@article{AIHPA_1990__53_3_343_0, author = {Irac-Astaud, M.}, title = {Perturbation around exact solutions for nonlinear dynamical systems : application to the perturbed {Burgers} equation}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {343--358}, publisher = {Gauthier-Villars}, volume = {53}, number = {3}, year = {1990}, mrnumber = {1084884}, zbl = {0737.35100}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1990__53_3_343_0/} }
TY - JOUR AU - Irac-Astaud, M. TI - Perturbation around exact solutions for nonlinear dynamical systems : application to the perturbed Burgers equation JO - Annales de l'I.H.P. Physique théorique PY - 1990 SP - 343 EP - 358 VL - 53 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1990__53_3_343_0/ LA - en ID - AIHPA_1990__53_3_343_0 ER -
%0 Journal Article %A Irac-Astaud, M. %T Perturbation around exact solutions for nonlinear dynamical systems : application to the perturbed Burgers equation %J Annales de l'I.H.P. Physique théorique %D 1990 %P 343-358 %V 53 %N 3 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPA_1990__53_3_343_0/ %G en %F AIHPA_1990__53_3_343_0
Irac-Astaud, M. Perturbation around exact solutions for nonlinear dynamical systems : application to the perturbed Burgers equation. Annales de l'I.H.P. Physique théorique, Tome 53 (1990) no. 3, pp. 343-358. http://www.numdam.org/item/AIHPA_1990__53_3_343_0/
[1] Nonlinear Partial Differential Equations in Engineering, Academic Press, Inc., Vol. 18, 1965, p. 208. | MR | Zbl
,[2] Elements of Partial Differential Equations, McGraw-Hill, New York, 1985. | MR
,[3] A Perturbation Expansion for the Zakharov-Shabat Inverse Scattering Transform, Siam J. Appl. Math., Vol. 31, 1, 1976, p. 121; , The Korteweg-DeVries Equation: A Survey of Results. Siam. Rev., Vol. 18, 3, 1976, p. 412. | MR | Zbl
,[4] Commun. Pure Appl. Math., Vol. 3, 201, 1950; , Quart. Appl. Math., Vol. 9, 225, 1951. | MR | Zbl
,[5] Proceedings du XVIIe Colloque International sur la Théorie des Groupes en Physique, 1988, Sainte Adèle, Québec.
,[6] J. Math. Phys., Vol. 9, 1968, p. 1202. | Zbl
,