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Semiclassical limit

for perturbations
of non-resonant rotators

Jan HERCZY0143SKI

Instytut Matematyki Stosowanej i Mechaniki, Uniwersytet Warszawski,
PKiN 9p., Warszawa 00 901, Polska

Ann. Inst. Henri Poincaré,

Vol. 52, n° 4, 1990, Physique théorique

ABSTRACT. - We show that the semiclassical limit of the Rayleigh-
Schrodinger series for the perturbed multi-dimensional non-resonant rota-
tors coincides with the Birkhoff series for the corresponding classical
perturbed Hamiltonian and we calculate quantum corrections to all orders
in h.

RESUME. - On etablit que les series Rayleigh-Schrodinger pour les

perturbations d’un rotateur multidimensionnel non resonant tendent, en
limite classique, vers les series de Birkhoff pour l’Hamiltonien classique
correspondant, et on calcule toutes les corrections quantiques en h.

INTRODUCTION

In this paper we consider the semiclassical limit of the Rayleigh-Schro-
dinger perturbation series. This study, initiated by Turchetti [13], Graffi
and Paul [6], Graffi, Paul, and Silverstone ([7], [8]) (see also [1]), comple-
ments earlier research which focussed mainly on the semiclassical limit of
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378 J. HERCZYNSKI

dynamics, of the spectral density function and of individual eigenvalues
(the Bohr formula). Since many problems of non-relativistic quantum
mechanics are studied via the perturbation theory it is reasonable to ask
what is the semiclassical limit of the successive terms of the Rayleigh-
Schrodinger series. The obvious candidate in the non-resonant case is the
classical perturbation series, known as the Birkhoff series.
The way to tackle this question worked out in the context of perturba-

tions of non-resonant harmonic oscillators by Graffi and Paul [6] consists
in rewriting, in the spirit of WKB approximation ([15], [ 11 ]), the Schrodin-
ger equation in the form of the Hamilton-Jacobi equation with quantum
corrections and then systematically computing successive terms of the
perturbation theory. The non-resonant nature of the problem enters cru-
cially in two places: the eigenvalues in the quantum case are simple and
the Birkhoff series can be defined to all orders. The problem of semiclassi-
cal limit of the resonant perturbed oscillators requires essentially new
ideas, since neither of these two simplifications takes place any more.
The aim of the present note is to extend these methods to the study of

perturbations of non-resonant rotators

in L2 (Td), where o satisfies the diophantine condition to be specified
below (we assume by a multiplication operator V((p),
HE (h) = Ho (h) + E V. In contrast to [6] the eigenvalues of Ho (h) are not
simple. Ho (h) is a model Hamiltonian, describing a system with only
rotational degrees of freedom, or alternatively a system of free (uncoupled)
one-dimensional rotators, cf [3], [ 11 ], [2], [14]. Accordingly, may
describe a perturbed multidimensional rotator or a system of weakly
coupled one-dimensional rotators. Integrability of the corresponding classi-

cal system Kg (A, 03C6)=1 203A303C9jA2j+~V(03C6) is studied in Kozlov, Tres-

cov [10]. The diophantine condition on o implies that the multiplicity of

the eigenvalue Eo (h n, h)=1 203A303C9jh2 n3 remains constant when h~ 0 with

h n = A constant. In this sense we may say that we have here only the
trivial multiplicity, easier to deal with, whereas in the resonant case, when
the components of co admit a vanishing non-zero integer combination, the
multiplicity of a given eigenvalue grows polynomially 0 (the same
difficulty confronts the resonant harmonic oscillator). Fix now A = h n
with all components A~ non-zero and consider the 2d-degenerate eigenvalue
Eo (A, h). We show, in the main Theorem 1 and Theorem 1’, that 2d
Rayleigh-Schrödinger series of this eigenvalue converge in the semiclassical

. Annales de l’Institut Henri Poincaré - Physique théorique



379SEMICLASSICAL LIMIT FOR PERTURBATIONS

limit to 2d Birkhoff series calculated at 2d actions A for which

Ko (Ã) = Ko (A), and also that for symmetric potentials these Rayleigh-
Schrodinger series are exponentially close as h - 0. In Section 1 we esta-
blish the notation and state the main results. The proofs of these results
are given in Section 2.

I would like to thank Marcin Moszynski for many critical comments
on the previous version of this paper.

SECTION 1

Consider the system of d-dimensional rotators defined by the Hamil-
tonian function Ko in the angle-action variables (A, p) E Rd x Ta,

The tori A = Const. are invariant under the Hamil-
2 j’=o

tonian flow associated with Ko. The system is perturbed by the potential V,
assumed to be an analytic in the vicinity of Td, KE (A, p) = Ko (A) + E V (p).
We assume that V is real on Td. We assume moreover that

... , satisfies the following diophantine condition:

d

for any mEZd, with some C, y &#x3E; 0 mjmj, we shall
j=o

d

also use the notation mjAjBj for any two vectors A, BERd).
j=o

Thus the motion on the invariant tori is quasi-periodic and not periodic.
It will be of importance later that the actions of the form A = h n, n E Zd,

..., d, are non-resonant. As is well known (cf Galla-
votti [5]), it is in general impossible to find a completely canonical
transformation putting the perturbed Hamiltonian into its action-angle
variables, because the KAM theorem guaranties the survival of invariant
tori only for a (high) fraction of the phase-space. The insoluble Hamilton-
Jacobi equation

for the generating function W((p, J, E) may be solved only in the sense of
perturbations, that is by expanding W into a power series in E,

which is in general asymptotic and not convergent. It is assumed that for
E = 0 the generating function describes the identity transformation, which

Vol. 52, n° 4-1990.



380 J. HERCZYNSKI

imposes W0(03C6, J)=(pJ. The corresponding expansion of N (J, E) in the

series N (J, ~)~03A3 Ek Nk (J) gives the Birkhoff perturbation series. In par-
k=0

ticular (A) = Ko (A), N1 (A) = Vo. Putting for convenience y(1) = V,

V(k)=1 2 V we obtain the following equations for W(k)
2 S=1

and Nk:

It can be seen that for non-resonant actions the above equations can
be solved inductively.
We now turn to the description of the quantum case and consider the

operator Ho (h) introduced above. Ho (h) is self-adjoint, its spectrum con-
sists of isolated eigenvalues Eo (h n, h) = Ko (h n) of finite multiplicity, and
its resolvent is compact. We see that the Bohr-Sommerfeld quantization
A = h n is exact for unperturbed rotators. We formulate separate results
for symmetric and non-symmetric potentials, so first we introduce the

notation for the symmetry subspaces of L2 (Td) in the case of symmetric
potentials. 1 }d and for any 03B1~2 let Jfa. denote the subspace

where T~ is the symmetry operator defined by

where ..., We say that V is symmetric if T~ V = V for

j=1, ..., d. The subspaces are then invariant for Ho (Ii) and V, their
orthogonal sum is the whole of L2 (Td). We denote by p0152 the orthogonal
projection onto ~°‘. Let H~ (Ii) denote the restriction of Ho (Ii) onto Jf,
H~ = p0152 Ho (~C). It is clear that the spectrum of H~ is simple. It is

worth noticing that the operators H~ are not unitarily equivallent, since

they have different spectra. Indeed, for any A E Rd let A (A) = {a E fl : a~ = 0
whenever in particular if all components of A are non-
zero. Then we have

Let the Rayleigh-Schrödinger series (see Reed and Simon [12] for the

definition) of H03B10(h) in yea be denoted by 03A3~kE03B1k(A, h), with
k=0

h) for Then the following theorem holds.

THEOREM 1. - Suppose V is symmetric. Fix A~R Zd, A(A)=2, and
let h&#x3E;0 satisfy 

Ansaules de l’Institut Henri Poincaré - Physique théorique



381SEMICLASSICAL LIMIT FOR PERTURBATIONS

Then for any k &#x3E;_ 1 we have:

(a) for any a, and some K&#x3E;O

as h ~ 0;
(b) there exist independent of h functions of A (A), j = 0, 1, ...,

where (A) = Nk (A) is the k-th term of the Birkhoff series, such that for
any 03B1~2

0, where the series is asymptotic in the sense that for every M e N

as h - 0.
The statement of analogous result for non-symmetric potentials is

weaker, in particular we can only treat trigonometric polynomials. The
extension to general non-symmetric potentials V could be attempted by
approximating V by trigonometric polynomials, as the functions (A)
appearing below are continuous in V. However for degenerate eigenvalues
the control of the coefficients of the Rayleigh-Schrödinger series is not

simple.

THEOREM 1’~ - Suppose V is a trigonometric polynomial. Fix A E R X Zd,
A(A)=f2, and let h&#x3E;O satisfy Then for any k &#x3E;__ 1 there exist

independent of h functions of A Nk’~ (A), j = o, 1, ..., where

(A) = N J (A) is the k-th term of the Birkhoff series, such that

is convergent (with the radius of convergence decreasing to 0 as k ~ 00),

and the 2d sums L s’E,(A, h) for with ..., d,
s=o

are the partial sums of the Rayleigh-Schrödinger series for perturbation of

The above theorems show that the semiclassical limit of the Rayleigh-
Schrodinger perturbation series is indeed the Birkhoff perturbation series
also for degenerate eigenvalues.
The quantum corrections (A) may be explicitely recursively calcu-

lated. It is natural that Theorem 1 holds only for A = h n with 
that is for eigenvalues of maximal multiplicity 2d, since for other eigenva-
lues the corresponding Birkhoff series ~ Ek Nk (A) is not defined (because

Vol. 52, n° 4-1990.



382 J. HERCZYNSKI

A is then a resonant action) and, indeed, the perturbed eigenvalue need
not have any asymptotics as seen in Example 1 below. For the case k =1
we have (A) = ifo , (A) = 0 for j = 1 , 2, ... and, as seen from the
remark following the proof of Lemma 1 below, an exponential estimate
of the error in (b) in the following form holds:

For the case k = 2 in one dimension one can show, using the formulae
derived in the proof of Theorem 1, that N~2~ (A) = 0 for j odd and

for j even. If V is not a trigonometric polynomial, i. e. has infinitely many
non-zero components in its Fourier expansion, then the series in h for
E~ (A, h) is divergent and we cannot improve the asymptotic estimate in
(b). The estimate of the error in (a) is certainly optimal (discounting the
problem of determining the constant K), as the following simple example
demonstrates.

EXAMPLE 1. - Let d=1. As is well known, the first order perturbation
corrections are given by the eigenvalues of the matrix

P (Eo (A, ~C)) VP (Eo (A, ~)), where P (Eo (A, ~)) is the orthogonal projec-
tion onto the subspace spanned by eigenvectors corresponding to Eo (A, h).
For k =1, consider the 2 x 2 matrix

where Vm denotes the Fourier coefficient of V. Assume 0, n - 00
with h n = A fixed. Due to the analycity of V the off-diagonal entries in
(7) are exponentially small as h - 0, so the (two) values of E~ are exponen-
tially close to Vo, and hence to each other. However that is all that may
be asserted about them in general. Consider now the only eigenvalue of
less than maximal multiplicity, that is Eo (0, h) = 0 with its corresponding
eigenvector Wo =1 (here as in all the paper we assume that the Lebesgue
measure on Td is normalized). Eo (0, h) being a simple eigenvalue the
second order perturbation is given by

and

[here ( . , . ) denotes the scalar product]. If we suppose that V (cp) = 2 cos cp,
then Ei (0, h) = 0, E~(0, ~) = C ~C - 2, which diverges 0.
As is well known from the general theory [12], the Rayleigh-Schrodinger

perturbation series has a positive radius of convergence whenever, as is

Annales de l’Institut Henri Poincaré - Physique théorique
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the case in Theorem above, the perturbation is relatively bounded. The
perturbed eigenvalue E£ (h, n) of HE (h) is thus equal to

E~(h, n)=03A3 ~kEk (A, h). On the other hand, for actions of the form
k=0

A = h n the KAM theorem [5] may be applied, yielding that in the vicinity
of A there exists a completely canonical map putting K£ into its action-
angle variables (A’, cp’). More precisely [4], fix a bounded domain QERd,
and denote the set of invariant KAM tori of K,(A, p) in by r(E).
By results of [4] there exist smooth functions A’ (A, cp’ (A, defined

on n x Td such that A’ are prime integrals for perturbed motions starting
in r (E), are in involution on r (E) and the canonical change of variables
(A, cp) H (A’, cp’) on r (E) transforms KE to N (A’, E). Moreover the Bir-
khoff series is asymptotic to N (A’, E) in the sense that

M

N (A, e)- ~ for any M, for 
7=0

In view of Theorem 1 it is reasonable to ask whether the following
semiclassical limit holds:

unformly for small E, as h ~ 0. The estimates established below in the
proof of Theorem 1 are not sufficient to prove (8), we will instead prove
the following weaker result, analogous to Theorem 2 of [6].

THEOREM 2. - Suppose V is a trigonometric polynomial. There exists a
bounded function g (A, h, E) E Coo (r’ (E) x (0, x (0, El»’ with some

positive hl, El such that for any h, n with h n E r’ (E), h  hl, we have

as E - 0, where 0 (Eoo) is uniform in h.
Theorem 2 shows that the Bohr-Sommerfeld quantization of

KE (A, 03C6)=1 203A303C9jA2j+~V(03C6) in its action-angle variables A’, (p’ is valid,
2j=0

for A’ = h n E r’ (E), in the limit h~ 0 to first order in h and to any order
in E. The function g appearing in Theorem 2 is not unique and the major
open problem is to construct such function which would yield (8).

SECTION 2

The proof of Theorem 1 and Theorem 1’, as mentioned in the Introduc-
tion, consists in rewriting the Schrodinger equation in the form of the
Hamilton-Jacobi equation with quantum corrections and then applying

Vol. 52, n° 4-1990.
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an inductive solution. Due to the (trivial) degeneracy of eigenvalues of
Ho (h) in our case the Hamilton-Jacobi equation cannot be solved exactly
and an extra argument is needed to compare its solutions with the Ray-
leigh-Schrodinger series (such an argument was not necessary in [6]). The
estimates needed to solve the Hamilton-Jacobi equation form the proof
of Lemma 1 below, while the extra argument is used to prove Theorem 1
and Theorem 1’ from Lemma 1.

LEMMA 1. - For any A~R Zd and with for
j =1, ..., d, there exist k (A, h) E L2 (7~), Sk (A, h) E C, and N~ (A) E C, k,
j= o, l, ... ° with ~o (A, h) = exp (i A/h (p), So (A, h) = Eo (A, h) = Ko (h n)
satisfying the following conditions:

(a)

where the series is asymptotic in the sense that for every M E N and any
0r~  1

as h~ 0, where the error estimate is uniform for potentials V with

sup I V (cp) I equibounded;
|Im 03C6 | ~A

(b) for any k &#x3E;_ 1 h) is in domain of Ho (h) and

for ~t ~ 0, for some K &#x3E; 0, where the error estimate is in supremum norm

over T d;
(c) m V is a trigonometric polynomial with Vm = 0 for I m I &#x3E; Mv, then for

any k

for h  2 - k min and, moreover, for such h the series in (a) is
,j= 1, ... , d

convergent to Sk (A, h);
(d) . for fixed A and k the norm of 03C8k (A, h) in L2 (Td) is polynomially

bounded in ~a -1.

Proof of Lemma 1. As mentioned above we use the WKB approximation.
The solution of the eigenequation

Annales de l’Institut Henri Poincaré - Physique théorique
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will be sought in the form , where is a periodic

function on Td.
Expanding WE and EE in the series

and setting ((p, h) = n, Eo = Ko (h n), A = h n we obtain the following
equations

Here W(k) and Ek depend on A and h. The above equations may be
called the Hamilton-Jacobi equations with quantum corrections, where the
correction is the term with the second derivative which, formally speaking,
vanishes in the limit h~ 0. We will use the abbreviation y(1) = Y, 

which permits to put these equations into a more compact form, analogous
to (3),

We recall the procedure, well known in classical mechanics ([5], [3]), to
solve these equations.
One takes Ek to be the mean over the torus of the left hand side of

( 11 ). Then one expands W(k) and V(k) in the Fourier series

where the dependence of and on h and n is supressed, and ( 11 )
reduces to

for any We put W~=0. However the equation (12) cannot be
solved, because for m = - 2 n, with A = h n, the expression in brackets

Vol. 52, n° 4-1990.
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vanishes. This happens for a set of 2d vectors m with m~ equal either 0 or
-2A~, let us denote this set U (A, h). Note that this difficulty is due
precisely to the quantum corrections in ( 11 ). Therefore we adopt the
following procedure. We define W~=0 for rn E U (A, h), and let
Sk (A, h) = We will show that this procedure defines an analytic func-
tion W(k) of p [see (17) below] and allows us to solve inductively the
equations

the estimate of the error in supremum norm over Td. (b) of the lemma
follows from (13) after we express h) in terms of 

j =1, ... , k, namely

k

where we use the notation ~03B2~=03A3j03B2j. Note that polynomial depen-
j=i

dence on h -1 is offset by exponential estimate above. We will then prove
the estimate (a) of the Lemma. Observe also that if V is a trigonometric
polynomial, then by (10) and (12) so is for any k, and hence for any
k for sufficiently small h V~=0 for any m E U (A, h), Moreover the
finite number of terms in the Fourier series of for each k enables us
to prove inductively that and hence also Sk (A, h), for A = h n fixed,
are well defined and analytic in h for small h. This yields (c). (d) follows
from the above formula for h) and the estimate ( 16) below.
We assume that dER+ x Zd, that is that A has the form A=hn, nEZd,

h&#x3E;O (this representation is not unique, of course). Let also for

j =1, ..., d. Using ( 1 ) one verifies that the following estimates hold:

for any and

for any h with 0h1 and any m~Zd with m~U(A, h). Here
Ci depends only on A, not on h or n (this will be our standard convention
about the constants appearing below). To see (14) observe that by ( 1 )

where ~n~~ = sup I nj and A= hn. If we now choose the representa-
j=1,..., d

tion 1n1 with the maximal h1 (such h1 exists and depends only on A,

Annales de l’Institut Henri Poincaré - Physique théorique
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as does the corresponding we obtain (14) with appropriate Ci. To
establish ( 15) note that with m, n and h as above we have

Furthermore,

since h  1 and m I &#x3E;_ 1. The estimate (15) follows immediately.
The analicity of V implies that D exp ( - Kim I ), for some positive

D, K. Let + 1 1 (the choice of Kk is to a large extend arbitrary).
We will prove inductively that

where Dk satisfy Dk = h - 2 (Y + 1 ) ~k -1 ) gk, which shows that the inductive
solution of (13) is possible (Bk is a positive constant which does not depend
on h). Moreover (16) implies (13) and hence (b) of the Lemma. Indeed,
for any k the error in ( 13) will be of order of L I I2, that

m E U (A, h), 

is of the order 2d Dk exp ( -I A ] o where A 10 = inf I &#x3E; o.
j=l,...,d

Since Dk grows polynomially with ~ -1, ( 16) implies that this error will be
exponentially bounded, with any K lesser that We may put

therefore K =] 2 Note that although sufficient for our purposes,

(16) is a crude estimate, indeed (22) below establishes that Dk may be
chosen independent of n.
For k = 1 (16) follows from analycity of V. Assume that ( 16) holds for

k=1,...,N.
Using ( 15) and (12) we have

for h), for s = I, ... , N. This will be used to estimate 
given by (10).

Vol. 52, n° 4-1990.
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Observe that exp (im p), so for (p I ~ KN + 1 we
meZd

have, using (17),

by our choice of Kk. Summing the above series we obtain

with some constant C’ (s), depending on K, y, d but not on h. Given the
definition (10), this estimate implies

where the inductive hypothesis was used. Since clearly

in order to establish (16) for k = N + 1 we have to set

The proof of (16) is complete.
We now pass to the proof of (a) of Lemma 1. In order to avoid

confusion with the notation, the functions W(k) and appearing in (3),
that is in the classical limit, will be now distinguished from y(k)
above by the subscript cl. Expanding W~ and in the Fourier series

we see that (3) reduces to

Thus W(k)cl(03C6) is defined by for m~0, where the

dependence on A is suppressed. Furthermore we define inductively

Annales de l’Institut Henri Poincaré - Physique théorique
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functions j) (cp), j) (cp), j = 0, 1, ... , also depending on A, by set-
ting V~:’ 0) = V, V~’ j) = 0 1, and

for k &#x3E;__ 1. We obtain 0) = V~7). Recall that Nk (A) = o, we also define

(A) = o . N~ are the classically defined, independent of h functions
appearing in the semi-classical limit of Sk. An estimate analogous to (16)
holds for namely

where Ck, j are constants depending on A, common for potentials V with
sup I equibounded. The estimates (20) imply, among others,

that the recursive definition of ~V~i’ ’~, V~’ ~ is correct. Fix now arbitrary
MEN. Our aim is to prove that for every k

as h - 0 in such a way that h n = A is fixed, uniformly in m E Zd, for any
0  r~  1. By the definition of Sk (A, h) and N~(A), ~=0, 1, ..., and by
arbitrariness of M, (a) of Lemma 1 follows upon putting in (21).
The proof of (21) is by induction. For k = I we have V(1)=V~t&#x3E;=V, so

we have equality (without the error term). Suppose we have (21) for
k = 1, ..., N. It is enough to show that this implies

uniformly in Im p I ~ KN + 1. Indeed, if that implication is proved then by
construction we know that

uniformly in Im (p ~ K~+1, whence the estimate (21 ) of the Fourier coeffi-
cients of the left hand side of (23) follows immediately.

In order to prove (22) we set

Vol. 52, n° 4-1990.
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Note that for sufficiently small h m e U (A, h), implies 
Using (17) we have

as h - 0, and analogously we estimate using (20). Therefore

Here r (N, M, h) = O (~M+ 1). We will separately estimate the two finite
sums in (24). For 0  we have, using (14),

Annales de l’Institut Henri Pnincare - Physique théorique
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where C2 and C3 are constants depending only on N, M, y, co and C1.
Thus for sufficiently small h (depending on N, etc.) we find

which together with the inductive hypothesis (21) implies that

for any 0T~T~ uniformly in 11m p I ~ KN+ 1. To deal with the second
sum in (24), observe that (14), (25) and the definition of R (h) imply that

for any 0  ~’  1. Now (26) implies

M

uniformly in ] Im because L L I may be summed and
m j=0

its sum is independent of h. An inductive argument shows that the error
estimate in the above formula is also uniform for potentials V with
sup equibounded. We have thus estimated both sums in (24),

I 1m 

so we obtain (22) with the left hand side replaced by O However

as in (21) 11 is an arbitrary positive number less than 1, so is 11’ in (22).
The proof of (21 ) and hence of Lemma 1 is complete.
We remark that for k= 1 the above proof implies that the series in h

reduces to zeroth term only and we have strict equality (without the error
term) in Lemma 1 (a), and hence an exponential estimate in Theorem 1

(b). Indeed, in the above notation, V~ 1 ~ (cp, ~) = V~i ~ (cp) = V (cp), and

V~’ ’~ (cp) = o, N~i ~ = 0 for j =1, 2, ..., therefore S (A, ~) = N1 
(this argument is essentially contained in Example 1 in the Introduction).
Thus first order quantum perturbation is exponentially close to first order
classical perturbation in the semiclassical limit. This implies that (a) of
Theorem 1 for k =1 is true also for non-symmetric potentials.

Proof of Theorem 1. Fix A E Rd, for j= 1, ..., d, and consider
nEZd such that A=hn. For any aeA(A) let

(A, h) = P°‘ 03C8k (A, h). We may assume that 03C803B10 has norm 1. Since both

Vol. 52, n° 4-1990.
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Ho (h) and V are invariant with respect to p0152, Lemma 1 (b) implies that

as h - 0. It is clear that (27) is very close to the equations satisfied by the
Rayleigh-Schrodinger series, which read

where L Ekpk (A, h) is the Rayleigh-Schrodinger in for the perturbed
k=0

eigenvector of H~ (h). Obverve that without influencing the Sk (A, h) and
E~ (A, h) we may assume in (27), (28) that pk (A, h) and (A, h) are
orthogonal to h) (A, h) [here we use Lemma 1 (a~]. We will
now show that (27) and (28) imply that

as h - 0, the second estimate in the sense of L2 norm, with any K’  K.

We will proceed by induction on k. For k = 0 we have equalities (without
the error terms). Suppose we have (29) and (30) for k = 0, ..., N -1.
Applying to both (27) and (28) the orthogonal projection p~ (h, n) onto
the one-dimensional subspace of ~" spanned by the eigenvector (A, h)
we obtain

whence we get (29) for k = N (here ( . , . ) denotes the scalar product).
Observe now that (A, h) and pk (A, h) in (27) and (28) are obtained by
applying (Ho (~) - Eo (A, ~)) -1 to vectors whose difference has norm

exponentially small as h - 0, namely

But clearly the norm of (H~ (h) - E~ (A, h» -1 on the orthogonal comple-
ment of (A, ~) is bounded by a polynom in ~-1, the constant depending
on A, a and o. Hence we obtain (30) for k = N with possibly slightly
decreased K, which ends the inductive argument. Observe now that (a)
and (b) of Theorem 1 follow from (a) of Lemma 1 and from (29). The
proof for the symmetric case is complete.
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Note that in the above proof the exponential estimate of Lemma 1 is

crucial, for instance a polynomial estimate in Lemma 1 (b) would not be
sufficient to prove the polynomial estimate in Theorem 1 (b). So Lemma 1
is the least we need, while Example 1 above shows that it is also the most

we can hope for.
The proof of Theorem l’ follows immediately from Lemma 1 (c) and

from the following simple Lemma.

LEMMA 2. - Let Ao be self-adjoint and B symmetric and Ao-bounded,
put AE = Ao + E B. Let Eo be an isolated eigenvalue of Ao of finite multiplicity

M

N. Suppose there exist approximate eigenvalue ~ of AE and
j=0

M

approximate eigenvector (E) = ~ s’ ~~, such that
j= o

as E --+ 0, and with ~ 1, ..., WM orthogonal to Then EM (E) and (E)
are partial sums of the Rayleigh-Schrödinger series for perturbed eigenvalue
and eigenvector of At. Moreover if there exist N approximate eigenvalues

M M

E~) (E) = ~ E’ and eigenvectors ~M~ (E) = ~ E’ of A~, k =1, ..., N,
J-0 j= 0

satisfying the above conditions and with mutually orthogonal, then these
approximate eigenvalues and eigenvectors are partials sums of all N Ray-
leigh-Schrödinger series associated with AE and Eo.

Proof of Lemma 2. Suppose M is fixed. Together with AE we consider
another analytic family of operators Åt, defined as

where C~ are defined to be zero on the orthogonal complement of and

by

for j = 2, ..., M. Using orthogonality of 03C82, ..., 03C8M to 03C80 we conclude
that
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that is EM (8) and B)/M (E) are exact eigenvalues and eigenvectors of Åt. The
result of the lemma now follows when we note that perturbation series
for eigenvalues and eigenvectors of At and Åt coincide up to order M.
Proof of Theorem 2. Fix any M E N, Using the results of

Theorem 1 we note that

where is uniform for ~e(0, 1). We also have

independent of course of ~. Observe now that for y=0, 1, ... we have

where g J is a C~ function obtained as a sum of convergent power series
in h. Using Theorem 2. 6.1 of [9] we conclude that there exists a smooth
function g (A, h, E) such that

as ~~0, uniformly in h, for any M. Now (31), (32) and (33) together
imply (9).
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