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ABSTRACT. - In this work we study the Schrodinger equation with a
periodic potential and a constant weak magnetic field. We justify the
Peierls substitution without any hypothesis of non overlapping of bands
(in the 0 field case), and we apply it to the study of the diamagnetism.
Under some additional assumptions we describe asymptotically the singu-
larities of the density of states and the de Haas-van Alphen oscillations.

RESUME. 2014 Dans ce travail on étudie 1’equation de Schrodinger avec
potentiel periodique et champ magnetique faible et constant. On justifie
la substitution de Peierls sans hypothese de non recouvrement des bandes
(dans le cas de champ 0), et on l’applique a 1’etude du diamagnetisme.
Sous quelques hypotheses supplementaires on decrit asymptotiquement les
singularites de la densite d’etats et les oscillations de de Haas-van Alphen.
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304 B. HELFFER AND J. SJOSTRAND

0. INTRODUCTION .

The purpose of this article is to clarify the results published since 1930
by the physicists concerning the diamagnetism and the de Haas-van Alphen
effect in the weak magnetic field case. We are interested in the study of
the spectral properties of the Schrodinger operator with magnetic field:

where V is a Coo periodic potential on a lattice r, and where

is the antis mmetric matrix defining the cons-

tant magnetic field. Our problem will be semi-classical in the sense that
we are interested in the asymptotic behavior of different quantities as " ] B ( (
tends to 0. The main object which will be considered in this paper will be
the density of states associated to PB, v is an essentially selfadjoint
operator and by the abstract theory it is possible to define for every real
valued C~ function f a selfadjoint operator f(PB, v). The restriction of the
distribution kernel to the diagonal is a Coo periodic function on [Rn and

by computing the mean value of this function on a fundamental domain
we get some real number denoted by Trf(PB, v); the density of states is

the measure defined by:

The different notations correspond to the different points of view taken
in the litterature. We can for example study for f fixed, the map
B -; D f (B), or we can also try to give a more explicit formula for the
measure pB, v. Another connected problem is to look to the limit as T ,

(the temperature !) tends to 0 of v *f’T) (zo) (zo is the chemical potential)
for a family of functions of the form: (s/T). If the situation is
relatively clear in the case of the free electron [see the standard books in
solid state physics (for example [Ca])], the general case is more obscure
and most of the books give some heuristic explanation of the de Haas-
van Alphen effect based on the Onsager’s rule. One of the reasons for
this obscurity (at least from the mathematical point of view) was that the
so called Peierls substitution was not rigorously proved until recently.
This justification is now obtained after the contributions of [Be 2], [Ne 1, 3]
and our paper [He-Sj 4] which will be the starting point of this one.
However it was only proved in the case of the single band case and there
is a lot to do in the case of overlapping bands.
As we said, this paper is first of all the natural continuation of

[He-Sj 4] but one motivation to go further was a recent paper by Guillot-
Ralston-Trubowitz [Gu-Ra-Tru] which tries to justify the de Haas-van
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305ON DIAMAGNETISM AND DE HAAS-VAN ALPHEN EFFECT

Alphen effect by construction of quasi-modes with the help of techniques
appearing in the homogeneization theory. With these techniques they can
recover the Onsager’s rule [On] but this remains in some aspects formal
and does not give precise information on the density of states. Moreover
these authors are obliged to make technical assumptions on the rationality
of the fluxes of the magnetic fields through some basic surfaces related to
the lattice (we are here in the 3-dimensional case). The final purpose of
this article is to give a precise description of the density of states, but
because there are many interesting results connected to this density of
states (according to the respective weights of different parameters essen-
tially the chemical potential, the temperature and the magnetic field) we
shall rewrite rigorously a lot of other results appearing in the physical
litterature. This paper solves completely the case of non crossing Floquet
eigenvalues (near the considered Fermi level). We hope to return in a
further paper to the case of touching or overlapping bands (case of the
bismuth), where also the physical litterature is less clear and where the

Onsager’s rule is not clearly given.
Let us now more precisely describe the contents of the different sections.

In section 1, we consider the free case (V=0) and for fixed f we
study the function B -~ D~(B). We show how a recent pseudo-differential
calculus (1976) developped in another context by Boutet-Grigis-Helffer
[BGH] and a functional calculus inside this class permits to recover (with
a proof which is in the same spirit) results given by Peierls in his celebrated
paper [Pe] and to prove the COO dependence with respect to B (for B in a
neighborhood of 0 in A2 of Df(B). We compare with Landau’s
approach and recall the link with the asymptotic behavior of the free
energy per unit volume:

for fixed T as II tends to 0.

(Here zo is the chemical potential, N is the density of electrons per unit
volume). The interesting feature is here to determine the quadratic term
of the Taylor expansion with respect to B at B = 0.

In section 2 we remain in the case V = 0 and consider the 3 D-case
where B~=B&#x3E;0, B~=B23=0. We shall study the susceptibility in the
limit where T/II B II and II B 1B are small. The susceptibility is associated to
the energy per unit volume by the relation:

More precisely we shall consider the limit as T ~ 0 of this susceptibility.
We precise mathematically the proof given by [So-Wi] as presented in
Callaway’s book [Ca] and give the link with some Riesz means associated
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306 B. HELFFER AND J. SJOSTRAND

to the eigenvalues of the harmonic oscillator. In particular, starting from
the formula for the density of states:

we give the classical formula for the de Haas-Van Alphen effect in the
free case and in the limit of 0 temperature with a precise estimate of the
remainders. This is in fact just an exercise using the Laplace transform.

Section 3 is a complement to [He-Sj 4]. In the study of the 0-magnetic
field but with non trivial periodic electric potential and as a starting point
for the study of the spectrum of PB, v in the general case, we have presented
in [He-Sj 4] (cf also [Be 2], [Ne 1-3]) a way to justify the Peierls substitution
by the introduction of suitable exponentially localized Wannier functions.
This was possible under the hypothesis that the band under consideration
was simple. We explain here how to define these Wannier functions in
the general case where we admit overlapping bands or crossing of the
graphs of the Floquet eigenvalues.

Section 4 recalls how to use these Wannier functions (which are less
natural than in the simple band case) to construct magnetic Wannier
functions which permit to justify the Peierls substitution in the general
case. In the place of the reduction to a single pseudodifferential operator
whose principal symbol was the Floquet eigenvalue, we find a more general
system of pseudo-differential operators which can be in principle studied
by techniques used in [He-Sj 2].

Section 5 is devoted to give different formulas for the density of states
in the particular case of the odd dimension (in particular n = 3) under the
generic hypothesis that B is of maximal rank. More precisely we consider
the family B (h) = h Bo where We construct a symplectic change
of coordinates adapted to the given Bo permitting to simplify the computa-
tion of the density of states.

Section 6 is independent of the preceding ones. This is a parallel section
to section 1 in the case where V is not identically 0. We recover old results
by [Ad], [Ko], [B 1 ] ... concerning the quadratic term of D~(B). This gives
complementary results to the results given in [He-Sj 4].

Section 7 is the starting section devoted to the study of the de Haas-
Van Alphen effect. We suppose in all the remaining sections that the
dimension is 3 and that the magnetic field is of the form B (h) = h Bo. We
give a classification of the nature of the Fermi surface and of their sections
by a family of hyperplanes orthogonal to the given magnetic field Bo. We
remain here in the case where the Floquet eigenvalue is simple near the
chosen energy level (which corresponds to the Fermi level).

Section 8 is devoted to the study of the density of states pB, v and we
want to determine up to some error which is the asymptotic
behavior of this measure. Using the Peierls substitution procedure justified
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307ON DIAMAGNETISM AND DE HAAS-VAN ALPHEN EFFECT

in sections 3-5, this computation is related to the computation of explicit
quantities associated to a family of N X N pseudo-differential system
depending of the spectral parameter z. In the case where the Floquet
eigenvalue is simple, the principal symbol of this N X N system has an
eigenvalue proportional to (z 2014 ~ (6)) [where X (8) is the Floquet eigenvalue]
and the other eigenvalues are non 0.

Section 9 gives the final result which is the natural extension of the
formula (0.5) in the case of non zero periodic potential V. Roughly
speaking the eigenvalues (2 n + 1 ) h of the harmonic oscillator which are
the singularities of the density of states are replaced by expansions in
power of h given modulo 0 (h2) by the eigenvalues of the pseudo-differen-
tial operators attached to À (8) in the following way. In suitable coordinates
adapted to B (h) and constructed in section 5, we can consider the family
of p.d.o. À (x, Dx, t) on L 2 (tR) where t = to corresponds to an hyperplane
orthogonal to B (h). The rule given by Onsager is the following. Fix some
Fermi level z~. Look at the sections by the hyperplanes t = Cst of the
Fermi surface This gives a union of bounded curves. Look at the
family of t for which some component of this curve is the exterior

boundary of a domain of finite extremal area with respect to t. For each
of these values of tj and for each component a, we get some hamiltonian
A (x, hDx, t~) defined microlocally whose eigenvalues give approximatively
the singularities of the density of states. The precise result is given in
theorem 9.1.

Section 10 is devoted to the study of the energy per unit volume, of the
susceptibility and of the counting function per unit volume. Starting from
the expression for the density of states given in section 9, we can give
some analogs of the results obtained in section 2 for the free case. In
particular we try to recover in the general case what is usually called the
de Haas-Van Alphen effect.

§ 0. Introduction

§ 1. Diamagnetism of the free electron
§ 2. De Haas-van Alphen effect for the free electron
§ 3. The 0-magnetic field case; construction of generalized Wannier functions
§ 4. A Grushin problem in the case of a weak magnetic field
§ 5. Reduction of the study of the density of states
§ 6. Computations of the integrated density of states: complements
§ 7. Assumptions and geometric preliminaries for the study of the de Haas-van Alphen

effect

§ 8. Study of the trace integrals
§ 9. Conclusion concerning the density of states
§ 10. De Haas-van Alphen effect in the general case
References
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308 B. HELFFER AND J. SJOSTRAND

1. DIAMAGNETISM OF THE FREE ELECTRON

1.1. Introduction and results

In this section, we rewrite the 1933 Peierls [Pe] in a modern language.
We consider more precisely the section devoted to the diamagnetism of
the free electron and we compare it in the particular case of dimension 3
with the more direct approach from Landau [La]. Let us consider the free
Hamiltonian with constant magnetic field in 

with the same notation as in [He-Sj 4]:

PB is an essentially selfadjoint operator and for a real function f in
EX (or more generally if f is the restriction to of a function in
S (!R)) f(PB) is well defined by the spectral theorem and we can express
ICPB) as in [He-Sj 4] by the following formula:

where f is an extension of f such that:

(1.1.4)~ The family of functions x -~ (x+ iy) . y I -N
(with y verifying 0  ~ y I  1) is bounded in ~ (tR), V N EN.

It is easy to prove that such an extension always exists for a function in
~ (R). Then as in [He-Sj 4] we can define the density of states associated
to PB by the following formula:

where XL is the characteristic function of the cube QL in [R".
Let us consider now the (pseudo-) differential operator:

whose Weyl symbol is the linear form on 1R2 n:

Annales de l’lnstitut Henri Poincaré - Physique théorique



309ON DIAMAGNETISM AND DE HAAS-VAN ALPHEN EFFECT

Then, for a in g [or more generally in 5~ we can introduce as
in [BGH] the following pseudo-differential operator:

If a is in Sk (!R") (k E R), where Sk is defined by:

the associated pseudodifferential operator is continuous from g into

g and, if k __ 0, this operator is continuous from L2 into L2 
In particular, PB = a"’ (/B (x, D)) with a (r) = tî + ... + More generally,
we want to consider the constant magnetic field B as a parameter (B = 

with j  k, B belonging to some open set Q in U -102~).
In this case, we shall work with symbols which are Coo with respect to

B, for example:

A family of operators AB (B E Q) in OPS is called uniformly elliptic if we
have the following estimate for the symbol a(B,i):

Let us recall the following theorem in [BGH] :

THEOREM 1.1.1. - Let AB = aw (lB (x, D), B) be a family of uniformly
elliptic operators in OPSk (Q, k &#x3E; 0. Let us assume that, for each B, AB
is invertible in the following sense: there exists c &#x3E; 0 s. t.: 

II AB cp II I &#x3E;_ II, II A: cp II I &#x3E;_ II, then A-1B is a pseudo-differential operator
bw (lB (x, D), B) whose symbol is in x Q) .

This theorem applies for example, if we consider the family of ope-
rators : PB- z with The symbol is simply : a(t)- z with
a (t) = i i + ... + rf, which is clearly elliptic. However theorem 1.1.1 is
not sufficient for our purpose. We shall prove the following theorem:

THEOREM 1.1.2. - Let AB a family of formally selfadjoint operators
(i. e. with real symbol a) satisfying the hypotheses of theorem 1. 1 . 1. Then

AB is essentially self-adjoint and if (R), f(AB) = b~. (lB (x, D), B), with:
Q) . Moreover, if 0~03A9, bf(03C4,0)=f(a(03C4,0)) and it is

possible to compute the other terms of the Taylor expansion of a f with
respect to B.

Remark 1.1. 3. - This theorem is a variant of results of [He-Ro 1, 2],
in the context of the classes of Boutet de Monvel-Grigis-Helffer [BGH].

Vol. 52, n° 4-1990.
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As in this last paper, the difficulty is that the rank of the matrix is
not constant when B varies. The theorem will be applied in the case where
AB=PB.

COROLLARY 1.1.4. - Under the hypotheses of theorem 1.1.2, we have:

D f (B) is with respect to B in Q and we have, if a (t, B) = a (t):

Application 1.1. 5. - If~(T)=T~+...+T~ ( 1. 1.14) et ( 1.1.15)
become:

where II B 112 = ¿ (bjk)2 which is the expected result (el [Pe], formula (42)).
jk

1.2. The 3-dimensional case. Landau’s approach

Peierls makes this computation in dimension 3 without to analyze the
Coo dependence with respect to B and his estimation of the remainder
term is not rigorous. He takes only h as a parameter: B 12 = h, Bi3==0,
B 2 3 = 0 and formula (1.1.17) becomes:

Let us observe that:

Annales de l’Institut Henri Poincaré - Physique théorique
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At this time, the notion of density of state was not clearly defined but the
nature of the "proof of Peierls is pseudo-differential. In fact, R. Peierls
refers for this formula to Landau [La]. The proof of Landau is simpler
but uses the explicit knowledge of the spectrum of PB. Let us sketch is

briefly: .
Here we have:

Using corollary 1.1.4 and the invariance of the pseudo-differential cal-
culus by the metaplectic group, we get from the explicit knowledge of the
spectrum of the harmonic oscillator:

which can be written:

with:

Then we can see ( 1. 2 . 5) as: ] h I Tr g (Qo (h)) where Qo (h) is the harmonic
oscillator Qo (h) = h2 Dx + x2 in one variable. The trace is taken in the
usual sense for operators of trace class. Indeed, if f is in ~ (R), g is in
~ (rR+) and g (Qo) has its distribution kernel in !7 (1R2) (see for example
[He]). The study of the asymptotic behavior of D f (B) as h tends to 0
results from the general theory developped in [He-Ro] (see for example
the monograph [Ro]) but there is a more direct approach in Landau’s
paper [La] by applying a first order version of the well known formula of
Euler-Maclaurin (see for example [Di], p.302) (we thank A. Grigis for
explaining us the use of this formula in this context). The formula given
in Landau’s paper [La] was the following approximate relation:

The formula of Euler-Maclaurin is the following one:

Vol. 52, n° 4-1990.
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where the B~ are the wellknown Bernouilli coefficients (for example

Bl = 1/6, B2 =1 /30, (2 (2 j) ! !/(203C0)j).(03A3 ( 11n23) and Rr satisfies the

following estimate:

m  n integers, k of class in [m, n].
Here, as we shall see later, we have an explicit control of the remainder
term and we can justify completely Landau’s proof. (Under natural ana-
lyticity conditions on , f’, we can also get that D f (B) is an analytic symbol
in the sense of [Sj]).

Landau’s approach

We assume that and we apply (1. 2 . 7) with m = 0, 
Then we get:

We take: k (t) = g ((2 t + 1 ) h) (assuming h &#x3E; 0) and we get:

with:

After some change of variables, we have:

Annales de l’Institut Henri Poincaré - Physique théorique
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with :

We can write more explicitly the first terms in the right hand side of

which is easy to compare with ( 1. 2 .1 ) according to ( 1. 2 . 2) .
In the applications, the function f which appears in the computation of

Tr/(PB) is given by:

The free energy per unit volume is then defined by:

We use this function only for and it is clear (we
can always modify the function in [R* to get a function in ~ (R) . zo is
called the chemical potential and T is the temperature.
Remark 1. 2 .1. - As T - 0, the function~ ~ tends to (zo - x) 1 x  Z 0

uniformly on R. As a consequence, tends in the distributional sense

(the same is true tends to 
The density of particles is given by:

(1.2.15)~ (zo, B, T) = Tr T/8zo) (AB» = - Tr (.~zo, T) (AB)) ~
Let us observe the following properties (related to the remark 1. 2 .1 ):

( J r a  d03C4

( 1. 2 .17) (zo, T, 0) tends as T ~ 0 to: (203C0)-3(a=z0 d03C4/da) if zo

is not a critical value of a. In particular, if a (t) = t2, we get:

Here ~=(2~) " Vol (Bn) where Bn is the unit ball in !R". In fact, as it is
well known and clearly explained for example in [Ad], zo depends on B

Vol. 52, n° 4-1990.



314 B. HELFFER AND J. SJOSTRAND

and is determined by the fact that the density of particles N:

which corresponds to:

If the temperature T is small enough, then if zoo corresponds to a solution
of (1. 2 .19) with B = 0, the solution zo (B) of (1. 2 . 20) [verifying

because it is true at the limit for T -~ 0,
if zoo &#x3E; 0] is Coo and has the expansion:

which follows from (azo/aB) (0) = 0 [consequence of (zo, B)/aB = 0 for
B=0] (see § 2 for a complementary discussion). Now the susceptibility
corresponds to the second order term in B of:
Q (zo (B, N, T), B, N, T) and we just observe that:

due to ( 1. 2 . 20) and ( 1. 2 . 21 ) . This justifies the computation of the
susceptibility assuming that zo is independent of B (see also an interesting
discussion in [Me]).

1.3. Proof of theorems

Proof of Corollary 1.1. 4. - According to theorem 1.1 2, the distribu-
tion kernel of f (AB) is given by the following integral:

and is a Coo function with respect to x, y, B. We observe that

According to the (classical) definition recalled for example in [He-Sj 4], §7
(see ( 1.1. 5)), we get finally:

Q.E.D.

Proof of theorem 1. 1 2. - Let us start from formula ( 1. 1. 3) which
can be written also:

Annales de l’Institut Henri Poincaré - Physique théorique



315ON DIAMAGNETISM AND DE HAAS-VAN ALPHEN EFFECT

This formula was proved in [He-Sj 4] and the left hand side of (1. 3 .1) is
well defined as an operator in L2 (IR") because of 1.1. 4~ and:

To see that this operator is a pseudo-differential operator requires a more
careful study of (AB - z) - as a pseudo-differential operator (for Im z ~ 0).
Let q (i, B, z) be the symbol of (AB - z) -1. From theorem 1.1.1, we know
that this symbol is in S - k (Q x (A [in the sense of 1.1.10 with Q
replaced by (Q x ( A ""-IR»]. Indeed, the hypotheses of this theorem are
clearly satisfied because of the essential selfadjointness of PB. But this
result is not sufficiently precise because we have no control with respect

- to z as Im z tends to 0 or as I z tends to 00 . To get this control, we follow
the technique used in this context (see [Ro], [He-Ro],... for different

variants).
Let us introduce the class:

Law of composition

It is not too difficult to see that this class is stable by composition
(see [BGH]). Let us recall now the definition of the composition of two
p.d.o.;

(x, D), B) B) is a p.d.o. whose symbol c is in Sk+k’
(resp. if a is in Sk (resp. Sk) and b is in Sk (resp. Sk~). We denote by
ttg the corresponding law of the symbols:

with:

where â (resp. 6) is the Fourier transform of a (resp. b).
Let us also note the following decomposition in formula ( 1. 3 . 3):

Vol. 52, n° 4-1990.
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with:

with:

which satisfies:

We can rewrite the formula for c~ in the following way:

These expansions (which appear also in [BGH]) can be used in two
different ways. Let us first observe that: rN belongs to Sk + k’ - (2 N + 2) (resp.
§~+~-(2N+2~ This means that the remainder term decreases more rapidly
with respect to T when N increases. On the other hand, these expansions
can be used to get asymptotics in powers of B, for B in a neighborhood
of 0.

Finally let us mention the following formula on the differentiability with
respect to B of the composition law (see [BGH] {4 . 3)); taking the 
as coordinates, we have:

This formula appears also naturally in the context of families of

C*-algebras (see [Be 1, 2]).
We shall prove that (~&#x3E;0) and more precisely:

LEMMA 1. 3.1. - Under the hypotheses of theorem 1.1.2 there exists
symbols b~ (’t, B) in s. t. for each N, there exists M (N) s. t.:

Proof of the lemma. - The proof of the lemma follows narrowly the
classical proof (see for example § 4 in [Ro 1]). First of all, we construct a
left parametrix qN in S - k s. t. :

Annales de l’Institut Henri Poincaré - Physique théorique



317ON DIAMAGNETISM AND DE HAAS-VAN ALPHEN EFFECT

M (N)

where (a (i, B) - z) -’ -1 d~ (i, B) (with dj in 
j=o

This is proved using ( 1. 3 . 4)-( 1. 3 . 8) starting from q 1= (a - z) -1 and
inverting (1 + sl). The proof that qi is in S-k follows from the ellip-
ticity of a and of different estimates corresponding to and

We omit some details. In the same way (using the self-

adjointness) we construct a right parametrix qN in S - k s. t.:

Then we have for each N the following formula for q:

The two first terms of the r.h.s. have the good form; so we replace the
problem of the control of q in some class of symbols by the control of
sN #B i~ where we have the possibility to choose the N arbitrarily.

Let us recall that the problem here is not a problem of existence of the
symbol q, neither a problem of Coo dependence with respect to the para-
meters, but a problem of control of the symbol as I z I tends to 00 or as
I Imz tends to 0.
For this, we rewrite the formula of composition of the symbols a and b

in the following way:

Indeed, we have:

We apply ( 1. 3 .14) with b and a = ~. We then have:

From (1 . 3.15) and (1. 3.2), we get:

for some No depending on N. In the same way, we get the same estimates
for q ~B SN in the Sobolev spaces HS where s can be chosen arbitrarily large

Vol. 52, n° 4-1990.
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if N is large enough. This is just a consequence of (1.3.2), ( 1. 3 .15) and
the following estimate in weighted L2 spaces:

where, for

(this is proved by induction starting from ( 1. 3 . 2) and:

where H~ is the magnetic Sobolev space introduced in [He-Sj 4] (see also
section 4) and where C is locally uniform with respect to B.
We can also consider the derivative with respect to B, but this will be

made later. We now look at the composed symbol:
sN where pN satisfies for some t (N) tending to 00 with N and for
some k (N):

in K x A B[R (for each K c c Q).
We use now formula ( 1. 3 . 3) (in the to estimate sN#BpN

in the spaces BI (in fact the Fourier transform of sN where, for
l e N, B~ is defined by:

We get finally the following estimate on For each le there
exists N~, s. t. we have, for some large enough:

(for each K c c Q).
Using (1.3.11)~ (1.3.12)~, (1.3.13)~ and (1.3.18)~ we get the part of
( 1. 3 .10) which corresponds to no derivatives of the symbols with respect
to B and z. To finish the proof, we observe again that we can play with
the N in formula (1 . 3 . 13)N and that we have quite precise controls of
the two first terms of the r. h. s. of this formula.

Let us consider the identity:

Deriving with respect to we get first from ( 1. 3 . 9):

which gives the following formula for q:

Annales de l’Institut Henri Poincaré - Physique théorique
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In the same way, we get for 

( 1. 3 . 20) permit to obtain the good estimates for the first derivatives of q
with respect to B or z in the suitable classes of symbols and we can then
continue by induction by deriving the formulae ( 1. 3 . 20) and ( 1. 3 . 21 )
with respect to B or z. This finishes the proof of the lemma. D

End of the proof of the theorem

We combine simply formulae ( 1. 3 .1 ) and ( 1. 3 .10). The estimates for
the different symbols permit, taking account of ( 1.1. 4), to integrate term
by term. For each N, we get that modulo some remainder in S-N,

is determined by the following:

It is clear that, for each j, (a (t, B)) is in S - 00. Playing with N,
we get the theorem. D

Explicit computations of D f (B) near B = 0

Let us first observe that, if:

( 1. 3 . 22) a (r, B) is real and satisfies : a (r, B) = a ( - T, - B),

we have the following relation:

which implies:

Indeed it follows from ( 1. 3 . 23) that the distribution kernel of/(Ag)
satisfies:

and by the selfadjointness of f(AB), we have:

We then get:
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Let us now compute the first terms in the expansion of D~(B). The first
term is given by taking B = 0 in the formula ( 1. 3 .1 ). We have:

According to ( 1. 3 . 23), the linear term with respect to B is 0. The quadratic
term can be computed explicitly by taking the second derivative with
respect to B in formula ( 1. 3 .1 ), by using ( 1. 3 . 9), ( 1. 3 . 20) and taking
the trace at B = 0. Another way is to make formal expansions with respect
to B taking account of the fact that the law #B admits formal expansion
with respect to B [see formulas ( 1. 3 . 3)-( 1. 3 . 8)]. The result is given in
(1.1.15).

2. DE HAAS-VAN ALPHEN EFFECT FOR THE FREE ELECTRON

The study of the de Haas-van Alphen effect for the free electron

corresponds to the study of the free energy per unit volume Q (zo, B, N, T)
in the limit as T ~ 0. This means that, in opposite to the preceding section
where T was fixed (eventually small) and where we looked to the limit
B ~ 0, we shall here first take the limit as T -~ 0 and consider afterwards
the behavior for B small (this corresponds to the understanding of the
situation as (T/B) and B are small). This study is always mentioned in
every standard book in solid state physics and is (not far from rigorously)
presented in Callaway’s book [Ca] who refers to [So-Wi] and [Wi] (see
also [Me]). We give here a slightly different presentation and refer to [Ca]
for some complement. This can be considered as an introduction to the
more complicated case which is studied in the last sections. We concentrate
in all this section on the case of the dimension 3 and we keep the notations
of section 1. The de Haas-van Alphen effect is more apparent in the study
of the susceptibility:

Here zo (B, T) is the chemical potential which was determined in

paragraph 1 by 1. 2 . 20. For T &#x3E; 0 fixed, and in the limit as B tends to 0,
this corresponds to the study of the coefficient of B2 in the computation
of the free energy per unit volume (this study was made in paragraph 1).
As in section 1, we can consider that zo is independent of B. Indeed, the
computation of (2.1) can, according to: aS2/azo = 0 for zo = zo (B, T), be
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replaced by:

At least to start with, we shall consider that zo = Const. [see in (2.17) the
computation of zo (B, N, T)].
We are interested in the study of:

We shall prove the existence of the limit, but a more precise study is

possible (expansion with respect to (T/B) along the lines suggested in
[Ca]).

Let us start again from the expression defining the density of states:

This defines a measure ps which can be defined by a density in L 1:

Let us observe that the support of ps is in R + and that if we take:

we have:

where ~(~)==~(-~).
The computation of the free energy per unit volume corresponds to

some convolution of the density of states ~B by IT at the point zo. As
observed in section 1, the second derivative of IT tends as T -~ 0 in the
distributional sense to the Dirac measure at 0. Let us compute in a

different way Q (zo, B, N, T); after two integrations by parts we get:

Now the susceptibility is given by:
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Let us look to the limit as T tends to 0. According to the properties of
fl’ we get:

and

Let us now introduce the auxiliary function:

This is a well known object related to the Riesz means associated to the
eigenvalues of the harmonic oscillator: h2 Dx + x2 in the semiclassical limit.
The following results are not sufficient for our purpose but we think that
they will be enlighting. We get from the general semi-classical study of
these Riesz means the following results (see [He-Ro 3]):

where [y + 1] is the largest integer smaller than y + 1 (for y ~ where Cj
can be explicitly computed and p (y, h) is an "oscillatory" term which
remains bounded for h small.

In particular we have:

This corresponds to the Weyl’s term.

Let us now rewrite (2. 10) and (2 .11 ); using (2 .12) we get:

and

For (B/zo) small, let us use the information given by (2 . 13):

Annales de l’Institut Henri Poincaré - Physique théorique



323ON DIAMAGNETISM AND DE HAAS-VAN ALPHEN EFFECT

The diamagnetic term is quite apparent and given by:

The oscillatory term in (2.16) seems to be smaller but we have to be
careful because we have to compute in fact Q(zo(B),B,N,0). Let us
determine zo (B). We first start from the equation:

which permits to determine zo (B) by the equation:

This is possible because the right hand side is strictly monotone and
continuous with respect to zo, as can be seen by derivation of (2. 10). Let
us remark here that for T = 0, the function B -~ zo (B) is probably not in
C~ (the chemical potential is in this case equal to the Fermi level).

This gives:

It is not difficult so see according to (2.17) and the relation ~03A9/~z0 = 0
that:

This justifies the classical approximation that we can assume that zo is
constant in the weak magnetic field approximation.

Let us consider now the susceptibility. The use of (2.13) gives:

The oscillatory term appears to be the dominant term and this is what is
called the de Haas-van Alphen effect. It remains to compute more explicitly
’1/2 (h) which is outside the general techniques we mentioned before but
can be performed along the lines of Callaway’s book [Ca]. It remains also
to verify that x (zo (B), B, N, 0) has the same behavior as B tends to 0
as x (zo (0), B, N, 0). Let us recall briefly how r~1~2~ (h) can be precisely
estimated.

Poisson formula for r~:
Let us consider the following expression:

and recall that:
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Let us start from the following formula valid for y&#x3E;0:

Taking a = (s - (2 n + 1)) and summing with respect to n, we get easily:

It is the Cauchy integral of the meromorphic function in 

along the path: [R 3 u - c + iu.

Applying the residues theorem, we get the following formula for fY (s):

where ~1 is some unbounded contour around the real negative axis inside
a small neighborhood of this real axis.

In the following, we are interested in computing the asymptotic, as

s - oo, of the second term in the r.h.s. of (2 . 24): I (s, y).
Let us now specify the contour we shall consider. For some E to be

chosen later, we consider the contour which is the union
~r lE) U (pm (E) U E with

and

I (s, y) is of course independent of E and we get:

We keep free for the moment the choice of E, but small enough to have
for each M the following expansion of (t/sh (t)):
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For each M and each E we get the following decomposition for I (s, y):

for all E  I and all s &#x3E; 1.

The integral (20142014 . . L(~)ett2 j-03B3-2 dt) is known [Di]) to be equal

to (1/0393(03B3+2-2j)), so we have finally V81, VM:

I(~Y)=9M(8’~’)~’~~+~’9M(s~+’’~)

We determine now E (s) by the relation:

which is compatible to the preceding conditions for s large enough and
we get: .

Let us finally observe from (2 . 27) that we have:

We have proved that I (s, y) admits an asymptotic expansion in powers of
as s - oo:
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Summing up, we get the following lemma for the asymptotic for the Riesz
means of the harmonic oscillator:

LEMMA 2.1: l

This is of course much more precise than the formula given in (2.13). As
a consequence, we recover the result on the de Haas-van Alphen effect
for the free electron:

PROPOSITION 2. 2 [So-Wi]. - In the zo = Const. approximation, the

susceptibility for T = 0, admits as B tends to 0 the following expansion with
respect to B:

Justification of the approximation zo (B) = zo (0) for the computation of
the susceptibility

The only problem is to compute (AS) (B) = S (zo (B)) - S (zo (0) with:

A brutal Taylor expansion at zo (0) does’nt give the result because S (zo)
is not apparently of class C1. To estimate (B), we decompose S (zo)
in two parts by writing:

We observe now that we have the following estimates:
I ~ CM - (1/2) where C is independent of M and uniform with

respect to zo.
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On the other hand, using the Taylor expansion to order 1 for the finite

sum S~, we get:

with C independent of M and B in a small neighborhood of 0.
We then get that for each M we have the following estimate on (AS)

Taking B-(1/2)~M~B-(1/2)+ 1, we obtain :
I AS (B) I _ for some constant C independent of B small.

So we have proved the:

PROPOSITION 2. 3. - The susceptibility for T = 0, admits as B tends to 0
the following expansion with respect to B:

As T -~ 0, the comparison with T = 0 is explained in Callaway’s book [Ca].
No new phenomena appear.

3. THE 0-MAGNETIC FIELD CASE

We now start to consider the case of a non vanishing potential
assumed to be r periodic: V (x + y) = V (x), for all xElRn,

n

y E r, where r is a lattice of the form for some basis, el, ... , en of
i

In this section we make some preliminary work in the case when the
magnetic field is zero, in other words, we shall study the operator,

+ V (x). By Floquet theory, Po, v is unitarily equivalent to the
ye

direct integral where Po is the natural selfadjoint realization

of Po, v in the space X03B8 = { u E u (x + y) = u (x), x E y E 0393}.
Here IRn is identified with its own dual, and is the
dual lattice. Let n where HS denotes the standard
Sobolev spaces.
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We fix an energy level zo E R. The main goal of this section is to show:

THEOREM 3 .1. - There exist N and analytic functions
1  j  N, such that for every 8 E the Grushin pro-

blem,

has a unique solution (u, u - ) E X203B8 X for every (v, v + ) E X03B8 X eN. Here we
u (j) (e).

We notice that a necessary condition for (3 . I) to be well posed, is that
..., and (cp 1, ..., 03C6-N) are linearly independent systems. If these

two systems are linearly independent for some fixed 8, then the well
posedness of (3 .1 ), only depends on the two vector spaces ~ + (9) and
J - (8) generated by the two systems. More explicitly, we have,

PROPOSITION 3.2. - Fix 8 and assume that (pi,..., p~) and

((p~, ..., are both linearly independent. Then the problem (3 . 1) is well
posed if and only an operator from Ji n ~’L
is bijective. Here x_ denotes the orthogonal projection onto ~ _ .

Proof - Since 8 is fixed we shall suppress the subscript "8". Although
not absolutely necessary, let us first verify that is a dense

subspace Without loss of generality, we may assume that
is an orthonormal system. Let ..., cpN E ~2 have the

property that ( cpk ) _ ~~, k. (This is easily achieved by approximating
the by X2-functions 03C8j, and then working in the space generated by
the functions B)/,.) If u~F|+ and E &#x3E; 0 we first take vEye2 with 

N

Then we replace v by We then have 
i

and 

In the case v = o, ~~=0, the problem (3 .1 ) takes the form

Taking the ~1 component of this
equation gives (1 - 1t -) (P - zo) u = 0, so the injectivity of the restriction of
(l-1t_) (P - zo) to implies that we have uniqueness for the
problem (3 .1 ). If the restriction of (l-7r_) (P- zo) to F|+~X2 is not

injective, then there is such that range of

R -, and we see that there is a u - such that (3 .1 ) holds with ~=0, ~ = 0.
We have then established the equivalence between uniqueness for (3 .1 )
and injectivity of the restriction of (1 -7r_) (P - zo) to Ji n ye2.

In order to discuss solvability of (3 . 1 ), we notice that since R + is

surjective, solvability of (3.1) is equivalent to solvability of the first

equation of (3 .1 ), with n ye2. Since the image of R - is ~ _ , we
see that solvability of (3 .1 ) is equivalent to the surjectivity of the restriction
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of (1-7~-) ~P - zo) This completes the proof of the

proposition. E)

It is enough to prove the statement of Theorem 3.1 with cpf depending
continuously on 9. In fact, by the closed graph theorem, the inverse of

will then be uniformly bounded, and by the same regularization argument
as in section 1 of [He Sj 4], part 2, we can approximate (8) by functions
which are analytic in e.

In our proof of the theorem, we shall take so that

Re =(R~)* for every real 8. Then (3.1) is a self adjoint problem, and the
corresponding inverse operator will be self adjoint. The reason why we
do not entirely restrict the attention to such self adjoint problems is that
it is not excluded that by the use of non-selfadjoint problems one can
choose N smaller than for the smaller class of self adjoint ones. (We shall
give a result in this direction below.)

PROPOSITION 3. 3. - Let P be a second order elliptic self adjoint operator
on a compact manfold M. Let ..., cpN E L2 (M) be linearly independent
functions and assume that there is a constant Co &#x3E; 0 such that,

where ..., denotes the linear span of the functions cpl, ..., and

HS (M) ( for s E ~) is the classical Sobolev space on M of order s. Then, if
P is another second order self adjoint operator and cp 1, ..., E L2 (M),
with II P - P and II I cp - 03C61~, ..., II cpN II small enough, there
exists a constant C1 &#x3E; 0, such that,

for all u~H1 (M).
Proof - Without loss of generality, we may assume that ..., cpN is

an orthonormal system. Choose with For

we put n [03C61, ... , so we can apply

Now,
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so with a new constant C&#x3E;O, we get,

On the other hand, we have Garding’s inequality,

so after taking a suitable mean value of the two inequalities, we get:

with a new constant C. From this we get (3 . 4) if and

are sufficiently small. D

For a fixed 80 E I~"/I-’*, we can find ..., E and a constant

Co &#x3E; 0 such that,

Let E c [R" be a fundamental domain of r. Modifying (p? by terms with
small norm [which will not destroy (3.7)], we may assume that

supp ((p?) n aE = 0, so that (p9 = ~ (x - y) 2t 80Y, with
y

We then put (x, e) = (U (x, e) = ¿ C? (x - y) Proposition 3 . 3 then
Y

shows that for 8 sufficiently close to eo we have with a new constant
Co&#x3E;0:

Notice that (pi(.,9), ...,(~(.,9) are r* periodic in e and linearly inde-
pendent for every e. Clearly, if we add more functions to our system
(pi, ..., then (3. 8) remains valid for e in the same neighborhood of
eo and with the same constant Co. Varying the point eo, and using the
compactness of [Rn/r*, we ’ obtain with a new N a system of functions

~p ~ (x, 0) = U (O ~) (x, 0) , E c~ (int (E)), such that (3 . 8) holds for all
with a new constant Co &#x3E; 0 which is independent of e. From

this construction it does not necessarily follow that cpl, ..., will become

linearly independent for every e. Without changing (3 . 8) we may however
eliminate successively all the which are linear combinations of the

others (and make the corresponding elimination of Pj). We then obtain
(3 . 8) with (., e), ..., ~p~ (., e) independent for every e.

(Incidentally, cp J depend analytically on e.) It is an easy exercise to show
from (3 . 8) that ~U~ (e)1 ~ ~ (e)1. is bijective,
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and this completes the proof of Theorem 3 .1 (with R; = (R:)*) in view
of Proposition 3. 2. D

Remark 3 .4. - Under the assumptions of Theorem 3.1, for z close to
zo, let

denote the inverse of

Using that R ± are independent of z, we get

In the proof of Theorem 3.1, we constructed R ± with (R - )* = R + . In
that case, Since R + E + = I, E+ is of full rank and we
conclude in this case that Oz E- + &#x3E; 0 in the sense of self adjoint operators.
We now turn to the problem of finding the smallest possible N

in Theorem 3.1. We have already seen that the family
(p~(.,8), ...,(p~(.,8) must be linearly independent for every 9 E 
and have the property that (8)~-={0}, whenever 8
belongs to the Fermi surface ~ (zo) = { 8 E Zo E (j (Pa) }. The converse
of this is given by,

THEOREM 3 . 5. - Suppose that for some N E N, there exist continuous
functions cp~ : ~ (zo) ~ 1 _ j _ N such that:

1 ° cp i (., 8), ..., (pN (., 8) are linearly independent for every 8 E ~ (zo),
N

2° have
1

for every e E 
Then the conclusion of Theorem 3 . 1 holds with the same N (but with

different , functions cp~ ).
Proo, f : - Since is an infinite dimensional space, we can extend 

to continuous functions: in such a way that 1 remains valid
for every e E (As earlier noticed, it is enough to find cp~ , satis-

fying the conclusions of Theorem 3.1 but with analyticity in e replaced
by continuity.) Outside ~ (zo), the property 2° is trivially satisfied, since
Ker (P 9 - zo) is reduced there. For E &#x3E; 0, we put:
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We claim that,

The inclusion " c " is immediate from (3 . 9), and the opposite inclusion is
proved by the following chain of implications:

Recall from [He Sj 6] that if F, G are closed subspaces of a Hilbert
space J~, then we can define a non-necessarly symmetric "distance":

where 1tF’ 7~ are the orthogonal projections onto F, G respectively. If H
is a third closed subspace of H, we have It
was proved in [HS 6] that if d(F,G) and d(G,F) are both strictly smaller
than 1, then they are equal. We get a distance on the set of all closed
subspaces of X by putting G), d(G, F)). Changing the
norm into an equivalent one, changes d into an equivalent distance.

LEMMA 3 . 6. - Let F, G be closed subspaces of a Hilbert space ~. Then
G) = 

Proof - The orthogonal projections onto F1 and G1 are equal to
and respectively. Using the formula above for d in terms of

projections, we get,

In the present situation, we also want to compare subspaces of different
Let us introduce the distance d (o, 8’) = min I on [Rn /r*. If

E c IRn is a bounded fundamental domain for r, and u E v E we

consider the quantity

Here II I u II I - II I u ~L2 (E)’ II I v II - II I v ~L2 (E) are the norms (independent of the
choice of E) in and ;ýf 9’ respectively. If y E r, then

and in the last term, we may replace u by v. Since

we obtain,
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From this we conclude that if Q is a bounded domain (and hence coverable
by a finite number of translates E + y), we have,

In particular, if 03A9=E is another bounded fundamental domain, we obtain: 
’

LEMMA 3. 7. - Let el, ..., en be a 7~-basis for F and let S2 be bounded
with the property that for every j, the set Q n (Q + e~) contains a bounded
. fundamental domain for r. Then for all S, Sf E and all u E v ~ 

we have:

Here E is some fixed bounded fundamental domain and C (Q, E) is inde-
pendent of u, v, a, 9’.

Proof. - The right inequality in (3.15) has already been established.
For the left inequality, we may assume that the norm used in the definition
of d(0, a’) is x I = max I. . Then

Since,

for some universal constant Co &#x3E; 0, we get,

For given a, 8B we choose j such that the maximum above is attained.
Then let E~ be the r-fundamental domain contained in Q n so

that E~ and are contained in Q. Then,

Treating separately the cases when is larger or smaller thanJ

Combining this with the left inequality in (3.16) and (3. 14) with È = Ej,
we get the left inequality in (3.15), which completes the proof of the
lemma. D
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It is now clear how we shall measure distances between elements or

subspaces of different 9Vo spaces: We take Q c [Rn with the properties of
Lemma 3.7, and we consider the various spaces as subspaces of
L~(Q). According to Lemma 3 . 7 the choice of Q will only affect

~ ~ u - v ( (L2 ~~~ with ue v E ~e, up to equivalence. With the following
special choice of Q, we can arrange so that the norm in L2 (Q) reduces to
a constant multiple of the norm of for every 8. Indeed, it suffices to

fix a fundamental domain E, and choose Q=EU ~(E+ej)). If E, F

are closed subspaces of we can then define F), E),
d (E, F) in the sense of L2 (Q). It is easy to check that,

LEMMA 3 . 8. - With F c G c as above, we have

where Gl denote the orthogonal complements in and ~e. respec-
tively.

Proof. - Let denote the orthogonal projections
in L2 (Q) onto F, G, ~e, ~e. respectively. Then

and

so we get

Returning to (3 . 10), we define for 9e [R"/r*, 1 &#x3E;s~0:

We shall prove that N(6,8) varies continuously with 8, E, in the sense

that,

with /(8, E) - 0, when (9, E) - (0,0). To do this, we start by recalling that
since (8) vary continuously with 8, we have the property analogous to
(3 . 21 ) for ~+(8). By regularizing the cp~ and passing to suitable linear
recombinations, we can find depending continuously on 9 [in
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9V) (D), with Q as above] such that,

For we put Then ~c~ : ~g -~ ~ + (e) 1 is
a bounded projection onto ~+ (0)1, with a bounded extension:

/) - 9V) n ~+ (8)1-. We notice that

Here -X+ (8)1 is the orthogonal projection. We can then

verify depends continuously on e [in ~2 (Q)]: If

U E J + (6~ and 8’ is close to 6, we consider ei ~e - ~’~ ~v u E ~e which
has the property that,

By the continuity of ~ + (9)~ in we know that

Combining this with (3.23), we get

where h (8) - 0, 6 -~ 0. This implies that

where the distance is taken in the sense of ~2 (Q).
We can now prove (3 . 21 ). Let u E N (0, s) with ~M 1. Then

(Here we use the assumption that Ker (P 6 - zo) (8)1= 0.) According
to (3 . 24) (with 9, 9’ interchanged) there is (9’)1. n with

Put Then [as elements in L2 (SZ)] we get
u - u = (P - zo - i E) (v - u) + i (E - E’) w. Since (0)  Const., we get with
a new constant C:

This gives (3 . 21 ) with d replaced by d. By symmetry in 9, o’, we then get
(3 . 21).

In view of (3.10), (3 . 20), we can now extend the definition of J - (0, E)
to the case E = 0, by putting F - (0, E) = N (0, E)1, 0  E  1. (Here the ortho-
gonal complement is taken in ~3.) Combining (3 . 21 ), Lemma 3 . 8 and
(3 . 19), we then get

Vol. 52, n° 4-1990.



336 B. HELFFER AND J. SJOSTRAND

where f (9, E) - 0, when (8, E) ~ (0, 0). In particular, the dimension of
J - (8,8) is constant and equal to N = dim J + (e). For E &#x3E; 0, (3 . 9) tells us
that (Pe - zo + i E) (J - (0, E)) = f + (0). From (3 . 20) we get when E = 0 :

where F - (8) = def. F - (8, 0) .
If we recall that ~ + (9) is a trivial bundle over [Rn /r*, we see from (3 . 9)

that the same is true for every fixed E &#x3E; 0 and a globally
defined basis is given by (8,8)==(Pe-Zo+~)~ 9/ (9). From this fact,
and the continuity property (3 . 25), we deduce that ~ _ (9) is also a trivial
bundle, although we can no more give the basis explicitly. (Orthonormaliz-
ing the basis (8, E) for a small fixed E &#x3E; 0, and then projecting this basis
to ~ _ (8), gives a global basis in the latter bundle.) The property (3.20)
implies that P 6 - Zo maps ~+(8)~~ bijectively se we

get a globally well posed Grushin problem if we define Re and R; by
using global bases in J + (8) and F - (9) respectively. (Here Rf will perhaps
only depend continuously on 8, but as mentioned earlier we can make an
analytic regularization.) This completes the proof of Theorem 3 . 5. D

Recall (as in [He Sj 4], part II) that UM(~8)== ~ u (x - y) defines a
y e r

unitary operator U: L~ ~e and that the inverse is given

by:

By means of U we can identify P with ~8, and we obtain the well

posed Grushin problem:

for u E X2(Rn), v~L2(Rn), u-, v+ E L2 Here

In the case when we had which here gives
R _ = R* . In order to transform (3 . 27) further, we identify L2 eN)
with l2 (r; by means of Fourier series. We then obtain the well posed
Grushin problem,

u E H2 v E L2 u ~ , v + E l2 (F; C"), where
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Here,

associates to w the corresponding Fourier coefficients, 
The operator Ri is given by Ri = R- ~ -1 ~.

Let us write explicitly the j :th component of R~ u (y) (with E, E*

denoting some fundamental domains for rand r*):

where and a* denotes the

complex conjugate of a. A similar but easier computation shows that,

where ~~ (x) = U -1 cp J 1 (x) .
We can now proceed more or less as in section 1 of [HeSj 4], part II.

Since (x, 9) are analytic in 8, we see that the problem (3 .1 ) remains
well posed for e in a small complex neighborhood of and for zo
replaced by z in a small complex neighborhood of zo. Let,

denote the inverse operator. Similarly (3.28) remains well posed for zo
replaced by z, varying in a small neighborhood of zo. Let,

denote the inverse operator. Then Ei + (z) : l2 (F; eN) ~ /2 (F; is given
by a matrix Ei + (z; a, and it follows from the constructions above
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that,

In other words, EP. + (z) is convolution by ç Ê- +.
As in [HeSj 4], part II, section 1, we also see that if f: ~" -~ [R is of class

C2 with !!/’!!..+!!/’"!!~ sufficiently small, then

for every with compact support. [For we

write ef v = (ef v 1, v2)]. In the proof of this, one uses the fact that
there is a constant C &#x3E; 0 such that for all there is a constant Ca
such that,

(Here we assume for simplicity that (x, e) is C°~ in x, which can easily
be achieved by regularization.)

4. A GRUSHIN PROBLEM IN THE CASE OF A WEAK
MAGNETIC FIELD

What follows will just be an easy adaptation of the sections 2-4 in
[HeSj 4], part II. Let be the operator of the preceeding section and
put,

where AjE C°~ Writing

we assume that are constant, and by gauge invariance, we may assume
that,

From now on we write PB instead of PA and we may realize PB by means
of the Friedrichs extension. We define a family of unitary "magnetic
translation" operators tl E [Rn by,
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and we have the commutation relations,

For k E we put

. 

for all p _ k and all sequences i1’ ...Jp~{ 1, ... , n ~ ~ . Then:
1 ° H~ is a Hilbert space (with the natural norm).
2° C~ (W) is dense in H~ (IRn).
3° There is a constant C&#x3E;O such for

every u E Co (!R"). Here denotes the norm in H~.
4° PB is essentially selfadjoint with domain H2B.
5° PBTB03B1=TB03B1PB for all 03B1~0393.
Put

Again we have R~ = R~* in the case when = in the conclusion of
Theorem 3.1. We have

uniformly with respect to B. Put

considered sometimes as an unbounded operator on L2 X l2. When zefR -

and R~ = this operator is selfadjoint. As in [HeSj 4], part II, we then
obtain,

THEOREM 4 . 1. - For (z, B) in a neighborhood of zo X ~ 0 ~ in

we have:
1. ØJB (z) : H~ x l2 -~ L2 X l2 is bijective with an inverse S B (z) depending

holomorphically on z and bounded in norm by a constant independent of
(B, z).

2. z belongs to cr (PB) 0 E cr (E _ + (B, z)). Here we write,
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3. There exists a function f(B,z, ex), 03B1~0393 with values in the N X N

matrices, such that the matrix of E _ + (B, z) is given by

4. The function f is Coo in B, holomorphic in z, and there exists an 11 &#x3E; 0

such that for every y E (~" cn -1 ~12, we have:

where ~ = ( 1 + I ex 2) 1 l2 .
5 . f ’(o, z; ex) = (E _ + (., z)) ^ , where E _ + (8, z) is defined in (3 . 31 ), and

C (8, z) denotes the inverse of the problem (3 , 1).
In the case when the problem (3 .1 ) is selfadjoint, the same is true for

~B when z is real and E _ +, (B, z; ex, fi) is selfadjoint. In terms of f(B, z; ex),
this is reflected by the property,

for real z.

In the general case when the problem (3.1) is not necessarily selfadjoint,
we can still keep track of the selfadjointness of the operator PB, by
imitating the arguments of [HeSj 3].

5. REDUCTION OF THE STUDY OF THE DENSITY OF STATES

Recall (c/: § 1.1 ) that if P is self adjoint and F E Co (R), then

where FI=F, If then 

and the density of states measure PB, v is defined as the unique Radon
measure on R such that,

We now fix Zo e R, and assume that we have a well posed Grushin problem
for P-Zo as in section 3. (Here we write P instead ofPsy for short.)

If ( E is the corresponding inverse of (p - Z R -) we have:
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Since E (z) is holomorphic in z, we obtain for with support in
a small fixed neighborhood of zo:

Here we recall that tr r ( f )) = Vol (f~n/r) -1 tr (/(0)), with the notations
of [HeSj 4]. Let I : T* [Rm - [Rn* be linear and surjective with the property:

We then have the isomorphism of algebras: r ( f ) H OpW (g ° ~)? where
g E Coo is the function whose Fourier coefficients are the feet).
(Here r* is the dual lattice. See [HeSj 4], part II, for more details.) Here
the regularity assumptions are that f is exponentially decreasing and that
g is analytic.

If Q=Q(B,z,6) denotes the symbol associated to E _ + (B, z) in this

manner, we get

Here we recall that tr (A) is defined as the mean value of the symbol of
A, when A is a Weyl pseudodifferential operator. We can interpret pg v
as 03C0-1~z (tr ((Op Q°l)-1Op~z Q ° /) in the sense of distributions.

If ei, ... , en is a basis for )R", we put l j = ~ ej, l ( . ) ~. Then the matrix
2 = ({/~ lk ~) of Poisson brackets is equal to the matrix B = (b j, k) of B for
the basis just chosen. If xl, ... , x~ are the corresponding coordinates,

then A If n is even and B is of maximal

rank, we can choose ..., en such that

The functions /!,...,/~ then form a partial system of symplectic coor-
dinates in the following sense: Writing 1 _ j  n~2,
we can complete the into a system of linear symplectic coordinates:
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~ ~ 1 __ j __ m on T* Then

where g is the function g expressed in the coordinates 6~= ( e~, 9 ) .
The case n = 3 is the one that we are the most interested in, but before

specializing to that case we repeat the discussion above for a general
odd n. We then assume that B is of maximal rank: n -1. (In the case
n = 3 this only amounts to assuming that B is not the 0 form.) We can
then choose a basis ..., en of [Rn such that

Viewing B as an antisymmetric mapping: we have Ker (B) = R en.
We put,

and obtain

where again g is the function g expressed in the coordinates 
To fix xn, + 1= Co means to restrict g to the affine hyperplane 
Notice that this affine hyperplane is a translate of Im (B) = (Ker (B))1.
We know that symbols of the form g ° I form on algebra for the Weyl

composition (cf [BGH] and § 1. 3): (gi°~(~2°~)=~3~ where ~ denotes
Weyl composition of symbols. Using the formula (5.7) we see that the
Weyl composition reduces to the Weyl composition in the variables

xl, ... , xn., ~1, ... , ~n., so that

for every t.

Write Q ° I = Q (x i , ... , 03BE1, ... , 03BEn’, xn’+ 1)’ where Q = Q (B, z, 8) is

the symbol corresponding to E- + (B, z). Then

where by abuse of notations, we write Q and 0 ~ ~ 1 instead of Op (Q) and

Let Q* c tR"* be a fundamental domain for r*, and let

fi c Ri,,, ~,,, be the inverse image by I. Here we put ~’=(~i, ...,~),
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Here # denotes Weyl composition in the variables x", 03BE" and Q-1 denotes
the symbol of Op ((~) ~ 1. ~2t = ~ (x", ~") ; (x", ~", t) E S~ ~ .

If x* e Cy (~"*) has the property that ~ X* (8 - y) = 1. and x = X*° ~
yer*

then we have the following variant of (5 .10):

Remark 5 . 1. - If we replace B by hB, then without changing the basis
el, ..., en, we see that we can use the algebra isomorphism:

where g and g are defined as above. The formula (5.11) becomes:

6. COMPUTATIONS ON THE DENSITY OF STATES :
COMPLEMENTS

We continue the study initiated in section 1, but we consider now the
case when the electron is submitted to a periodic electric Coo potential V.
In this context we have explained in [He-Sj 4] how to reduce the study of
the localization of the spectrum near one band [or many of them (see also
section 3 in this paper)] to the study of a reduced system E! + (z) attached
to the bands. We want to give here some complements and explain how
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to compute concretely Tr F (PB, v) knowing the symbol of E~ + (z). All the
computation can theoretically be made to arbitrary order in powers of B
but we shall emphasize on the computation modulo 0 (B4). Let us recall
that E§ + (z) is not intrinsic (see remarks 6.3 and 6 . 4 in [He-Sj 4]) but by
definition Tr F (PB, v) is intrinsic. F is here a Coo function with compact
support and the choice of our Grushin problem depends of the choice of
the support for F.
At least to begin with (see remark 6.5) we start with the case of the

single isolated band and we assume that F has its support contained in a
small neighborhood of the band. The article [He-Sj 4] was devoted to the
case where F was equal to one on a part of the spectrum of PB, v and 0
on the complementary and in this case we gave a new way of determining
the possible values which could be obtained when computing the integrated
density of states: Tr F (PB, v). Let us recall some notations:

with:

is an essentially selfadjoint operator and for a real function F in
~o v) is well defined by the spectral theorem and we can
express F (PB, v) as in [He-Sj 4] by the following formula:

where F is an extension of F such that:

The first result used in a simple special case in [He-Sj 4] is the following:

THEOREM 6. 1. - Assume that F has its support in a small neighborhood
of a single isolated band, then: B ~ Tr F (PB, v) is a function.

Proof. - The function B ~ DF, v (B) = Tr F (PB, v) was introduced in

[He - Sj 4] (7 . 14). We start from the following formula:

and recall that by 7 . 15 in [HeSj 4] we have the following estimate:
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then we shall prove that we have the same property for the derivative
with respect to B (this result is used in a particular case in paragraph 8
of 4]). We start from an element fB in the algebra introduced in
[He-Sj 4] (here we have in mind E _ +) and let us first observe the following
property:

LEMMA 6.2. - Let.f’B be in the class of exponenti’ally decreasing symbols
(see [He-Sj 4]). If fBO is invertible in the algebra, then is invertible for B
in the neighborhood of Bo and the inverse gB depends continuously 01 B.

Proof - According to the hypotheses we have:

Let us also recall that the law of composition is a distorted convolution:

Then to invert IB for B in a neighborhood of Bo we use the formula:

and the r. h. s. is easily seen to be invertible due to the exponential decay
of the symbols and to (6 . 7). We get also the continuity of gB with respect
to B. 0

In a second step, we get the derivability by using the formula [see
formula (1. 3.9)]:

We get for the derivative of gB the following formula:

which can be easily verified.
(6.10) and (6.6) give (with ~4+’B (fB) = Ei + (z), (gB) = E! + (z) 1 ) the

following estimate:
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and we get finally the following estimate for h (a, B, z) : = gB ~B 

for sufficiently large constants CY, Co, locally uniform with respect to B,
and uniform with respect to z, for z in the support of F, and I Im z ~0.
The proof of theorem 6.1 is then easy using (6 .11 ) and (6.4~). In

particular, we get:

and we can theoretically compute all the different terms using formulas
like (6.10) and (6 . 9). In particular, we can write the Taylor expansion
with respect to B at the point 0. Let us write the result which can be
obtained in this case. By the standard argument it is easy to see that the
linear term with respect to B vanishes (because where
r is the operator To make this computation, it is easier
to use the pseudo-differential representation of our magnetic algebra.
And in fact it is another variant of the algebra we studied in sec-

tion 1: the algebra of the periodic analytic symbols. If E _ + (z, B) is
written as ( fB), we write the corresponding symbol [which is defined

.

(X

This symbol was computed in [He-Sj 4] (in particular, we have

po (t, z) =po (t) - z where po is the Floquet eigenvalue). We gave also in
that paper, conditions under which pi 1 was equal to 0. The computation
of DF(B) is quite analogous to the computation in section 1. The only
difference is that the dependence with respect to z is different, so we have
to replace the computation of the symbol of (PB - z) -1 (formally in powers
of B) by the computation (in the class (z)/3z.
This is obtained by formal computation of the symbol of:

What is used here is the following law of composition for two symbols a
and b:
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After some computations we get the following result:

These formulas were given in an approximative way in Peierls’ paper and
were also given in a different way in the articles by Adams [Ad], Kohn
[Ko], Blount [Bl] (see this proof in [Ca]), Nenciu [Ne]. For example the
last three terms in the r. h. s. of (6.14) correspond to 3.17, 3.18, 3.19 in
Adams’ paper. Here let us recall that po (r) is the Floquet eigenvalue and
that p i for y = (71,72) is simply

In the case where p 1 is zero we have the simplified formula:

The second term of the r. h. s. corresponds to the Landau-Peierls suscepti-
bility. The third term contains the contribution of the other bands.

Remark 6 . 3: The case of the Pauli equation. - In the study of the
Pauli equation (cf. [Ca] p. 245), we have to consider the expression:

where:

Let us observe the following relation:
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The second term of the r. h. s. of (6.16) is called the Pauli susceptibility.
Let us recall the classical comparison between the two susceptibilities in
the case of dimension 2. We denote B12 simply by B. The Landau-Peierls
susceptibility x~p is then given by:

(This formula appears to be, in the case where (see § 1.1.1 ) and
in the limit when T tends to 0, equal to:

and is mentioned in [Ad]).
If we assume that po (’t) = (’tî + i2)/m*, we get finally the formula:

which is a diamagnetic term (due to the - sign) to compare with the Pauli
susceptibility:

which is a paramagnetic term (due to the + sign).
The sign of 2 XLP (B) + Xs (B) which is the sign of (1- (1/3 m*2) plays the

important role for the physical properties in the case when the third term
in (6.15) can be neglected. The case of the free electron corresponds to
m* =1.

Remark 6 . 4: Taylor expansions near a rational. - It is possible to write
down similar expansions near a rational B in the sense of [He-Sj 2]. We
have first to reduce the problem to a similar problem but for a system (as
in [He-Sj 2, 4]) and follow the same ideas.

Remark 6 . 5: The general case. - The theorem 6.1 is true for F in C~
(or more generally for F with a right bounded symbol) without any

hypotheses on the Floquet eigenvalues. Moreover B - Tr F (PB, v) is an even
function with respect to B according to the property: 
The proof is in fact almost the same as in the particular case of the
isolated single band. Indeed, if F belongs to we can after some

partition of unity assume that the support of F is contained in some small
neighborhood of zo given by theorem 4.1 (the restriction with respect to
B can be assumed independent of zo). Using the Grushin problem defined
in section 4, we then follow the proof of theorem 6.1 line by line just
thinking that now E _ + (z) is a N X N matrix (where N depends of zo);
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one has of course to replace in (6.6) and in other places I I by
II Of course, (relatively) simple formulas like (6 .14) do not
exist in general unless in the case when some Floquet eigenvalue is simple
in the support of F.

7. ASSUMPTIONS AND GEOMETRIC PRELIMINARIES FOR THE
STUDY OF THE DE HAAS VAN ALPHEN EFFECT

From now on we assume that n = 3. We fix zoeR and put
F (z0)={ 8 E R3*/0393*, zo ~03C3 (P03B8)}. Here P 9 is the operator Po, v, acting on
8-Floquet periodic functions. Our first assumption is:
(H. 1 ) For every zo is a simple eigenvalue of Pg.

Recall that generically, a self adjoint complex matrix, depending
smoothly on three real parameters, will have multiple eigenvalues only at
isolated points, so "morally" (H .1 ) will be satisfied if zo avoids some
isolated values. Notice also that (H .1 ) is a much weaker assumption
than the single band hypothesis, used in [HeSj 4] to justify the Peierls
substitution.

In a small neighnorhood of ~ (zo), we let À (8) be the simple eigenvalue
which is close to zo. À (8) depends analytically on 8 and is equal to zo
precisely when 8 belongs to ~ (zo). Our second assumption is that:

(H . 2) dÀ (8) # 0 for all 8 E ~ (zo).
This implies that ~ (zo) is a closed analytic hyper surface, and that any
compact set in 1R3* can intersect only finitely many connected components
of ~ (zo). In the remainder of this section the whole discussion will take
place in [R3* and the lattice will be r*. To simplify notations we shall
drop all the stars and write 1R3, r instead of [R3*, F*.
LEMMA 7 .1. - There exists Ne N such that if K1, ..., KM are connected

components (zo) with (K  + h) n Kk = 0 for j#k, then M ~N.
Proof. - Let K1, ... , KM be as in the lemma. Let do = sup dist (x, r).

x~R
For every j, there is a with dist Then K~ - y~, 1 ~’~M,
are disjoint components, all intersecting the ball B (0, do), so M~N for
some fixed number N [by the remark following (H. 2)] . D
For each component K, we put K+y=K}. J (K) is a

subgroup of r.

LEMMA 7.2. - Let K be a component of F (zo). Then (i) and (ii) are
equivalent:

(i) K is compact,
(ii) J(K)=0.
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Proof. - It is obvious that (i) =&#x3E; (ii). In order to prove the opposite
implication, let us assume that K is non compact but that J(K)=0. Let

... satisfy: when~’~~, and: dist(Yj,K)do (where
do is the number defined above). Since (ii) is assumed to hold, the sets
K-y~’= 1,2, ... form an infinite family of components, all intersecting
B (0, do). As in the proof of Lemma 7 .1 this is impossible. D
Now fix a hyperplane ~f c [R3 [which later will be Im (B) = Ker (B)1]

and introduce the following additional assumptions:
(H 3) If then either or is
definite (positive or negative).

Geometrically, (H. 3) means that if does not intersect ~ (zo)
transversally at xo, then xo is an isolated point of intersection and xo + Jf
is tangent to ~ (zo) to precisely the second order.
Our last assumption in this section is:

(H. 4) For every xo E [R3 and every component K of ~ (zo), (xo + ~) n K
is compact.

If we fix eo E then Yft = teo + constitute the set of affine

hyperplanes parallel to 1Yf. We shall sometimes identify: [R3 = [Rt x jf and
write: x = teo + h = (t, h), 

LEMMA 7. 3. - Let K be a component of  (zo). Then there are only
two possibilities:

(a) K is compact: is non-empty precisely for 

Moreover, Ka, Kb are points, while Kt for
a  t  b is a simple closed smooth analytic curve.

(b) K is non-compact: For every t E R, K~ is a simple closed smooth
analytic curve. Moreover J(K)=Zfo, for some Writing
fo = toeo + ho, to E and identifying Kt with its projection in
#, we have 

Proof - For every t e R, the components of ~ (zo) = ~f~ n ~ (zo) are
either points or simple closed analytic curves. Moreover, there is an Eo&#x3E; 0,
independent of t, such that the distance between different components of
~ ~ (zo) is &#x3E;_ Eo. (Using the periodicity, the proof of this statement can be
reduced to the case when t belongs to a compact set, and we consider
two components whose distance is realized by points in a fixed compact
set.) A component of (zo) which is reduced to a point: (to, ho) is the
limit of components given for neighboring values of t by the equation

where g is analytic, ~ g (to, ho) = 0. gh~ (to, ho) is
definite, (to, 0. Depending on the sign of ~tg/(sign of Ft(zo)
has a component close to ho (roughly an ellipse of diameter ~~2014 ~ ( 1~2)
either when t - to is positive or negative. (For the opposite sign of t - to,
there is no component of ~ (zo) close to ho.) Since there is a minimal
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separation between components of  t (zo), we see that if K is a component
of ~ (zo), then for every t, the set Kt = K n ~~ has a t most one com-

ponent. Moreover, I={~e[R;K~0} is a closed interval with non-empty
interior.

In the case when K is compact, the remarks above imply that (a) holds.
If K is unbounded, then we know that J (K) ~ 0, and we must have
J (K) n 9V = 0 since otherwise Kt would not be compact for some t in
contradiction with (H.4). From this it follows that I is invariant under
translations where i is some element in J(K)B0.
Hence I=[R, and for every we see that Kr is a simple closed
curve. Moreover (identifying Kr with it’s projection in Jf) we have

Let ,f’2 = t2 eo + h2 be another non-vanishing element of
J (K), and take a sequence (n J, mj) E 7L2 such that and

2014 ~ ~ ~ Const. (This implies that ~o’) Then by the
tl-periodicity property of Kr - (t/tl) hl, we see that

On the other hand,

It follows that and then
Hence f2 = so we have proved

that J (K) c If follows that J for some fo E r. Writin g
fo = to eo + ho, we then have D

Let now K1, ... , KM be a maximal family as in Lemma 7.1, so that
the family of all components is given by Put:

If K~ is unbounded, we let Then

+ h; 0 _ t  tj’ h E is a fundamental domain for J (K~.). If K~ is
bounded, then is a fundamental domain for J(Kj)=O. In both
cases, we put:

M

LEMMA 7 . 4. - Put Q* = U Then Q* is a fundamental domain up to
1

a set of measure 0, in the following sense:
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Proof - Since

we have

If x E 1R3, we have dist (x, Kj, Y) = dist (x, ff (zo)) for some Kj, Y. But this

means that x belongs to 03A9j,03B3=def. 03A9j+03B3. Hence R3=~~(03A9j+03B3), and

we have proved (7.4). To prove (7. 3) it is enough to prove that

(7 . 5) (OJ + y) is of measure 0 whenever ( j, y) ~ (k, 0).
Notice that + y) n Ok c + y) n S2k. If K J + y # Kk, then + y) U Qk
is of measure 0. If Kj+y=Kk’ then j = k and YEJ(Kj), Then

so This completes the proof of
(7 . 3). D

Remark 7. 5. - For z real and close to zo, we put

Then ~ (z) is contained in a neighborhood of ff (zo) and is given by
z = À (8). In view of (H. 2), the ~ (z) for I z - Zo ~ Eo form a fibration of a
neighborhood of ff (zo).

8. STUDY OF THE TRACE INTEGRALS

To simplify notations, we shall write Q (h, z; x, ç, t) instead of

Q(/!B,z;~,~’~) introduced in section 5, and in the Remark 5.1, and
identify functions and domains in 8-space with their pullbacks with respect
to I. (We are now restricted to the 3-dimensional case and make all the
assumptions of section 7.) Q has the following properties:

1 ° Q is hermitian (when all the arguments are real).
2° Det (Q (0, z; x, 03BE, t) vanishes on F (z), when z is real (close to zo) and

the dimension of the kernel is 1, when (x, ~, t) E ~ (z).
3° In a neighborhood of a component of (zo), we have (micro-

locally) :

where A, P, B are classical symbols of order zero, and A (h, z; x, h Dx, t)
denotes the Weyl quantization of A (h, z; x, h~, t), etc.. Moreover, A and
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B are elliptic of size N x N and (N -1 ) x (N- 1) respectively, while P is
scalar. We can also choose A to be (formally) unitary. We have the
factorization:

where c is a smooth non-vanishing function of all it’s arguments.
When we vary to or the component of (zo), the above result is

uniform in the sense that it holds in an E-neighborhood of the component,
with E &#x3E; 0 independent of all other parameters, and that we have uniform
bounds on all seminorms of A, P, B, c, B -1, 
Combining the arguments of [HeSj 1 ], section 4, [HeSj 2], section 3. 1,

3 . 3, and [HeSj 3], section 3, we arrive at the following result valid

uniformly for: z 1 in a small neighborhood of zo, 
for some fixed but sufficiently small Eo &#x3E; 0:

THEOREM 8. 1. - For 03B40&#x3E;0 sufficiently small and fixed, we let so be

the set components of F (zo) n ( I t - t 1 I  °0 }. Then there is a constant
ho &#x3E; 0 such that for I z - z1|- Eo h, I t - t 1  Eo h, h  ho, there is a subset
r c so (depending on zl, tl, h) such that the operator:

is bijective with a bounded inverse of norm O (h -1).
Here Qt = Q (h, z, x, hDx, t), R _ = and R + is independent of t and z

and given by R+ u (y) = (u where cpY is normalized in L 2 (R) and locali-
zed to y in the sense that

...

for X = X (x, h) in a fixed bounded family in SO (1R2) with

Moreover, the inverse (depending holomorphically on z):

has the following properties:

by a constant and localized to y in the sense explained above.
(8 . 7) Writing E - + = (E - + (z, t, h; (1., e r, we have
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for every N and all rJ., (3 with ~.
(8 . 8) The function z ~ E _ + (z, t, h; rJ., oc) has at most one zero for
I z - zl 1 This zero is real (if it exists) and is given by a Bohr-
Sommerfeld condition: fa (z, t, h) = kh + 0 k E Z.

Here fa is a classical real valued symbol of order 0, independent of the
choice of z l’ and belonging to a bounded family when a varies. Moreover,
(8 . 9) £ (z, t, 0) is the symplectic area of the domain in ç’ encercled by
the component of t (z) which is close to a [which is a component of
x (~’ l) ~ ~1 °

(Actually, it may happen that the component of F~ (z) that we speak
about in (8.9), is empty, but then there is a neighboring value t’, for

which the component is non-empty, and the symplectic area extends in a
Coo fashion as a function of t.)

Indications on the proof. :~
- The set r corresponds to the resonant wells for which the quantiza-

tion condition in (8. 8) gives a level in I z - Z 1 I ~ Eo h with t = tl . The cpY
are then quasi-modes corresponding to those wells.
- For the proof of (8 . 5) we refer to the discussion between (3 .11 )

and (3 . 21 ) in [HeSj 3].
- To prove the first part of (8 . 8), we observe that by Remark 3 .4, it

follows that ~zQt&#x3E;0 is an elliptic operator, and repeating the argument
of that remark for the Grushin problem associated to Qt, we see that:

[Cf. (8.33).]
From the above properties, we deduce that + Im E _ + ~ Co 1 Im z I I for

Hence for z non-real, exists and satisfies,

If we further restrict to a region for some fixed No, we can
treat the off diagonal part of E _ + as a small perturbation, and we obtain
in that region:

We now turn to the study of the numerator in the right hand side of

(5.12). We choose Q (identified with Q* as stated in the beginning of this
section) as in section 7. Letting OJ be the domains constructed in the same
section, and Q ,  _ ~ (x, ~); (x, ~, t) E ~ }, we are then reduced to the problem
of studying
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where Oz Q denote h-pseudodifferential operators, a (A) is defined

as the h-Weyl symbol of A, is the convolution of 1Q. J, with an
appropriate approximation of ð. [This is not quite the formula (5 . 12) but
rather the version with ~ equal to a regularization in the x", ~"-variables
of the characteristic function of Notice that if K~ is unbounded, then
the t-integration reduces to an integration over the interval [0, but that

the boundary of this interval will not be "singular" since the x, ~-integral
is periodic with respect to t.

F is assumed to have it’s support in ]zo - Eo, Zo + Eo[ for some small
fixed Eo, and satisfy:

for some fixed No. Since we can cover ]zo - Eo, zo + Eo[ by small intervals
of size h/Const., and apply a partition of unity, it will be no loss of

generality to assume that F has it’s support in one of those intervals, the
center of which, we denote by The extension F can then be taken with
support in I Z - Z 1 _ h/Const., satisfying,

For simplicity, we shall write x instead t and not indicate the

t-variable, which for the moment is not of great interest. Using that,

and that E depends holomorphically on z, we see that the integral (8.13)
is equal to,

where J (t) is given by,

Write, Identifying operators with
their kernels, we can then write:

Here we recall that the h-Weyl symbol, a (K) of an operator K with
distribution kernel also denoted by K, is given by:
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where,

In the case when,

are normalized in L2, and K (x, y~ = cp (x) t~ (y), we get,

Notice that this symbol is exponentially small outside a neighborhood of

( ’(~0+~0)~(~0+~0)) and that it is rapidly oscillating near that point,
unless (xo, ~o) This leads to the estimate,

for x E C~ and every N, provided that the expression inside the parenthesis
is bounded from below by some fixed constant &#x3E; 0.

Let oco E Ft1, Zo 
be the element associated to x = t (so that ao may or

may not belong to r). The functions ((3Q)E+)(.,(x) and E+(.,P) are
microlocally concentrated to a and P respectively, in the sense explained
in Theorem 8 .1. Representing these functions as superpositions of Gaus-
sians of the type given by (8 . 20), we see that

where for some fixed No, and
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for every N, when dist ~(x, ~), ex) &#x3E;__ Const. &#x3E; O. The analogous result holds
for E + (., Combining this with (8.19), (8.24), (8 .11 ), we obtain

where

for every N, when (cx,~):;6 (cxo, ao). From this, we conclude that if r,
then

and if uo E r, then

for every N. Again, by the fact that (~Q)E+(.,(Xo) and E+(.,(Xo) are
concentrated close to ao, we can drop x:

Here we also used (8.15), (8 .11), (8 .12).
Since the integral of the Weyl symbol of an operator is 2 xh times the

trace of the operator, we get modulo 

Exploiting the fact that the auxiliary operators R+, R_ are independent
of z, we obtain,
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which gives with (8 . 30):

If z - E_ + (z; oco, ao) has no zeros in the support of F, then the integral
vanishes. If not, let z~ be the (unique, simple and real) zero of E _ + in
this region. Then (8 . 34) simplifies to

If we let g = gao be the inverse of the function given in (8. 8), (8. 9) in
Theorem 8.1, we get the following result:

THEOREM 8 . 2. - Let hö (. - kh) be the direct image
under the map z I--+- gao (z, t, h). Then for every F E C~0 ( ]zo - Eo, zo + Eo[),
satisfying (8 . 14), we have

9. CONCLUSION CONCERNING THE DENSITY OF STATES

We consider the contribution to the density of states from one com-
ponent of ~ (zo) (or a part of such a component in the unbounded case).
For z in a neighborhood of zo, we then have a real valued classical symbol
of order such that in the case when we are looking at a
bounded component then f is defined for a __ t _ b and vanishing at t = a
and b (where a = a (z, h), b = b (z, h)) and satisfying

In the case when we consider the contribution from a part of an unbounded
component of ~ (zo), then f &#x3E; 0 is a periodic function of t and we let the
period be b - a. In both cases we have:

(9.2) f(i, z; 0) is the symplectic area of the bounded domain in the plane
t = t, whose boundary is the intersection of that plane and F (z).
From our earlier hypotheses (H. 1 ) and (H. 2) in section 7, we conclude
that,
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and in order to fix the ideas, we shall assume most of the time that

We then have the measure a _ t  b, defined in a neighborhood of zo
by:

for u E Co ( ]zo - Eo, zo + Eo[ ). Here zk (t, h) is defined by,

The object of study of this section will be the measure, J.l, given by,

To see in a simpler case the corresponding formula, it can be useful to

compare with the corresponding situation in the free case (see formula

Let us introduce an additional hypothesis:

(9 . 7) The critical points of [a, t H f (t, zo; 0) are all non-degenerate.
We then have only finitely many critical points, ...,T~, which are
local non-degenerate maxima or minima. In the case when t - f is periodic
we may assume for simplicity that a, b are non-critical, and in the other
case we have the same fact, in view of (9 .1). Let ~j~ Ca (R; [0,1]) have
its support in a small neighborhood of T~ and be equal to 1 near T J.

m

Put We shall first study

In the region we deduce from (9 . 5) that

where Z (1, s; h) is a classical symbol of order 0, defined for (t, s) in a

neighborhood of the graph of f ( . , zo; 0). If we further restrict to

t E Supp ( 1- x). we see that,

Restricting further to [T~T~+J, 7=0, ...,M, with the convention that
To = a - E, we can introduce the inverse function t=tk (z, h),
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given by.

and we get,

Here,

for u = 0,1,2, ..., so we deduce that [c, f : (9 . 8)],

where |~03C5zm0 (z, h)|~C03C5 for every 
We now look at

for some fixed /e{l,...,M}. For simplicity, we shall write x instead of
~~ and we may assume that the corresponding T~ is equal to 0. To fix the
ideas, let us assume that 0 is a (non-degenerate) local maximum for the
function t H f(t, zo; 0). This together with (9 . 3) + will constitute the case 1.
The other three cases (that we will merely comment on) are:

Case 2: t~f has a minimum,
Case 3: t - f has a maximum,
Case 4: a minimum.
We again consider the equation (9. 5), now with t in a small neighbor-

hood of 0, and for k such that is close to zo. Since
the function will have a critical point precisely when

Using that lf f&#x3E; 0, we see that the equation,

has a unique solution t = T (z; h) close to 0, and that T is a classical symbol
of order 0, satisfying "( (zo; 0) = O. The possible critical values Çk (h) are then
given by substitution into (9. 5) :

Since ~(/(T~;/:),~/:)=(~/) (r: {~; h), ~; h) &#x3E; 0, we have a (locally) unique
solution of (9 . 1 6) :

where ~ is a classical symbol of order 0 with Summing up,
we have found the critical value, § (kh; h) and the corresponding critical
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point t = T (Ç (kh; h); h) = t (kh; h) for the function t - Zk (t; h). Differentiating
(9. 5) twice and restricting to the critical point just determined, we get,

(9 .18) at z (t (kh ; h), kh ; h) = - L(ar f)] (t (kh; h), Z (t (kh; h), h); h) &#x3E; 0,
since c~/ 0, (More generally this quantity is negative in the cases
2 and 3 and positive in the case 4.)
For z ~ ~ (h), we can define two solutions tk (z, h) with

of the equation (9 . 5), that we write in the form,

Thanks to (9.18), we have

where g &#x3E; 0 is a classical symbol of order 0, satisfying

We can then rewrite (9.19) as

from which we deduce that:

where j &#x3E; 0 is a classical symbol of order 0, satisfying

Differentiating (9. 23), we obtain

where 1&#x3E; 0 is a classical symbol of order 0 and 1 (0, kh~ h 1 0 kh~ h).(, ~ ) 
2 
.~(, ~ )

The k : th integral appearing in (9. 14) can be rewritten as
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where

is a non-negative symbol of order 0 satisfying m (~k (h), kh; 0) &#x3E; 0 and
vanishing for z in a neighborhood of zo when Çk (h) _ zo - Const. (The last
property is due to the presence of the cutoff function.) When 03B6k (h) is close
to zo, we have

When u has its support in a small but fixed neighborhood of zo, we can
rewrite the sum (9.14) as

with

Here H + ~~ is the standard Heaviside function. In the case 4 we get
the same result, and in the cases 2 and 3 we get (9. 29) but with H (z - ~k)
replaced by H ( - (z - ~k)).
We are now ready to summarize the results of the last three sections

into the following rather long theorem:

THEOREM 9 .1. - We take n = 3, we fix B0~0 and put B = h Bo. We
make the assumptions (H 1-4) of section 7. Let ~ = Im (Bo) c [R3*, and
choose eo E so that L~3 * ^-_’ f~ X ~, via x = teo + h, t E f~, h E ~. We

define S2 J, j =1, ... , M, as in the end of section 7. Let 
and let [aj’ be the t-projec tion of ~~ (z). Let f~ (t, z; 0), for a~ (z) _ t _ bJ (z)
be the area with respect to the dual form, B~, of Bo, of the bounded domain
in te0+X with boundary fl (teo + For every j, we make the

assumption (9. 7) about the function t r--+ fh (t, zo; 0). Then there exist classical
symbols f~ (t, z; h), extending f~ (t, z; 0) in the natural way, defined for z close
to zo and t close to [a~ (zo), bj(zo)], so that the following holds:
For F E Co ( ]zo - Eo, Zo + Eo[ ) (where Eo&#x3E; 0 is small but satisfying

(8 . 14) for some fixed N, we have,

Annales de l’Institut Henri Poincaré - Physique théorique



363ON DIAMAGNETISM AND DE HAAS-VAN ALPHEN EFFECT

where b~L1 is independent of F and can be written as a finite sum:

Here I az bo (z) I __ Co (independent of h) and bj, i is the contribution from the
critical point, Tj, i of the function t H f~ (t, zo; 0). To describe this contribu-
tion, we drop the subscript j and assume for simplicity that 1 = 0. ( j, I are

now fixed.) Let t (uh; h), ~ (uh; h) be the solution of the system,

(9 . 31 ) at f (i (uh; h), ~ (uh; h); h) = 0, f (i (uh; h), ~ (uh; h); h) = u h,

for u E Fl with vh close to f«O, zo; 0), and with (t, Ç) close to (0, zo). Then, t,
ç are classical symbols of order 0, and we have:

where Õo &#x3E; 0 is small and fixed, and m (z, s; h) is a classical symbol of order
0 such that,

sign in (9 . 32) is that of - (lf f). Notice that a modification
of 80 will only lead to a modi, f ’ication of the term bo discussed above.
Remark 9 . 2. - The relation (9 . 31 ) is given by Onsager [On].
Remark 9.3. - By an approximation argument we can replace the

assumption (8.14) by the assumption that the Holder norm of order a is
of temperate growth when h - 0, for some riE]O, 1[. See Proposition 10 . 4.

10. DE HAAS-VAN ALPHEN EFFECT IN THE GENERAL CASE

We now want to present the analogue of formula (2.16), (2.19) in
section 2. Let us recall the definition of the energy per unit volume in the

case of temperature 0:

With o (s) = (zo - s) = (zo - s) + .
In the limit T equal to 0, we get immediately a problem in the definition

of the susceptibility whose tentative definition would be:

because we don’t know if the energy per unit volume is differentiable with

respect to h.
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In the same way, a tentative definition for the Fermi level zo would be

given by the equation: .

More precisely, because the left hand side is monotone but not necessarily
continuous or strictly monotone, it is better to take the following definition
which will have a sense in any case; let us define the counting function
per unit volume by:

Then for N given, the Fermi level is obtained by:

We are interested in the behavior as h tends to 0 of these 3 expressions.
We refer to the section 2 for the results in the free case which will be the

inspiring model for the general case and for which the tentative definition
appears to be correct if one replaces (10.2) by the limit as T tends to 0
of the expression ( 10 . 2) (with instead of

o).
In the case when the function F is Coo (and independent of h) we have
seen in section 6 that all the quantities described in ( 10 .1 ) and ( 10 . 2)
(with o replaced by F, for example T) are with respect to h. The
new phenomenon occurs because o is not a C’ function but only in
the Lipschitz class Co, 1. Of course, this is only a limit case (which can be
seen as non-physical) but it is a good model when the temperature
decreases more rapidly than a sufficiently large power of h.
In theorem (9 .1 ) we have described quite precisely the measure:

but modulo an error term which is O (hoo) for F satisfying to (8 .14)
(see also remark 9. 3).

It seems that this remainder term can hide not only technical problems
but also deep problems relative to the nature of the spectrum. In particular,
we are unable to give the exact equivalent of the results in the free case
concerning the susceptibility and the Fermi level.
However we can prove the following results:

THEOREM 10.1: asymptotics of the energy per unit volume. - We

keep the same hypotheses and notations as in theorem 9. l. Then we have
the following expansion for Q (zo, h Bo, N, 0) with respect to h; there exists

classical symbols in h: c o (h), (h), Sji (z, h) Y E /B : = 3 2 + N ~ , J =1
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to M, /== 1 to m(j)) of order 0 such that:

with

where:

where the ~,p (8) are the floquet eigenvalues.

The principal terms in this formula are given in many standard books
in solid state physics (see for example formula 3 . 75 in White [Wh]). The
dominant perturbation induced by B on Q is given by the diamagnetic
term co2 h2; consequently the de Haas-van Alphen effect is difficult to see;
this is not the same thing for the asymptotic expansion we get by differenti-
ating formally with respect to h (we do not know if the remainder can be
differentiated); we shall call this expression the formal susceptibility xf
[which is defined modulo O (h°°)]:
THEOREM 10.2: asymptotics of the formal susceptibility. - We keep

the same hypotheses and notations as in theorem 9. 1. Then we have the fol-
lowing expansion for ~f (zo, hBo, N, 0) with respect to h; there exists classical

M, /=1 to mo .f jl03B4(h)(03B4~0394:= {- 2 }, J , l=0 to m (I )
of order 0 such that:
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In particular, the dominant term in the expansion is given modulo O (1) by:

This formal susceptibility will probably give the behavior of the

susceptibility for small temperature [in the sense that we have:

(I/Co) where Mo and M1 are real numbers s. t.:

and Co is a fixed constant independent of h]. Because we
have no satisfactory theorem in this direction, we omit to developp this
idea.

Another problem was that the Fermi level zo (h) depends in fact of h
and was in principle determined by the condition ( 10 . 3) and ( 10 . 4). So
we need at least the corresponding asymptotic formula for ~’ (z, B) as B
tends to 0. This will permit to have an approximation of the Fermi level.

THEOREM 10. 3: asymptotics of the counting function per unit volume.
- We keep the same hypotheses and notations as in theorem 9.1. Then we
have the following expansion for ~ (zo, hBo) with respect to h; there exists
classical symbols in h : bo (h), ~’ (h) (õ E n , j =1 to M, l =1 to m ( j)) such
that:

The proof of theorems 10.1, 10.2, 10. 3 are similar, so we shall make
some emphasis on the first of these theorems and we shall just explain
the points which are different for the two other theorems.

First reduction. - Let us also recall that, according to the results of
section 6 (particularly remark 6. 5), we have for each x with right compact
support in ] - oo, zo[ the following property:
( 10 . 9) Tr o (Ph) is a classical symbol with respect to h with no even
terms.
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If we are interested in the singularities (here we mean by "singularities"
the terms in the expansion which can not be written as a classical symbol
with respect to h) of the energy per unit volume, we get that it is sufficient
to analyze: Tr o (Ph) for some function 8Zo equal to 1 near zo
and with compact support in a neighborhood of zo such that we can apply
the results of section 9. The problem is that: o is not a C~

function so we can not apply directly the results of theorem 9.1. To
circumvent this problem we shall prove the following improvement of
theorem 9.1 (mentioned in remark 9. 3).

PROPOSITION 10 . 4. - The conclusions of theorem 9 .1 are true under the
weaker assumptions (instead of 8 . 14) on F:

(10.11) There exists ri&#x3E;O, some C and some No s. t. V x, y:

Proof - Let us introduce, for where

W is a C~ positive function with compact support in R s. t. 

If F satisfies ( 10 .10) and ( 10 .11 ), we introduce Fh, M = F * ‘~h, M. Let us
observe that we can apply theorem 9 .1 with Fh, M. To recover the result
we have just to observe the following facts:

(10.13) The measure associated to b is temperate with respect to h-1

( 10 .14) The measure is temperate with respect to h -1

Using (9 . 30) for Fh, M and ( 10 .11 )-( 10 . 14) and playing with M we get
easily (9. 30) for F.
According to (9. 30), we are now reduced modulo O to the study

of:

where F (z) = e (z - o (z) with support of 8 small enough in a neigh-
borhood of 0 in order to apply theorem 9 .1.
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Preliminaries. - Let us collect some technical results which will be
useful in the proof:

LEMMA 10 . 5 (see [He-Ro 2] and §1). - If f is Coo with right compact
support then:

(10.16) h ( ~ f (jh)) is a classical symbol with respect to h.

The value at 0 is given of course by:

Because we have to work with a non regular function f, it is natural to
imagine that we want to get ( 10 . 6) modulo 0 (hN), then we have to assume
that f is in some class Ck (N) for k (N) sufficiently large. This is probably
easy to prove by following the proof of the C~ case and will be sufficient
for what we need. But it was proved for other purpose in [He-Ro 3] the
following lemma [see (2.12)]:

LEMMA 10.6. - Let aCOO function on R. Then:
h ( E classical symbol of order 0 modulo 

LEMMA 10.7. - Let 03B3~R+, 03B6(s,h) a C~, function in

such that (as Ç) (s, h) &#x3E; 0, ç (so; 0) = zo, f a function with compact support
in ]so - Eo, so + Eo[, then:

modulo a classical symbol.
More precisely:

where:

Cy (h) and ay, s are classical symbols of order 0,
s (zo; h) is determined by the implicit equation:

the summation with respect to 6 is asymptotic.
Proof of lemma 10.7. - This lemma is an extension of lemma 10.6

and was proved in some particular cases in section 2. Let us start from
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the results we got:
[a] If ~ (s, h) = s, then we have proved that if f =1:

with:

[b] Let us now consider the case where ~ (s, h) = s, but only /== 1 in a
neighborhood of zo. Then (10.20) is still true because the function:
s - (1 -/) (s) (zo - s) + is a C °° function and we can apply lemma ( 10 . 5).

[c] When f is not equal 1 in a neighborhood of zo, with compact support
in a small neighborhood of zo, we can perform a Taylor expansion of f at
zo and write:

and we get:

where: f is equal to 1 in a neighborhood of zo and satisfies 

Now observe that rN is a classical symbol modulo 0(/~~~) according
to lemma ( 10 . 6). This finishes the proof in this case.
M Let us now consider the general case. As we have observed before

we can always suppose that the support of f is very small around so and
it is also clear that the proof of case [c] extends to the case where/==/(., h)
is a symbol with respect to h. Let us consider:

and observing that there exists a symbol s (z, h) s. t. ~ (s (z, h), h) = z, we
rewrite this expression as:
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where i (z, h, so) is a symbol with respect to h for which we can apply the
extension of [c] mentioned above. The explicitation of the computation
gives the lemma.

Proof of theorem 10 . 1. - We have to consider the term we mentioned
in 10 .15:

with:

Let us denote by Io, the integrals:

We shall study these different quantities successively.

Study of Io . - bo appears in 9 .11 and is a sum (over the different
components) of terms of the form:

that we can rewrite as: W (z, h) = h ~ q&#x3E; (z, kh, h) where
k

p (z, s, h) is a classical symbol with respect to h regular with respect to
z and s with compact support in s (see between 9 . 9 and 9.10).
We have:

where

It is then clear that:

(10.26) Io is a classical symbol of order 0.

Study We return to formulas (9 . 31 ) and (9 . 32) and forgetting
the reference to j and I, recall that:
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where we have the sign + (resp. -) if ( - (at f ’)) is &#x3E; 0 (resp.  0) ,
where m (z, s ; h) is a classical symbol such that (cf. 9 . 33):

and where T (s ; h), ç (s ; h) are classical symbols defined for s near f~ zo; 0)
written more simply f(0, zo; 0).

All these properties are true for z in a neighborhood of zo.
So let us compute 1~ in the case where ("(~~/)/~/)) is &#x3E;0:

Let us take the Taylor expansion of e (z - zo) (zo - z) m (z, s; h) at the point
ç (s; h) :

where cpi (s; h) is a classical symbol with respect to h and in s. We get
the following asymptotic expansion for 

Let us observe now that:

we can then rewrite the expansion of 1~ in the form:
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applying lemma 10.7, we get the general form announced for theorem
10.1 and in particular, the dominant terms are given by:

Using the relation: ~ ~ (zo ; 0); 0) = fj) - deduced from (9 . 31 ), we get
finally:

Recall here that Jj and Tjl are defined in theorem 9.1 and that Sjl (zo) is

given by f~ (Tjl (zo), zo; 0).
It is interesting to compare with the formula (2 .16) (with B = h,

f(t, z; h) = (lI2) ((z - t2) - h), T = 0 , s (zo , h) = (zo - h)l2))~
This finishes the proof of theorem 10.1.

Proof of theorem 10.2. - We want now to prove theorem 10.2. The
proof is quite similar because by definition we have decided to differentiate
term by term. Let us now remark the following relation for the function
p (y, a) introduced in ( 10 . 21 ) [or after ( 10 . 4)] :

Using this formula, we get immediatley the formula ( 10 . 5).

Proof of theorem 10 . 3 Modulo a classical symbol with respect to h, we

have now to compute 8 (zo - z) b (z) dz, with b given in ( 10 . 24) modulo
an error term, we hope to be O We can not apply the same lemma
as in the proof of theorem 10.1 because the function z -&#x3E; ~ (zo - z) lzzo
is not Holder near zo. But let us prove the following lemma:

LEMMA 10 . 8. - The measure v has the following property:
If Ih, M is an interval of length less than contained in a small

neighborhood of zo, then:
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In particular the mass of a point ( for is O 

Proof. - Because p is a positive measure, we can majorize p (Ih,M) by
computing p (c~h, M) where cph, M is a positive COO function equal to 1 on

1~ M and with compact support in an intervall I, M of the same type. cph, M
satisfies the hypotheses of theorem 9.1 and in particular (8 .15). Then it

is sufficient to study the integral M (z) b (z) dz which is easy according

to theorem 9 .1.
We can now prove theorem 10. 3. If we want to prove theorem 10.3

modulo we choose M = 3 N, and compare with

Tr (F h, M) as in the proof after proposition 10.4 but now with

We observe here that near zo the support of

(F (z) - F~, M) is in Ih, M and that this function, is bounded by 2. The lemma
10 . 8 permits to control the error.

Remark 10 . 9. - An interval of measure 0 inside the domain of validity
of theorem 9.1 is of length O This can be deduced from theorem

9.1 and from the positivity of the measure. In particular, the Fermi level
is determined by the expansion given in theorem 10 . 3 modulo D We

see as in the free case that the Fermi level is essentially constant as h
tends to 0 modulo an error of O (h3/2):

(10 . 33) zo (h) = zoo + 0 (h312).
As in the free case we can then insert zo (h) in the formulas ( 10 . 5) or

(10.6) and we get the same principal terms in the expansion as if zo was
constant and equal to zoo [see the discussion in (2.17) and (2.18)].
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