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ABSTRACT. - It is shown that the excess negative charge of a diatomic
molecule consisting of N electrons and two dynamic nuclei with charges
Zi and Z2 is bounded above by a constant times the total nuclear charge.
The nuclear motion is completely unrestricted; and the kinetic energy of
nuclei with realistically finite mass is included in the Hamiltonian.

RESUME. 2014 Nous montrons que la charge negative en exces d’une
molecule diatomique formée de N electrons et de deux noyaux mobiles de
charges Z1 et Z2 est bornee supérieurement par un facteur proportionnel
a la charge nucleaire totale. Le mouvement des noyaux est sans contraintes,
et nous incluons un terme d’energie cinetique des noyaux avec une masse
finie.
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I. INTRODUCTION

For atomic systems, it is well-known that all positive ions are so stable
that they have infinitely many bound states ([1]-[4]), but that extremely
negative ions are unstable with respect to expulsion of at least one electron.
The first proof of the latter result was given in 1982, independently by
Ruskai [5] and by Sigal [6]. Subsequently, Sigal [7], Lieb [8], and others
([9]-[ 11 ]) found improved estimates on the maximum number of electrons
that a nucleus could bind. For molecular systems, it was shown ([5], [8])
that similar results hold in the fixed nuclei, or infinite mass, approximation.
However, these proofs are not valid in the more realistic case of nuclei
with finite mass.

Moreover, when the nuclei are not fixed, the situation for positive ions
is quite different; a molecule will be unstable if the nuclear charges are
much greater than the total electronic charge. A proof of this phenomenon
was recently given [12] for diatomic molecules, which are unstable with
respect to breakup into two atomic subsystems when both nuclear charges
are large compared to the number of electrons; an alternate proof has
recently been reported by Solovej [13]. In this paper it is shown that the
techniques developed in [12] for positive molecular ions can also be used
to obtain a bound on the excess negative charge of a diatomic molecule
in which the nuclei are allowed to be completely dynamic.

Let H be the Hamiltonian for a diatomic molecule with N electrons,
nuclear charges Z1 and Z2, and nuclear masses Mk satisfying Mk = Zk Mo,
where Mo is constant. Our goal is to prove the following.

THEOREM. - For every pair of integers ZI and Z2, there exists a constant
N~ &#x3E; 0 such that whenever the number of electrons then H has no

discrete spectrum. Furthermore, NC  11 (Z 1 + Z2) for some constant ~ .
The proof uses the localization or "geometric" techniques employed in

other bound state problems; these techniques are discussed in Cycon
et al. [14]. In the region where at least one electron is far from both

nuclei, the previous atomic results can be applied to an effective charge
20142(Zi+Z~); when every electron is as close to one nucleus as the nuclei
are to each other, the partition of unity developed in [12] for the positive
molecules can be used, provided one can estimate the energy cost of
adding excess electrons to an atom and confining this subsystem to a ball
of finite radius. Such estimates can be obtained in several ways; a modifica-

tion of the localization proofs ([5]-[7], [14]) that an atom cannot bind too
many electrons is presented here. Finally, in order to control the localiza-
tion errors, one must also show that the nuclei and/or electrons cannot
be confined to a very small region.
Although the assumption Mk = Zk Mo is not absolutely necessary, control

of the localization error requires that the nuclear masses grow at least as
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399LIMIT ON THE EXCESS NEGATIVE CHARGE

fast as the charges. In the case of small nuclear charges, one must
also assume that the proton/electron mass ratio has a realistic value of
Mo/m ~ 1,000 to insure that the proof is valid for all homonuclear mole-
cules. Very unbalanced charge ratios, i. e. Z2, can only be handled
when at least one of the charges is relatively large [see (35) and discussion
following]. There are special subtleties when the smaller charge is 1, so
that the result may not be applicable to a few practical situations, e. g.,
HF (hydrogen fluoride).
The bounds presented at the end of section III are obviously far from

optimal; Lieb [8] showed that if the nuclear kinetic

energy is omitted from the Hamiltonian. Nevertheless, this proof is still
of some interest for several reasons. First, no other method has yet been
successfully extended to the case of completely dynamic nuclei; our proof
indicates that the kinetic energy of the nuclei does not play a fundamental
role, but merely presents a technical complication. Second, the proof
closely follows physical intuition. Finally, it illustrates the important role
that differences in threshold energy play in the analysis of molecular
problems. Although this effect arose in our earlier work on positive
molecular ions [12], we were unable to effectively estimate the threshold
energy difference to obtain improved bounds in that case. It should be

emphasized that our estimates are poor not because of the localization
error arising from the nuclear kinetic energy, but because we break con-
figuration space into many regions on each of which the effective potential
is estimated rather crudely by a worst case approximation. The key to
improved results using localization techniques is better potential theory
for multi-center problems.
We now introduce some notation. Let Ri 1 and R~ denote the positions

of the two nuclei, ~(/= 1...N) the coordinates of the electrons, m and
Mk (k =1, 2) the electron and nuclear masses respectively, and Zk (k =1, 2)
the nuclear charges. After removal of the center of mass motion, we choose
as coordinates and Xi (i =1... N) where § ~ - RN is
the position of the k-th electron relative to the nuclear center of mass

RN = . We also let R = I R12| denote the internuclear dis-

tance, and

and

[Note that the definition of R used here differs from that in [12] by a
factor of (1 +X).] The Hamiltonian relative to the center of mass can be

Vol. 52, n° 4-1990.



400 M. B. RUSKAI

written as

where A; denotes and|03A3 Vi 12 is referred to as the Hughes-Eckart

term. Recall that H acts on a suitable domain D of smooth, square-
integrable functions which are antisymmetric in the electron coordinates,
(x;, where si denotes spin (which does not play an essential role in
what follows). It will occasionally be useful to distinguish between the
charge ratio 03C9=Z1/Z2 and the mass ratio (even though the
assumption Mk=ZkMo implies 03C9=03BB) and we always assume 03C9&#x3E; 1 and
~&#x3E; 1, in particular, Zl always denotes the larger charge.

It follows from the limits on negative molecular ions that when the
number of electrons N is large, the HVZ (Hunziker-van Winter-Zhislin)
theorem ([3], [4]) reduces to

E* (N, M~~ Zi)]
=inf { cress (N, Zi)] ~ = Eo (N -1, Mi, (2)

where cr [H] and 6ess [H] denote the spectrum and essential spectrum of
the Hamiltonian H and Eo [H] and E* [H] denote their respective infimums.

Section II contains a technical lemma needed to estimate the price of
adding an electron to an already overcrowded nucleus, a description of
some partitions of unity, and a few other useful facts. Section III contains
the heart of the proof. Because this approach cannot yield optimal results
in any case, we present a pedestrian argument which follows physical
intuirion, rather than trying to optimize each step. Section IV briefly
discusses possible refinements, including an extension to bosonic systems.

II. PRELIMINARIES

A partition of unity is a set of functions {Fk} such that 03A3 Fk =1. For
k

a Hamiltonian H,

Annales de l’Institut Henri Poincaré - Physique théorique



401LIMIT ON THE EXCESS NEGATIVE CHARGE

and the localization error associated with such a partition is

where L indicates a sum over all gradients for which a corresponding

Laplacian (possibly including the Hughes-Eckart term) appears in the
Hamiltonian, and c, denotes the corresponding coefficient.

Before stating our first result, we recall that the Hamiltonian for an
atom with nuclear charge Z, nuclear mass M, and N electrons has the
form

where xi denotes the position of the i - th electron relative to the nucleus.
Let Nat (Z) denote the maximum number of electrons an atom of charge
Z can bind and E* (Z) = inf E* (N, Z)]. Then

N

Lieb [8] showed (for M = ~) that Nat (Z) _ 2 Z; and others ([9], [ 11 ])

showed lim supNcat
(Z) =1. The following two additional observation

z -. ~ Z

about atomic systems will be useful in studying molecules.

LEMMA 1. - If N &#x3E; 2 (Z1 + Z2), there are positive constants a such
that

Proof - The first inequality was established in [ 12] for arbitrary N (by
a simple concavity argument). To establish the second, let
N# = Nat (Zi + Z2) and note that

and

then apply the first inequality with + Z2).

LEMMA 2. - If supp ‘x I  A }, then

Vol. 52, n° 4-1990.



402 M. B. RUSKAI

Proo, f : - Let E &#x3E; 0 be arbitrary, and (k = 0, ..., N) denote a
partition of unity with the following properties:

(a) Jk (k =1, ..., N) is symmetric with respect to interchange of coordi-
nates of particles in the set {1...~- 1, k + 1...N}; Jo is symmetric in
coordinates of all particles.

The existence of such a partition follows from the work of Ruskai [5] and
Sigal ([6], [7]) on non-existence of highly negative ions; for details see [7]
and [14]. (Inclusion of the Hughes-Eckart term in (5) implies that /N
should be replaced by N~ 1 ~2~ + ~ 1 Jp~ in (9), but p can be arbitrarily large, so
that 1/p - 0. Moreover, Simon ([7], [14]) has shown that 4 IN can actually
be replaced by N" where 6 &#x3E; 0 can be arbitrarily small.) Note that it
follows immediately from (b) and (c) that

The proof now proceeds by induction, i. e., for N &#x3E; No

provided that s  y and

Annalc..s de l’In,stitut Henri Poincaré - Physique théorique



403LIMIT ON THE EXCESS NEGATIVE CHARGE

Similarly, there is a constant o  0 such that

provided that

It can be verified that there are positive constants a and fi, such that ( 11 )

and ( 12) are satisfied if p"’=201420142014201420142014201420142014
(N - M) (N -1 )’

and E=Z-I/18. When M = 0, 1 a similar argument holds without the
induction step; therefore, the proof is complete.
We begin our analysis of molecular systems by defining a special type

of cluster decomposition. Let a2) be a partition of {1...N} into
two disjoint sets (one of which may be empty). The total system can be
partitioned into two clusters corresponding to the first nucleus together
with those electrons for which i E ri1 and the second nucleus together with
those electrons for which The cluster Hamiltonian Ha is given by
Ha = HCM - Ia where 1~ is the intercluster potential

By using the construction in [12] one can readily verify (i. e., let 03C9=1
in eq. (20) of [12], even for Z2) that there exists a partition of unity
{ GO[ }, indexed by cluster decompositions a, with the following properties:

(a) G~ is symmetric with respect to interchange of coordinates of parti-
cles within a 1 or 

(b) supp GO[ c { x : and 
where E &#x3E; 0 is small;

(c) for HCM given by ( 1 ), the localization error satisfies

where M2 denotes the smaller nuclear mass, and the constants Bk are
independent of N, Zk, Mk or R; however, one expects to choose E ~ Z-S
for some 

Vol. 52, n° 4-1990.



404 M. B. RUSKAI

Condition (b) implies that G0152 localizes to a region in which electrons in
a subcluster are bounded away from the opposite nucleus, i. e., on supp G0152,

The quadratic term in (14) arises from the nuclear kinetic energy; it was
not evident in [12] because that paper only considered systems for which
Z2&#x3E;N so 

M~ Mo
The functions {G,} were constructed as products of one-particle

functions defined in terms of a smooth, monotone function g : R + -~ [0, 1]
satisfying g2 (t) + g2 (t-1) =1 and where e&#x3E;0
Note that g(t)=0 if t(1 +E)-1, g(t)=1 if t&#x3E;(1 +E),
supp g’ (t) c [(1+E)-’, ( 1 + E)] and sup g’ (t) ~ =0(e-i). Occasionally, wewill write g~ to emphasize a particular choice for E.
The proof uses an additional partition defined in terms of a function

of the form described above by

where I I x I ~p=(03A3|xi|p)1/p , 
= N 1 /p ( 1 + E), p’ and p" are a constants towhere , , =N1/p(1+~), p’ and p- are a constants to

be chosen later, and we will eventually let p ~ oo . It is easy to verify that
2) the localization error arising from each Fk is bounded above

by 
-2 E r 2 

where r denotes R, p’ or p", as appropriate, and the constant B

is independent of N. Partitions of the form { Ga ~ will subse-
quently be applied to F2 and F3 respectively. Because the localization
errors from those partitions can grow like N2 and JN respectively, E canbe correspondingly smaller than E without sigmficantly affecting the
bounds (9) and (14). Therefore, we will henceforth proceed as if the cutoffs
in Fk are sharp in the sense that one can ignore E in

this simplification will not affect the asymptotic estimates. It will also be
useful to recall that (since p &#x3E; 1 )

Annales de l’Institut Henri Poincaré - Physique théorique
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III. PROOF

It follows from (3) and the variational principle that a Hamiltonian H
has no discrete spectrum if one can find a partition of unity {Fk} such
that V k and V W in ~r (H)

where Lk is the localization error on supp Fk. Our verification of (18) for
H = HCM (N, Mi, Zi) uses successive partitions of unity. It begins with the
partition given by (16) for which F3 and F4 localize to regions in which
outer electrons are far from both nuclei, in which case atomic techniques
can be applied to an effective nuclear charge located at RN; and for which
F 1 and F2 localize to regions in which all electrons are confined to a ball
around both nuclei, in which case the techniques of [12] can be used. In
both cases, control of the localization error requires that regions with
relatively large (F2 or F3) and small (F 1 or F4) internuclear distance be
treated separately.

F 1 localizes to a region in which both nuclei and all electrons are very
close together; i. e., supp F1 c ~ x : ~ I Xi and Rp’}. Because
HcM is bounded below by the ground state energy of a "united atom"
plus the nuclear repulsion [4], elementary arguments imply that

where o&#x3E;0 and However, the values of p’ for which (19) is
positive will lead to poor control of the localization error 
particularly when Z2. To obtain a better bound, assume N&#x3E;2Ztot
and apply Lemma 2 to the "united atom" Hamiltonian Hat (N, Ztot) to
conclude that

where M and y are as in (8), i. e., M ~ (N - 2 and y - 0 as - 

Since (20) holds V p, one can eliminate the factor N1/p by taking p - oo .
If this result is combined with E,~ (N, Mi, Z~)] _ Eo (N, Z1)] and
Lemma 1, one can conclude that

Vol. 52, n° 4-1990.
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where y has been ignored for simplicity. If N is sufficiently large, [assume
N&#x3E;4Ztot so that N-2Ztot&#x3E;N/2; for Zk oo, N&#x3E;2Ztot will do], one can
find a constant d&#x3E; 0 so that (21) is positive if

In order to verify (18) on supp apply the partition
of unity {G0152} to the function 03A82 = F2 03A8. It follows from the properties
of { G0152}, the fact that supp ~2 c ~ x : ~ I  N1/p (1 + E)2 R }, and Lemma 2,
that there are constants ak, and 03B6k such that ak~1, 03BEk~2Zk(1 + y), and

where 8 (t) 2- t2ift&#x3E;0, , and the precise values of ak depends on the mass
ratio À. It also follows from (15) that the intercluster repulsion lex is
bounded by

where Nk denotes the numbers of electrons in ak. Combining these results
with E*  E~ --_ Eo one finds

where

and L comes from the localization error. It follows from (14) and (22)
that

where B &#x3E; 0 is a constant and the second inequality used M2 &#x3E;_ Z2 Mo. As
above, the factor N-1/p can be eliminated. If E is also ignored, one obtains

Annales de l’Institut Henri Poincoré - Physique théorique
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the asymptotic bound

Although detailed analysis of (27) and (30) is messy, it is evident that

QÀ, 0&#x3E;’ and therefore Q0152’ can be bounded below by an increasing quadratic
function of N. By writing this function as a (N - c Ztot)2, and letting b = dB,
one can show that the right side of (25) satisfies

It then follows that there is a constant 11 such that (31) is positive for
and that in the limit - 00, 11 is determined by (30).

Before giving asymptotic bounds on q , we consider the rest of the partition.
It remains to consider the region in which at least one electron is

bounded away from both nuclei, and observe that

It follows from ( 17) that supp F3 c= {x : ~ x II 00 ~ N1/p R} so that

V x E supp F 3 :1 i such that the hypothesis of (32) holds. Therefore the

techniques used on atomic problems can be applied using an effective
nuclear charge of Zeff = 2 (Z1 + Z2) = 2 in the difference

Mi, Zi)- HCM (N - 1, Mi, Zi). In particular, the proof of Lemma 2
can easily be modified to show that (18) holds for F3 if

N &#x3E; 2 2 [1 + y This procedure can be carried out with a partition
of the ... ,N), but excluding Jo, the role of which is

now played by F4. The asymptotic analogue of condition ( 11 ) is

which one expects to hold asymptotically if N &#x3E; 2 4 + Z2). Control
of the localization error is delicate because, unlike F 1 or Jo, electrons are
not confined on supp F4; therefore, only the nuclear repulsion is available
to control the localization error. Proceeding as before, one finds

Now suppose that

Vol. 52, n° 4-1990.
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where K=48B8 2 . Then one can a.gain find a constant d &#x3E; 0 so that (34)
is positive for

If this is inserted in (33) the result is positive for N &#x3E; 2 [ 1 + y 
where lim y (Zeff) = 0. However, the requirement (35) appears to restrict

00

the proof to systems in which at least one of the nuclear charges is large;
in the case of homonuclear molecules, (35) becomes Z &#x3E; K315. Conservative
estimates suggest 100  K  1,000 so that this restriction, although not
absurdly severe, would exclude such real molecules as O2 (i. e., oxygen).
Fortunately, it is possible to substantially weaken this restriction when

and eliminate it entirely in the case of homonuclear molecules
with realistic nuclear masses, by a more refined treatment of the localiza-
tion error. The details, which are somewhat technical, are given in
section IV. This completes the proof, with NC bounded above by the
maximum of the values required by the four different regions considered.
With the estimates given thus far, the asymptotic bounds will be determin-
ed by the requirement that (30) be positive.
We now return to a more detailed analysis of that condition and first

consider homonuclear molecules, i. e., and Z1=Z2=Z. Then

ak s- [1 +0(~)]~9 2 for E sufficiently small, so that

where N=2~ and 2014~~~~~. The minimum of (37) occurs when ~== ±~.
Then using the estimate of 2 Z for §, one finds that, asymptotically,

which is positive if N &#x3E; 12.4 Z = 6.2 As explained in section IV, by
slightly decreasing ~ this can be improved to N &#x3E; 5 (Ztot).
When the nuclei are not symmetrically located; one finds

~~1+2~’~1 where ~, = M 1 /M 2 . In this case a better result is obtained
if the right side of (30), rather than (27), is minimized. With m, n as above
one has

Annales de l’lnstitut Henri Poincaré - Physique théorique
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which attains its minimum when m = - n ; then if ~2 = 2 Z2 one has the
asymptotic bound

which is positive if N &#x3E; 8 Ztot.
It may be amusing to observe that optimal estimates are obtained in

the hypothetical case of a molecule (analogous to HD) for which 
but ZI = Z2 = Z. Then and the bound above is minimal when m = 0
so that

which is positive if N&#x3E; 11 Z &#x3E; 5.5 Ztot.

IV. REFINEMENTS AND EXTENSIONS

There is obviously considerable room for refinement of this proof; many
of the approximations used have been rather crude. However, each of the
refinements discussed here gives only a modest improvement in the bounds,
often at the expense of considerable increase in technical complexity. A
significant improvement requires a different approach. Our goal in present-
ing this proof is to establish that the nuclear kinetic energy does not have
a significant effect on the number of electrons a molecule can bind. It
should be emphasized that most of the localization error comes from the
electron kinetic energy; if the nuclear masses are infinite, but the nuclei
are not fixed [i. e., the Hughes-Eckart and ~R terms are removed from ( 1 )]
the proof is somewhat simpler, but the asymptotic results are not changed.
In fact, when the quadratic terms disappear in (14); however,
(34) is still problematic because of localization error from the kinetic
energy of the electrons [see the discussion of (41) below]. Although the
estimates given above compare unfavorably with Lieb’s bound [8] of

N"2(Z~+Z~+1) for unconstrained nuclei (but without kinetic energy),
this comparison also indicates that the poor bounds are a consequence
of the method, rather than the inclusion of the nuclear kinetic energy.
Unfortunately, less cumbersome proofs have not been able to accommo-
date nuclear kinetic energy.

It should be possible to considerably strengthen Lemma 2. Because

lim one expects (8) to hold This would
Z

Vol. 52, n° 4-1990.
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imply in 5~~, ~; which would only improve the asymptotic bounds
very slightly (to Q~&#x3E;0 if N&#x3E;5Ztot when ~==(D=1; but only negligibly,
i. e., 0((o’~) when À~m~ 1). However, improvement in another direction
is also possible. The factor 4 in the denominator of (8) is equivalent to
assuming that all the extra electrons lie on the surface of a ball of radius
A, with each pair as far apart as possible. This is obviously not optimal.
Although one expects the extra electrons to lie near the surface, they
cannot all be a distance 2 A apart. At the very least one ought to be able
to replace 4 by 2 in this denominator. This would not only increase QÂ., 0)
significantly, but also shift the minimizing configuration [from one in
which most electrons are near one nucleus, to one in which the electrons
are about evenly divided] so that all three terms in (27) make a substantial
contribution to Q, ~. (For ~, &#x3E; 1 this would improve the condition N &#x3E; 8 Ztot
to N &#x3E; 5 . 1 Ztot). Although the effect of these improvements is modest,
Lemma 2 is of sufficient independent interest to merit further investigation.
Fefferman and Seco [11] have proved a similar result with

but at the very severe price of multiplying the last
term of (8) by Z’" with i.e.4AZSA instead of the conjectured
4 A - 2 A.

As was discussed in [12], the requirement (18) is equivalent to

However, because of the difficulty in estimating (H« - E*), we verified the
stronger condition

The difference between these conditions, (Ea - E*), represents the cost of
moving electrons from one nucleus to another. Although we are still
unable to estimate this threshold difference, Lemma 2 enabled us to

estimate this cost another way. When the number of electrons is very
large, or a has Nk reasonably balanced, this estimate is very good. Howe-
ver, when Nk  Nat (Z~), removing an electron from Zk to the other nucleus
raises the contribution that the corresponding atomic sybsystem makes to
Ea = Eo (N l’ Zl)] + Eo (N 2’ Z2)]. One expects this to make Ea &#x3E; E*
whenever one Ny~ « §y~. This should be sufficient to make Ia + (E« - E*) &#x3E; O.
For configurations in which one expects 1~ (i. e. N1 N2) to be
quadratic in N, even without the contribution from e; the additional

quadratic terms involving e estimate the cost of adding extra (i. e., more
than the individual atoms could accommodate separately) electrons to the
system. If such an analysis could actually be implemented the result should
be very good. However, the problem of obtaining analytic estimates on
differences in threshold energies is notoriously difficult (see, e. g. [15], [16]).

Annales de l’Institut Henri Poincaré - Physique théorique
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Moreover, even if such estimates are obtained, they will not necessarily
be in a form which readily permits comparison with 1~ and Thus,
although this discussion may give some insight into the nature of molecular
problems, it is unlikely to lead directly to a better proof. Rather, it suggests
that another procedure, which includes these ideas implicitly, is needed.
The treatment of F3 mimics arguments which give an atomic estimate

of N~(Z)~2Z rather than~Z. If one of the atomic arguments for

asymptotic neutrality ([9], [11]) could be modified so as to be applicable
to F3 ’P, then the requirement N &#x3E; 2 Zeff arising from (25) could be replaced
by This is not completely straightforward because
only can only use Zeff in the difference between the N and N -1 electron
Hamiltonians. One can also decrease the bounds obtained from F3 by

modifying the choice of 11 subject to the constraint 11 &#x3E; M 1 R. Increas-
M1 + M2

ing Jl decreases Zeff and thereby improves the bounds obtained from F3;
however, increasing Jl also increases ak which worsens the bounds obtained
from F2. When À is large, very small increases in  yield substantial

decreases in ZeW e.., ~=(1+~) would give ] but
this cannot be exploited until the estimates involving F2 are substantially
improved. In the homonuclear case, one can improve (32) slightly so that

Z~=1.8(Zi+Z~); if one then decreases y until is

sufficiently decreased to imply if N &#x3E; 5 where this estimate
includes the contribution from all four regions of the partition {Fk}.
We now indicate how one can weaken the restriction (35) by a more

refined treatment of the localization error on supp F4. A careful analysis
shows that it can be decomposed into two parts. The first, which comes

from VR, is proportional to 2014=201420142014; the second, ’ which arises fromM2 Z2 Mo

, is nonzero only on a subregion (denoted by I-’2) for which

Therefore, the electron repulsion can be used to control the
second part. However, if we decompose HCM and/or the domain of integra-
tion to exploit these observations, Lemma 1 cannot be used. Instead, one
can extend known results for atomic systems to a Hamiltonian in which
the electron repulsion is reduced by half. It thus follows that, if N&#x3E; 4 Ztot,

Vol. 52, n° 4-1990.
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where o&#x3E;0 is a constant. If this observation is combined with bounds on
the nuclear and electronic repulsion one finds

where bk are constants and one has 8, rather than 4, in the denominator
above because only half the electron repulsion is available. The other half
was retained in Hat (N, so that the right side of (40) would be
independent of N, i. e., involve rather than N1~3 As before one
can show that if

then there is a constant ~o&#x3E;0 so that the first term in (41) is positive
when

If this is inserted into the second term of (41) N can easily be made large
enough to insure that both terms on the right side of (41) are positive.
Moreover, for real nuclei 1,000 m, which suggests that K’ ~ 1. Thus,
in the case of homonuclear molecules, (42) reduces to Z~&#x3E;K:~1, which

is no restriction at all, and (where is also modest) so that
P

(43) is similar to (36). However, (42) can never be satisfied when Z2 =1;
and if Z2, (42) is more restrictive than (35). Moreover, in these cases,
(43) is less effective than (36) in controlling the localization error in (33).

If the "electrons" are bosons, then Nat (N, Z) is bounded below by
- 03C3NZ2 rather than -03C3N1/3 Z2 and, correspondingly, the right side of
(7) in Lemma 1 becomes - 03B4Ztot ZI Z2. This leads to difficulties in control-
ling the localization error in both Lemma 2 and the main theorem because
p, p’, and p" must all be chosen correspondingly smaller. Thus, one must
replace N1/3 by N in (12), and Z1/3tot by Ztot in (21), (22), (34) and (36).
Lemma 2 will still hold where c is a constant and s &#x3E; 0 can
be arbitrarily small. [This requires Simon’s observation [7], [14] that /N
can be replaced by NG in (9) with cr &#x3E; 0 arbitrarily small; a corresponding
modification must also be made in (33).] Condition (35) must be replaced
by and (42) by Zî Z~ &#x3E; K’ (ZI + Z2)3. In the case of
homonuclear molecules the latter reduces, as before, to Z2 &#x3E; K’~ 1. For
those values of Zk which satisfy any of the above conditions, the theorem
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holds with an asymptotic bound of where c is a

constant and s &#x3E; 0 can be arbitrarily small.

ADDENDUM

The fourth paragraph of Section IV describes a potential improvement
dependent on extending F303A8 one of the proofs of asymptotic neutrality
of atoms. After this paper was accepted, the author received a manuscript
[17] whose techniques appear adaptable to this purpose. The details will
not be given here. However, it is worth also noting that Solovej [18]
subsequently used this approach to establish that, if the Born-Oppenheimer
approximation is used, the asymptotically neutrality of diatomic molecules
can be proved. His argument requires a modification of the definition of
stable bound state suitable for use in the Born-Oppenheimer approxima-
tion ; the Hamiltonian most not only have a discrete eigenvalue, but must
also satisfy inf E (N, Z~, R)  E (N, Z’ R = oo ) where E (N, Zi’ R) is the

R

ground state energy of the fixed-nucleus Hamiltonian corresponding to
the internuclear distance R.
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