zbl

[4] J. Carminati and R.G. Mclenaghan, An Explicit Determination of the Space-Times on which the Conformally Invariant Scalar Wave Equation Satisfies Huygens' Principle. Part III : Petrov Type III Space-Times, Ann. Inst. Henri Poincare, Phys. Théor., Vol. 48, 1988, pp. 77-96. | Numdam | MR | Zbl

[5] P. Günther, Zur Gültigkeit des Huygensschen Princips bei partiellen Differentialgleichungen von normalen hyperbolischen Typus, S.-B. Sachs. Akad. Wiss. Leipzig Math.-Natur K., Vol. 100, 1952, pp. 1-43. | MR | Zbl

[6] P. Günther, Ein Beispiel einer nichttrivalen Huygensschen Differentialgleichungen mit vier unabhängigen Variablen, Arch. Rational Mech. Anal., Vol. 18, 1965, pp. 103-106. | MR | Zbl

[7] P. Günther, Eigine Sätze über Huygenssche Differentialgleichungen. Wiss. Zeitschr. Karl Marx Univ., Math.-Natu. Reihe Leipzig, Vol. 14, 1965, pp. 498-507. | MR | Zbl

[8] P. Günther and V. Wünsch, Maxwellsche Gleichungen und Huygenssches Prinzip I, Math. Nach., Vol. 63, 1974, pp. 97-121. | MR | Zbl

[9] J. Hadamard, Lectures on Cauchy's Problem in Linear Partial Differential Equations, Yale University Press, New Haven, 1923. | JFM

[10] H.P. Künzle, Maxwell Fields Satisfying Huygens' Principle, Proc. Cambridge Philos. Soc., Vol. 64, 1968, pp. 770-785.

[11] R.G. Mclenaghan, An Explicit Determination of the Empty Space-Times on which the Wave Equation Satisfies Huygens' Principle, Proc. Cambridge Philos. Soc., Vol. 65, 1969, pp. 139-155. | MR | Zbl

[12] R.G. Mclenaghan, On the Validity of Huygens' Principle for Second Order Partial Differential Equations with Four Independent Variables. Part I : Derivation of Necessary Conditions, Ann. Inst. Henri Poincaré, Vol. A 20, 1974, pp. 153-188. | Numdam | MR | Zbl

[13] R. G McLENAGHAN and T.F. Walton, An Explicit Determination of the Non-self-Adjoint Wave Equations on Curved Space-Time that Satisfy Huygens' Principle. Part I : Petrov Type N Background Space-Times, Ann. Inst. Henri Poincare, Phys. Théor., Vol. 48, 1988, pp. 267-280. | Numdam | MR | Zbl

[14] R. G McLENAGHAN and G.C. Williams, An Explicit Determination of the Petrov Type D Space-Times on which Weyl's Neutrino Equation and Maxwell's Equations Satisfy Huygens' Principle, Ann. Inst. Henri Poincare, Phys. Théor. (to appear). | Numdam | Zbl

[15] B. Rinke and V. Wünsch, Zum Huygensschen Prinzip bei der skalaren Wellengleichung, Beitr. zur Analysis, Vol. 18, 1981, pp. 43-75. | MR | Zbl

[16] V. Wünsch, Über selbstadjungierte Huygenssche Differentialgleichungen mit vier unabhängigen Variablen, Math. Nachr., Vol. 47, 1970, pp. 131-154. | MR | Zbl

[17] V. Wünsch, Maxwellsche Gleichunge und Huygenssches Prinzip II, Math. Nachr., Vol. 73, 1976, pp. 19-36. | MR | Zbl

[18] V. Wünsch, Cauchy-problem und Huygenssches Prinzip bei einigen Klassen spinorieller Feldgleichungen I, Beitr. zur Analysis, Vol. 12, 1978, pp. 47-76. | MR | Zbl

[19] V. Wünsch, Cauchy-problem und Huygenssches Prinzip bei einigen Klassen spinorieller FeldgleichungenII, Beitr. zur Analysis, Vol. 13, 1979, pp. 147-177. | MR | Zbl

[20] V. Wünsch, Hugens' principle on Petrov type-D space-times, Ann. Physik, Vol. 46, 1989, pp. 593-597. | MR | Zbl