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The initial value problem of the Poincaré gauge theory
in vacuum II.

First order formalism

Aristophanes DIMAKIS
Institut fur Theoretische Physik,

Universitat Gottingen, Bunsenstr. 9, D-3400 Gottingen

Ann. Inst. Henri Poincaré,

VoL51,n°4,1989,~ Physique theorique

ABSTRACT. - The exterior initial value problem of the Poincare gauge
theory is studied in the first order formalism. The Cauchy-Kowalevski
conditions on the ten coupling constants of the theory found in paper I
are verified. The equations of Poincare gauge theory take the form of a
symmetric hyperbolic system if, and only if the hyperbolicity conditions
found in paper I are satisfied.

RESUME. 2014 Nous considerons Ie probleme des donnees initiales pour la
jauge de Poincare dans Ie formalisme du premier ordre. Nous verifions
les conditions de Cauchy-Kowalevski sur les dix constantes de couplages
introduites dans 1’ article I. Les equations de la jauge de Poincare prennent
la forme d’un systeme hyperbolique symetrique si et seulement si les
conditions d’ hyperbolicite trouvees dans 1’ article I sont satisf aites.

1. INTRODUCTION

In a previous paper [1], hereafter denoted by I, we studied the exterior
initial value problem of Poincare gauge theory ( PGT) [2] in the second
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390 A.DIMAKIS

order formalism. Our prototype was the work of Y. Bruhat [3] on the
initial value problem of general relativity. We found there sufficient condi-
tions (called Cauchy-Kowalevski conditions) on the ten coupling constants
of PGT, under which the Cauchy-Kowalevski theorem can be applied in
the field equations. We also obtained sufficient conditions on the same
constants (called hyperbolicity conditions), so that gauge conditions, similar
to the harmonic gauge in general relativity, can be found in which the
field equations are hyperbolic. We failed to show necessity for both sets
of conditions. As mentioned already in I, to prove necessity for the C-K
conditions one has to study separately all possible theories arising from
their violation. This is hard to do not only because of the big number of
possibilities (we found 10 C-K conditions), but also because no standard
methods for such an undertaking exist. It is surprising that although the
C-K conditions are weak conditions of the form (linear combination of the
coupling they are violated by most of the theories already
proposed in the literature (see [4] for references).
The hyperbolicity conditions are obtained from the requirement, that

the second order terms of the field equations take the form AD 
where u denotes the field variables: orthonormal tetrad and

connection and A, B, C are matrices depending on the tetrad. F = 0 is the
generalization of the harmonic gauge. It seems restrictive to require the
fild equations of PGT to take this special form motivated from general
relativity. Unfortunately general criteria for hyperbolicity of second order
equations existing in the mathematic literature ( [5], [6]) do not apply
directly on our object. Another possibility is to apply K. O. Friedrichs
theory of symmetric hyperbolic systems. This theory already applied in
general relativity and other gauge theories by A. E. Fischer and J. E.
Marsden [7] and H. Friedrich [8] uses first order formalism.

In the present paper we formulate PGT as a system of first order

equations in tetrad, connection, torsion and curvature and find conditions
under which this system becomes symmetric hyperbolic. The system of
equations we study consists of the structure equations, the Bianchi identi-
ties and the actual field equations. Using the "time gauge" [9] with respect
to the hypersurface S of initial data, we eliminate the gauge degrees of
freedom and decompose the field variables and equations in components
orthogonal and tangent to S. Since the resulting objects are three dimen-
sional we express the (3 + 1)-decomposed equations in the calculus of
3-vectors. We finally obtain a system of first order equations for 84
independent variables. It decomposes into 84 evolution equations and 46
constraints. Using the integrability conditions of the system, we show that
the 46 constraints are preserved in time. To apply the Cauchy-Kowalevski
theorem on the system of evolution equations the coefficient matrix of
the time derivatives of the variables must be invertible. We express the

l’Institut Henri Poincaré - Physique theorique



391INITIAL VALUE PROBLEM OF THE POINCARE GAUGE. II

system in terms of traces, the antisymmetric parts and the trace free,
symmetric parts of the tensors appearing in the equations to make this
matrix diagonal. The ten C-K condition found in I follow now immedia-
tely.
A first order system of differential equations is symmetric hyperbolic in

the sence of K. O. Friedrichs, if the coefficient matrices of the derivatives
of the variables are symmetric and the coefficient matrix of the time
derivatives is additionally positive definite. Our system does not satisfy
these conditions. We can modify it by taking combinations of its equations
and the constraints. We find that it can be made symmetric hyperbolic if,
and only if the hyperbolicity conditions obtained in I are satisfied. Thus
we succeed to prove that these conditions are necessary.
The method used here required lengthy and cumbersome calculations.

One can recognise that from the unavoidably lengthy lists of equations
that follow. We tried to give only these equations, which we thing are
absolutely necessary to follow the reasoning without much effort.

2. FIELD EQUATIONS OF PGT IN VACUUM

The Lagrangian of the Poincare Gauge Theory ( PGT) is composed of
ten terms, which are at most quadratic in the field strengths: torsion 0’
and curvature We write it in the form

9’ denotes the orthonormal tetrad field and

is the volume four form. In terms of the tetrad and the connection one
form torsion and curvature are given by the structure equations

and

c0, c1 are coupling constants and the two invariant tensors bijkl|mnrs
are given in terms of eight more coupling constants p, q, r and p, ql, q2,

Vol. 51, nO 4-1989. -
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rl, r2 in the form

and

where

The Lagrangian as given in ( 1) contains the least possible number of star
operators. We made this choice because in the variation process it is *
that gives the most complicated expressions.
An orthonormal tetrad field ~i and a metric compatible connection oij

are the dynamical variables of PGT ( 1). In the first step of the variation
we set

Using the structure equations we find

and

where D denotes the exterior covariant derivative associated to Substi-
tuting these expressions in ( 5) we obtain

with

The vacuum field equations of PGT are

( 1) The Minkowski metric has here ’ the signature ’ ( -1, + 1, + 1, + 1).

- Annales de Henri Poincaré - Physique ’ theorique ’
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, 

Since 2 is a scalar four form application of Noether’s theorem gives two
differential identities

and an algebraic one

From equations (1) and (5) we obtain

We call these constitutive equations of PGT.

3. (3 + 1)-DECOMPOSITION AND GAUGE CONDITIONS

Let S denote a spacelike hypersurface given by t (x) = 0. Using Gaussian
coordinates with respect to S the metric takes the form

This form of the metric implies that we can take the tetrad field to be

with

A, B,... =1, 2, 3 denote anholonomic and A’, B’, ... =1, 2, 3 denote
holonomic indices. The dual tetrad is given by

where is the inverse of 
The choices made above fix some of the gauge degrees of freedom of

the theory. The use of Gaussian coordinates fixes obviously the diffeomor-
phisms and the choice ( 13) of the tetrad fixes additionally the boost part
of the local Lorentz transformations. It is used to call this gauge fixing
the time gauge [9]. The remaining local Lorentz gauge freedom will be
fixed after the 3 + 1 decomposition of the connection is defined.
For an arbitrary form W we set

and

Vol. 51, n° 4-1989.



394 A. DIMAKIS

Both 0/ and 0/ are differential forms defined on S. Using these operations
we find from ( 13) ’

For the 3 + 1 decomposition of the connection we set following [10]

We use now the remaining local Lorentz gauge freedom to set

To decompose the field equations of PGT as in ( 16), ( 17) we need to
know how the exterior product, the star operator and the exterior deriva-
tive behave under these operations. We find for all forms B)/ and r-forms
9r .

and

and

The symbols used above have the following meaning: d denotes the exterior
derivative on S, a dot denotes the Lie derivative along eo and * is the

star operator on S defined with respect to Two further operations
are necessary in order to write the decomposed field equations in a

compact form. We set

and

Since the metric gA. B’ depends in general on time, it is obvious that ~r’ ~.
We have

Annales de /’Institut Henri Poincaré - Physique theorique
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In the three dimensional case we deal with, the calculus of differential
forms is equivalent to the usual vector calculus. Since the later is more
familiar we express all one and two forms in terms of vectors. Every one
form a is equivalent to a vector a and from a two form cp we can construct
a one form with the aid of the star operator. It is easy to prove the

following identities: for any two 1-forms ~, &#x26;

where x ( . ) denotes the usual cross (dot) product.
For a 0-form cp we have

and for a 1-form a

and

We set also

and we write the covariant nabia operator

and

The curvature tensor on S is given by

where

is different from Expressed in this calculus equation (25) takes the
form

Vol. 51, n° 4-1989.
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4. (3 + 1)-DECOMPOSITION OF THE FIELD EQUATIONS OF PGT

To write the equations of PGT as a first order system we use the tetrad
field 03B8i, the connection the torsion O’ and the curvature 03A9ij as

independent variables. These give a total number of 100 variables. The
equations of the system are:

(i) the structure equations

(ii) the Bianchi identities

and (iii) the field equations

The constitutive equations ( 11 a, b) and equation (10 c) must be used in
order to express the last two equations in terms of the independent
variables. The above equations are accompanied by their integrability
conditions .

and the Noether identities ( 10 a, b). Equations (36 a, b) are 3-forms and
their integrability conditions are

No further integrability conditions arise since equations (37 a, b) and (38 a,
b) are 4-forms. To express the 3 + 1 decomposition of all these equations
in the calculus of 3-vectors it is necessary to introduce a big number of
new symbols. Since the equations are in general complicated we use
different letters. We give therefore tables of the symbols and their meaning.

Annales de l’Institut Henri Poincaré - Physique theorique
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For the two forms T’, Si and W", S‘’ we set

For the three forms ~I = q‘, pi, BB F and J1’ we set

and

Using the rules of section 2 we calculate the 3 + 1 decomposition of the
sections of the system. We find:
from the first structure equation ( 33 a)

from the second structure equation (33 ~)

Vol. 51, n° 4-1989.
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from the first Bianchi identity (34 a)

from the second Bianchi identity (34 b)

from the first field equation ( 35 a)

from the second field equation (35 b)

From the integrability conditions ( 36) to ( 37) we obtain

Annales de l’Institut Henri Poincaré - Physique théorique
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and from equations (38~, b) we obtain

It is plausible that equations of the main system ( 39) to (44) which contain
a time derivative ( ’ ) or ( ) are evolution equations, while the remaining
equations are constraints on the initial data. The constraints ( 39 a, b) are
algebraic and allow us to eliminate ç and ~ from the other equations.
Equations (41 a, b) reduce to (40 a, b) after the elimination. There remain 

-

Vol. 51,n°4-1989.
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84 independent variables aA, KA, pA, eA, bA, fA, hA, since 10
are already eliminated by the gauge fixing. The independent evolution

- equations (39 d), (40 b, d), (41 d), (42 b, d), (43 c, d), (44 c, d) are also 84.
There remain 46 constraint equations (39 c), (40 a, c), (41 c), (42 a, c), (43 a,
b), (44 a, b).
The system of integrability conditions (45) to (50) can be divided

similarly into 46 evolution equations (45 d), (46 c, d), (47 b), (48 a, b), (49 a,
b), (50 a, b) and 9 constraint equations (45 b), (46 a, b) for the 46 constraints
of the main system CA, FA, PA, MA, UA, XA, 7t, 8~. Since A and B
vanish identically (45 a, c) reduce to algebraic equations, which can be
used to eliminate H, L and show that (47 a) is a consequence of (45 d).
After the evolution equations of the main system are solved for some
initial data satisfying the constraints of the main system, the system of
integrability conditions becomes a linear homogeneous and hyperbolic
system in these constraints. Thus the constraints vanish for all times, if

they are taken to vanish on the initial surface S. The time conservation of
the 9 constraint equations of the system of integrability conditions can be
proved in a similar way from the 9 equations (51 b), (52 a, b). No further
constraints arise.

5. CAUCHY-KOWALEVSKI CONDITIONS

We apply the 3 + 1 decomposition rules on the constitutive equations
( 11 a, b) and eliminate with there aid s, r, mA, DA and UA, zA, vA, YA from

equations (43), (44), consideration of the principle parts of the differential
equations shows that the system decomposes into three decoupled - on
the level of their first derivatives - subsystems. We will express the vectors
in terms of their anholonomic components with respect to 9~A.
The first subsystem for the 18 components of SA and roA is given by

the evolution equations:

and the constraints:

For any field variable ~, ~ resp. ~ will be used alternatively to denote
either the terms of zeroth order or as an abbreviation for the principle
part of the evolution equation resp. constraint for g. It is obvious that
the above subsystem has a well posed initial value problem and is hyper-
bolic. We will not discuss it any longer.

de l’Institut Henri Poincaré - Physique theorique
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In the other two subsystems we decompose the tensors AB into a trace

part ~:==~~ an antisymmetric p art ~~= and a trace free

symmetric p art ~ ~ - As ~ 1 ~ 2 ~aB~ 1 ~ 3 AB ~. In the same way we decom p ose
also the equations for ~p-
The second subsystem is for the 30 components of torsion and second

f undamental f orm.
Evolution equations:

Constraints:

Vol. 51, n° 4-1989.
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where for all vectors we write ~AFB to denote the trace free symmetric
part 
The third subsystem is for the 36 components of the curvature.
Evolution equations:

l’Institut Henri Poincare - Physique . théorique -
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Constraints:

Since every evolution equation above contains only one time derivative of
some quantity, it is obvious that in order to apply the Cauchy-Kowalevski
theorem on PGT the coefficients of these terms may not vanish. Looking
f or these terms we obtain a table of conditions f or the coupling constants.

The evolution 
the followingof the following ~ conditions

quantities - hold
is determined , hold

Vol. 51, n° 4-1989.



404 A. DIMAKIS

where

These ten conditions are the same with those found and discussed in
theorem 1 of I. We note again that they are sufficient but not necessary
conditions. The advantage here is that the components of torsion and
curvature are given whose propagation depend on these condition. Thus
if some of these conditions are violated we can say how many free
functions are to be expected in a generic solution of the theory.

6. HYPERBOLICITY CONDITIONS OF PGT

A system of differential equations

where A, AA are square matrices and u is the column vector of dependent
variables is symmetric hyperbolic in the sence of K. O. Friedrichs ([5], [6]),
if (i) all matrices A, AA are symmetric and (ii) A is positive definite.

Although the theory of symmetric hyperbolic systems is initially developed
for linear systems it extends to the quasi-linear case ([7], [8]).

Let (65) denote the system of evolution equations of PGT (53), (55) to
( 57) and ( 61 ) to ( 63) . This is accompanied by the system of constraint
equations ( 54), ( 58) to ( 60) and ( 64) . We denoted it by

where BA need not be square matrices.
We see that for our system A is diagonal but the matrices AA, A = 1, 2,

3 are not in general symmetric. We have a symmetric hyperbolic system
immediately if all coupling constants but co, cl, p, p vanish (see [4], p. 46
for references). In order to make this system symmetric in the general case
we can apply three operations: (i) change the dependent variables, (ii) add
a combination of the constraints and (iii) multiply on the left by an
invertible matrix. Applying these operations on (65) we obtain

where C, E, F are matrices depending in general on all variables. Since
A, AA are constant matrices (the tetrad is hidden in it suffices to
take C, E, F to be also constant. Thus the problem reduces to find
constant matrices C, E and F such that AI: =CAE is positive definite
and A’, are symmetric. This is simplified by the
observation that the two properties of positive definiteness and symmetry

l’Institut Henri Poincaré - Physique theorique
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are invariant under similarity transformations. Thus transforming (A’, A’A)
to ( A’, A’A) ( E -1 ) the two properties needed for hyperbolicity are
invariant. Therefore we can set from the beginning E = identity. Another
simplification comes from the fact that A is diagonal. This and the fact
that A’ must be symmetric restricts C to be almost symmetric. Finally it
is obvious that it will not help symmetrization or positive definiteness to
combine either uncoupled subsystems or even equations in the same

subsystem determining the evolution of the trace of some variable with
that for the antisymmetric part or the trace free symmetric part of the
same or an other variable. Thus it remains to look only for combinations
in the "trace parts", the "antisymmetric parts" and the "trace free symme-
tric parts" of the subsystems. These observations reduce the number of
independent entries of the matrices C, F drastically. For the torsion system
there remains a total number of 31 and for the curvature system a number
of 26 entries to be determined. In the appendices we determine these
entries, so that a symmetric hyperbolic system of the PGT can be cons-
tructed. Here we give only the results.

In order for the torsion system to be symmetric hyperbolic the coupling
constants p, q, r must satisfy condition

Similarly the coupling constants p, ql, q2, rl, r2 must satisfy conditions

and

in order for the curvature system to be symmetric hyperbolic. These
conditions are both necessary and sufficient. They are identical with those
found in paper I. There we were able to prove only sufficiency.
Under these condition we obtain two symmetric hyperbolic subsystems.
The symmetric hyperbolic torsion system:

Vol. 51, n° 4-1989.
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where

The symmetric hyperbolic curvature ’ system:

where

The two constants rand r are eliminated with the aid of ( 68) and ( 69 b),
because of the Cauchy-Kowalevski conditions.

The characteristics of the two subsystems can be calculated from

in terms of Ço, ÇA’ The light cone will belong to them as we show in our
first paper. It is interesting to know how the characteristics behave when
the hyperbolicity conditions ( 68), ( 69) are not satisfied. Since the matrices
involved are 30 x 30 and 36 x 36 this is a problem for the computer.
We can summarize the results of this section in the form of a theorem.

THEOREM. - The evolution equations of PGT in vacuum, in first order
formalism can be brought in the form (65) with A, AA symmetric and A

definite if, and only if the hyperbolicity conditions (68), (69)
are satisfied. If further the Cauchy-Kowalevski conditions hold, then A
becomes positive definite and we obtain the symmetric hyperbolic system of
equations (53), (70), (71).

This is stronger than theorem 2 of paper I, since it proves that the

hyperbolicity conditions are also necessary to obtain a hyperbolic system
out of the field equations of PGT in vacuum. The only objection one can
raise to this result is that it may depend on the time gauge used here. To
this we note that the hyperbolicity conditions are conditions on the

coupling constants alone and thus cannot depend on any gauge condition.
Further we have complete agreement with the results of paper I, where
no gauge conditions are used. The contrary assumption, i. e. that the

necessary and sufficient hyperbolicity conditions derived depend on the

l’Institut Henri Poincaré - Physique theorique
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gauge would lead to the strange possibility of fixing some gauge by gauge
independent means.

APPENDIX A

The most general reasonable combinations of the equations of the
torsion system ( 55) to ( 60) are

We demand from this system to be symmetric hyperbolic. That is written
in the form

the matrices A, AA must be symmetric and A must be positive definite. It
is cumbersome to write down the matrices explicitly, instead we can make
use the of following fact: variation of the Lagrangian

with respect to u leads to

Thus if the matrices A, AA are symmetric these equations vanish identically
in u and aA u. In our case L is given by

Vol. 51, n° 4-1989.
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We vary now L with respect to all variables and demand the equations to
vanish identically. This leads to a linear homogeneous system for the
31 unknowns ...,9~. The system decomposes into two independent
subsystems. The first part is for 7 unknowns and can be solved immediately
in terms of a parameter y:

Four of the remaining unknowns can be eliminated with the aid of the
following equations

There remains a system of 14 equations for 20 unknowns:

Matrix A of the system is block diagonal consisting of

Annales de Henri Physique - théorique -
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three times

and five times

To prove positive definiteness of these three matrices we use a well known
theorem of matrix theory [11], § 10. 4: a square matrix is positive definite
if and only if all its main diagonal determinants are positive. Applying
the theorem to the above matrices we obtain among other conditions the

following:

and

which follows from (A 17) and (A 18).
We sketch now how the system (A 1) to (A 14) can be solved in terms

of Å,1’ v2, ’111’ 112’ 113’ Y4 and give only the expressions for the quantities
in (A 15)-(A 19). We first solve (A 13) for V1 and (A 7), (A 9) for Y1 and

after that (A 10), (A 12) can be solved for Y2 and

Next we solve (A 6) for

and (A 5) for Ø3’ (A 1), (A 2) for ~31, À2" Equations (A 11) and (A 14) can
now be brought in the form

Vol. 51, n° 4-1989.



410 A. DIMAKIS

The determinant of this system is

If then we solve (A 23), (A 24) for v3, Y6 and substitute in (A 8) to
obtain

We show now that the expressions found for À4, l~2, 1~3 lead to

contradictions if they are substituted in (A 15), (A 16). In fact from (A 22),
(A 15) and (A 19) we obtain

further from (A 16), (A 20), (A 21) and (A 26) we find

which with the aid of ( A 17), ( A 19) and ( A 27) gives

Squaring the last inequality and using (A 18) leads to a contradiction

We conclude if p (q + r ) + q 2 ~ 0 the torsion system is not symmetric
hyperbolic.

If we set

the following values of the unknowns lead to the symmetric hyperbolic
system ( 70) .

de Poincaré - Physique theorique
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where

In the above calculations we have assumed that the C-K conditions hold.
As is obvious from the matrices, if this is not the case A is singular.
Allowing also this possibility is now not difficult to handle. This will then
verify the necessity of the hyperbolicity conditions for the singular case.

APPENDIX B

The method used in Appendix A will be applied now to the curvature
system (61) to (64). The Lagrangian containing the combinations of the
equations of the curvature system is

We vary L with respect to all variables and require, that the equations
resulting vanish identically. There results a system of 24 linear homoge-

Vol. 51, n° 4-1989.
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neous equations for the 26 unknowns À1, ..., Y4.

Annales de l’Institut Henri Poincare - Physique " théorique "
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The coefficient matrix of the time derivatives is again block diagonal with
components:

three times

and five times

For a 2 x 2 symmetric matrix

Vol. 51, n° 4-1989.
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the conditions of positive definiteness read

We look for solutions of the system (B 1) to (B 24) which make the above
matrices positive definite. From (B 22) we find

and from ( B 22) and ( B 24)

Thus if q 1 ~ q2 we obtain

anf from (B 21)

Substituting (B 28) in the conditions for positive definiteness of the

~-matrix we find a contradiction

Thus we must set

We solve now (B 1), (B 3), (B 14), (B 10), (B 21), (B 23), (B 12), (B 20),
( B 15) and ( B 18) to obtain

Annales de l’Institut Henri Poincare - Physique - theorique



415INITIAL VALUE PROBLEM OF THE POINCARE GAUGE. II

We eliminate these quantities from the remaining equations and obtain a
simpler system.

Now solve (B 46) for Ç2’ (B 42) for À2, (B 44) for À3 and substitute these
quantities in ( B 40) to obtain

From (B 47), (B 43), (B 45) and (B 41) we obtain similarly

Vol. 51, n° 4-1989.
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If (p + q) then we can solve (B 53) for Ç3 and eliminated
it from the expressions for Çl and çz. We observe that

holds, which together with the positive definiteness condition for the

ç-matrix

leads to a contradiction

Similarly if (p + q) we obtain a contradiction from the

positive definiteness conditions of the v-matrix. Thus we must set

These conditions are equivalent to

If conditions (B 29), (B 55) and (B 56) holds, then we can eliminate r from
all equations with the aid of (B 56). The following values for the unknowns
Å,1’ ..., y4 lead to the symmetric hyperbolic system (71).

where

The remark made at the end 0 of appendix A holds here " again if the C-K
conditions are ’ violated.

Annales de l’Institut Henri Poincare - Physique " theorique ’
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