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The initial value problem of the Poincaré gauge theory
in vacuum I.

Second order formalism

Aristophanes DIMAKIS
Institut fur Theoretische Physik,

Universitat Gottingen, Bunsenstr. 9, D-3400 Gottingen

Ann. Inst. Henri Poincare,

Vol. 51, n° 4, 1989, Physique , théorique ,

ABSTRACT. - The exterior initial value problem of the ten parameter
Poincare gauge theory is studied in the second order formalism. Sufficient
conditions on the ten parameters are found under which (i) the Cauchy-
Kowalevski theorem can be applied and (ii) the field equations become
hyperbolic.

RESUME. 2014 Nous considerons Ie probleme des donnees initiales pour la
jauge de Poincare a dix parametres dans Ie cadre du formalisme du second
ordre. Nous trouvons des conditions sur les dix parametres telles que (i)
Ie theoreme du Cauchy-Kowalevski peut s’appliquer et (ii) les equations
de champ deviennent hyperboliques.

1. INTRODUCTION

The problem studied in the present article can be expressed in the form
of two questions: first can one apply the Cauchy-Kowalevski theorem to
the field equations of Poincare gauge theory ( PGT) and secondly are these
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372 A. DIMAKIS

equations hyperbolic? To both questions we give only partially positive
answers. We obtain ten conditions of the form (linear combination of the
coupling which can guarantee the applicability of the Cau-
chy-Kowalevski theorem, and four equations such that if they are satisfied
by the coupling constants, gauge fixing conditions can be found, under
which the field equations take an obvious hyperbolic form. Although the
above conditions are obtained in a very natural and unforced way, they
are only sufficient conditions. The problems connected with proving neces-
sity will be exposed in the main part of the article.

In case these conditions hold we achieve a standard situation, which as
in general relativity ( [ 1 ], [2]) enables application of the theory of hyperbolic
differential equations.

Poincare gauge theory ([3], [4]) is a field theory formulated for a

spacetime obeying a Riemann-Cartan geometry. Because of the presence
of torsion, the connection attains here the status of an independent
dynamical variable. Expressed in terms of tetrad and connection the theory
is invariant under diffeomorphisms and local Lorentz transformations. In
its gauge theoretic version tetrad 9 and connection o are interpreted as
gauge potentials of the Poincare group with torsion Q and curvature
R as corresponding gauge fields ([5], [6]). Contrary to the situation in
Riemannian geometry any Lagrangian of the form L(3, Q, R) gives second
order differential equations in the field variables. Poincare gauge theory
has Yang-Mills theory as a prototype and thus restricts the Lagrangian
to be parity non-violating and at most quadratic in the gauge fields. The
most general theory underlying these conditions contains ten coupling
constants.

The elaboration of the initial value problem of PGT follows in its basic
characteristics that of general relativity [7]. PGT leads to a system of
forty second order, quasilinear partial differential equations for forty field
variables. Since the theory is invariant under the groups of diffeomor-

phisms and local Lorentz transformations ten of the variables are unessen-
tial. That is, by means of transformations of the above groups one can
ascribe to the ten unessential variables any functional dependence wished,
without affecting the physics described by the initial data. Associated to
that, ten of the field equations contain no evolution terms and thus impose
constraints on the initial data. The ten differential Noether identities

following .from the invariances of PGT guarantee, that these constraints
hold in every neighbourhood of the "initial time". In case the hypersurface
representing initial time is spacelike, the remaining thirty field equations
determine locally the evolution of the essential variables, if the determi-

nants of some coefficient matrices do not vanish. This imposes ten condi-
tions on the coupling constants of PGT. We call them Cauchy-Kowalevski
conditions.
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373INITIAL VALUE PROBLEM OF THE POINCARE GAUGE. I

The characteristics of PGT are lightlike hypersurfaces. The number of
second order outgoing derivatives of the field variables, which remain
undetermined on a characteristic hypersurface depends on the coupling
constants. If these satisfy four equations this number becomes a maximum.
The same holds for the number of free second order discontinuities of the
variables on characteristics.

It is amazing that in this case one can find gauge conditions, similar to
the Hilbert-de Donder gauge conditions in general relativity, such that the
second order terms of the field equations take the form: (constant matrix)
D variables). The coefficient matrices are invertible because of the
Cauchy-Kowalevski conditions and thus the system is obviously hyper-
bolic. These four equations reduce the number of free coupling constants
from ten to six. We call them hyperbolicity conditions.
The ten Cauchy-Kowalevski conditions have already been found in the

study of the Hamiltonian dynamics of PGT from M. Blagojevic and I. A.
Nikolic [8], Table I. Of the four hyperbolicity conditions the first is
mentioned in another context from R. Kuhfuss and J. Nitsch [9], equation
(4.15 b).
Our conventions are as follows: Greek indices denote holonomic, latin

indices anholonomic components. Both run over 0, 1, 2, 3. (Anti-)Symme-
trization symbols are used without factors.

2. VACUUM FIELD EQUATIONS OF POINCARE GAUGE
THEORY

The geometric background of PGT is a four dimensional spacetime
with (i) a tetrad field ~i~, which together with the Minkowski metric

determines through

a metric structure and (ii) a linear connection which is compatible
with the metric. In terms of the covariant derivative associated to 
metric compatibility means and implies

Tetrad and connection transform like one forms under diffeomorphisms.
The metric is invariant under local Lorentz transformations of the
tetrad and is a Lorentz connection.

Torsion and curvature are given by the structure equations
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374 A. DIMAKIS

and satisfy the Bianchi identities

where anholonomic indices transform into holonomic ones by means of
the tetrad 9~‘~ and its dual ei~.
A Lagrangian giving field equations for 9~‘~, must transform like a

density under diffeomorphisms and must be invariant under local Lorentz
transformations. If the field equations have to be at most second order
differential equations in 9~i~, we must set

The field equations obtained from 2 are quasilinear and take a compact
form expressed in terms of

We obtain two sets of field equations

where

Applying Noether’s theorem on L we obtain an algebraic identity

and two differential identities

PGT is the special case of the theory described above, where the
Lagrangian depends at most quadratically on and and does not
contain parity voilating terms. This implies that the field equations are
quasilinear second order equations, where the coefficients of the second
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375INITIAL VALUE PROBLEM OF THE POINCARE GAUGE. I

order derivatives depend only on the tetrad. Written with anholonomic
indices these equations look semilinear, but this is so only because the
tetrad is hidden in the anholonomic indices of the differential operators.
The most general Lagrangian satisfying the above conditions contains ten
coupling constants. We write it in the form

with

In expanded form (12) gives

The present choice of the coupling constants is almost forced to the
author by the calculations in the first order formalism ( 1). In terms of
them the Cauchy-Kowalevski conditions can be divided into three almost
identical subsystems of conditions (cf. Section 3). This fact reflects the
reduction of the calculations to almost one third of the whole, effected by
the use of the present coupling constants. In order for the reader to be
able to compare our results with those presented in other formulations of
PGT we give the following convertion formulas relating the present coup-

( 1) This is part II of our work on the exterior initial value problem of PGT and will be
published as a separate paper.
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376 A. DIMAKIS

ling constants to the set used in [10]:

and

where i =1, 2, 3 and B~, ~’=1, ... , 6. Note that
because of the Gauss-Bonnet theorem the six curvature square terms

used in [ 10] are not all independent, and one has as a consequence

2~-3~+~3=0(c/: also [6]).
The field equations of PGT are

and

For the initial value problem only the first terms on the right side of
( 16 a, b) are of interest. We must use of course the structure equations
(5 a, b) to eliminate from ( 16 a, b).

3. CAUCHY-KOWALEVSKI THEOREM FOR PGT

The Cauchy-Kowalevski theorem proves the existence of analytic solu-
tions for systems of partial differential equations, if analytic initial data
are given on some hypersurface of the space of independent variables.
The theorem presupposes that the differential equations are themselves
analytic expressions of their arguments and can be brought in a standard
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377INITIAL VALUE PROBLEM OF THE POINCARE GAUGE. I

form with respect to the hypersurface of initial data. This is attained if
the system can be solved for the highest hypersurface-outgoing derivatives
of all its dependent variables ([11], [12]).

In this section our goal is to bring the field equations of PGT ( 16 a, b)
in the standard form necessary to apply the Cauchy-Kowalevski theorem.
They are obviously analytic in all their arguments. Since they are second
order in 9~‘~ and the initial data needed on a hypersurface S, given by
t (x) = 0, must cosist of the field variables &#x26;~, and their first derivatives.

Clearly these data cannot be independent, because all derivatives of 9~,
interior in S can be obtained by the values of 9~, on S.

To define outgoing and interior derivatives, we need the one form

and a timelike unit vector tp on S, such that

The metric properties of tP "unit", "timelike" are defined with respect to
the metric structure induced by the initial data for ~‘~ on S. Independent
of the character of np, tP points always outside of the hypersurface S. For
any field u (x) we define the S-outgoing and S-interior derivatives of u (x)
by

with N p : = nP/N. Using this decomposition of partial derivatives in the
structure equations we obtain

where we are interested only on terms containing the highest outgoing
derivatives. Substituting into the field equations we find

where 03B3ijk denote terms of at most first order in at. We set now

and write the field equations in the compact form

To bring this system in the standard form we have to solve it for 
From the symmetries of Aijk|abc and Bijkl|abcd and (22 a, b) it is obvious

Vol. 51, n° 4-1989.
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that

From (23 a, b) and (24 a) we have immediately

which means that the components cijk Nk=0 of the field equa-
tions do not contain second order derivatives of the field variables and
hence they are constraints on the initial data.

Equations (24 b) imply that components of the form 03C4kNt and ~lmNn
do not appear in the field equations. This is related to the fact, that the
field equations are invariant under diffeomorphisms and local Lorentz
transformations

with

Similar to what one does in general relativity ([7], [13]) we choose x~ (x)
and Ai~ (x) satisfying

on S, and such that the only non vanishing third order derivatives of
them on S are

where because of the Lorentz relation (27). Then (26 a, b) imply
~ N ~L~’ and

on S. Thus and ~ijktk can take arbitrary values, because of the
invariance of PGT under diffeomorphisms and local Lorentz transforma-
tions. We conclude that the components ~‘~ t~‘ and are unessential
for the physics of the theory and we need not bother about their evolution.
To find out if the remaining components of ~ijk can be determined

from the field equations we need to specify the character of np. We assume

Annales de Henri Poincaré - Physique theorique



379INITIAL VALUE PROBLEM OF THE POINCARE GAUGE. I

therefore here, that S is a spacelike hypersurface, that is n satisfies

The case n2  0 makes physically no sense, nevertheless the results obtained
in this section apply equally well to this case. The remaining case nZ == 0
will be discussed in the next section.

Because of condition (29) it is convenient to set then n=N and

Using this we obtain from (23 a, b), (22 a, b) and ( 13 a, b)

where the abbreviation was used. To analyse further these
equations we decompose ~lmn in components orthogonal and parallel
to NL. Using the projection tensor

implicitely defined also in ( 19) for general Np, we have

where

and

In the same way we decompose also the field equations ( 30 a, b) and
express the results in terms of the projected components of We
find

and

Vol. 51,n° 4-1989.
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Equations ( 32 c), ( 3 3 c) are the constraint equations ( 25) and the unessential
components ~ijN, ~iNN do not appear in both systems (32), (33).
To solve the remaining equations for the essential components conditions
must be imposed on the coupling constants. From ( 32 a, b) we find the
conditions:

and similarly from ( 33 a, b) the conditions:

We can express these results in the following form.

THEOREM 1. - The Poincare gauge theory in vacuum has a well posed
analytic, initial value problem, if the Cauchy-Kowalevski conditions (34) and
(35) are satisfied. In this case, equations 0 = pij=pNi, o - cijk - cNij are

evolution equations for the essential components of 9~1~, and the Cauchy-
Kowalevski theorem applies. -

Going back to the Noether identities ( 11 a, b) and decomposing the
partial derivatives according to ( 19) we obtain

This system reduces to a first order linear system for the constraints only,
if we suppose, that the evolution equations are already solved for some
initial data satisfying and on S. The initial value

problem for (36) possesses a unique solution, which for the initial data

pij Nj=0=cijkNk for is obviously for all t. Thus

we" have shown that under the Cauchy-Kowalevski conditions the exterior
initial value problem of PGT can be formulated as in general relativity.

Conditions (34), (35) are sufficient but not necessary. The cases where
some or all of them are violated must be studied separately. For example,
if p=q =r=p PGT reduces to Einstein-Cartan theory
with cosmological constant, which is first order in ~i~, and possesses
a well posed initial value problem [14]. To study how the present results

go over into the initial value problem of the Einstein-Cartan theory one
has to include in (21) also terms of first order. The transition from the

l’Institut Poincaré - Physique theorique
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initial value problem of the full PGT to that of Einstein-Cart-an theory is
a difficult problem and will not be undertaken here. The teleparallelism
theory can be obtained if one replaces equation by Here
conditions ( 35) are no more relevant, but ( 34) still hold. More complicated
becomes if only few of (34), (35) are violated. An example is the von der
Heyde-Hehl theory ( [15], [16]), where In this theory equation
( 32 b) becomes

This contains only interior derivatives and hence is a constraint of the
initial data. Additionally the term does not appear now in the
field equations, and thus the evolution of the corresponding components
of the tetrad is not clear. One way out of this problem is given, if pN~
contains the term and (37 a) can be solved for it. In this case
( 3 7 a) takes the form

and can be interpreted again as an evolution equation. The conditions
under which this can be done will in general restrict the initial data further.
It will be therefore necessary to show that these new conditions are

preserved in time. Another possibility is that the theory possesses some
hidden symmetry, which will make these components of the tetrad field
to be unessential. The Noether identity associated to the hidden symmetry
will then perhaps guarantee the time conservation of the new constraint.
We will not discuss such degenerate cases any further.

4. CHARACTERISTIC HYPERSURFACES OF PGT

The study of the field equations in the last section was based essentially
on the assumption If

then the situation changes drastically. The field equations do not determine
any more the propagation of all essential field variables. S becomes a
characteristic hypersurface of PGT. We shall now investigate how many
of the outgoing second order derivatives of the essential components of
the field variables can be determined on a characteristic hypersurface of
PGT.
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On a characteristic hypersurface the field equations become

We make a (2 + 2)-decomposition of the field variables using a lightlike
vector Li, which satisfies L~N’=1(~). With it we construct a projection
tensor

and decompose ~ijk to obtain

and

Here as in ( 31 a, b) we have set

Decomposing also the field equations we obtain

The last row of (41 a) contains the 4 unessential components of These
remain undetermined by the field equations on characteristic hypersurfa-
ces. Of the other components 03C4LN and iiN are determined, and give
the second row of (41 a). From the first row of (41 a) only iNi is determined
or not according to whether

( 2) One " can set for example " LP : = tP - ( 1 /2) NP.
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is different from or equal to zero. Thus of the twelve essential components
of tij we have either six undetermined components !.Lj, if or

eight if &#x26;=0. In the later case -

and we can eliminate r from the field equations. Then (39 a) can be written
in the form

with

follows from (34) and (43).
From the second field equation (39 b) we find

Decomposing the last equation (45~) into a trace free, symmetric part
.." ." 1 .. - ..

an antisymmetric part and a trace part 

we obtain from (45 d, e)

Counting the number of components of which are determined from
the field equations, we find (i) the last row of (41 b) consists of the
unessential components, which are undetermined, (ii) the second row of
(41 b) is completely determined and (iii) from the first row of (41 b) all
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components are undetermined except of which is determined if

ql - q2 ~ o, Thus if these conditions hold we have eight
undetermined essential components xi, XLNf and in the other extrem,
if ql = q2, we have twelve undetermined essential components.
In this case

and equation ( 39 b) takes the compact form

with

because of ( 3 5) and ( 47) .
It is obvious that conditions (43) and (47) will be important in the

characteristic initial value problem of PGT. Note also that, if we set

p~=0, in ( 39 a, b), then the resulting equations are satisfied by
the second order discontinuities of the field variables on characteristic

hypersurfaces. The situation here is again different from that in general
relativity ([17], [18]). Since (43), (47) decide the behaviour of the field
equations on characteristics we expect them to play an important role also
in the next section.

5. HYPERBOLICITY OF PGT

The restriction on analytic solutions of the field equations is an unnatu-
ral restriction on the physics of the theory. We look therefore for condi-
tions under which PGT takes the form of a hyperbolic system of partial
differential equations. In this undertaking we will be guided by the situa-
tion in general relativity, where the second order terms of the field equa-
tions take the form

Condition 1~=0, known as Hilbert-de Donder gauge condition, reveals
then the hyperbolic character of the field equations of general relativity
[1]. Having this in mind we try to write the second order terms of the
field equations of PGT in the form

I’Institut Henri Poincaré - Physique theorique
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where u represents the field variables 9~, and A, B, C are matrices to
be determined. Isolating the second order terms of the field equations
( 16 a, b) we find

and

where represent terms of order lower than two. Limited by the
fact, that we must construct expressions Fi out of and F~~ out of

we find that the most general Ansatz (3) for the F’s is

with

and

where al, ..., b3 are constants to be determined. A first restriction on
these constants comes from the fact, that for given functions f (x), f ~ (x)
the expressions must be gauge conditions. Thus it must be

possible, for given coordinate system x’~‘ with find in an

unique way a coordinate transformation x~(x’) and a local Lorentz
transformation such that the transformed field variables 9~‘~, 
satisfy the gauge conditions 

Since under a coordinate transformation we have

and under a local Lorentz transformation

substitution of these expressions in I

and

( 3) This was motivated by unpublished work H. Goenner’s on gauge conditions of
curvature square theories in Riemannian geometry.
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with Q’ =g~‘~ "~ a~, a~., These differential equations become
obviously hyperbolic if

and they give unique solutions for x~ (x’), A/(.x). We set therefore

and

Note that for a =1 equation Fi=O is the Hilbert-de Donder gauge condi-
tion in tetrad formalism.
To construct the terms containing the gauge conditions in the field

equations we have expressions from which objects with the
index structure of pij, cijk must be obtained. Again the most general Ansatz
is of the form

with

Substitution of ( 50 a, b) in ( 56) gives up to first order terms

Inserting these expressions in the field equations we obtain

with properly redefined. We demand now that the first terms on
the right sides of (58 a, b) can be written in the form

for some matrices This gives equations for the constants a,
al, a2, a3 and b, bl, b2, b3 to be solved in terms of the coupling constants.
In fact these equations can be solved only, if the coupling constants satisfy
conditions (43) and (47) of the last section. In this case the gauge conditions
become
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and the field equations take the form

where the matrices 03B2ijk|lmn are defined in (44 b) and (48 b). Note that
/?~0, p + q ~ 0, p + 2 q ~ 0 and the matrices a, P are invertible because of
the Cauchy-Kowalevski conditions (34), (35) of PGT. Equations (43) and
(47) we call hyperbolicity conditions of PGT. We summarize these results
as follows:

THEOREM 2. - The field equations of PGT take the form
A ... = 0 with hyperbolicity conditions (43),
(47) hold. Matrix A is invertible, if additionality the Cauchy- Kowalevski
conditions (34), (35) are In this case PGT becomes under the gauge
fixing conditions Fij=0 the hyperbolic system of equations (60 a, b).

The hyperbolicity conditions restrict the number of coupling constants
of PGT from ten to six. Equation (43) is identical to condition (4. 15 b)
of [9] obtained from the requirement that p - 4 (in their notation) terms
cancel in the linearization 
One can object that our method of proving hyperbolicity is not the

most general one, since it demands the field equations to be written in
the form A 0 u + ... In case of equations with constant coefficients more
general methods are known, as is Garding’s hyperbolicity condition [12].
Thus a test for the necessity of our hyperbolicity conditions (43), (47) can
be obtained, if Garding’s method can be applied on linearized PGT. This
is not a trivial task since Gårding’s method is given for one field variable
and is based on the assumption that the initial value problem can be put
in a standard form, which in PGT is prevented by the constraint equations.
A method which applies also to quasilinear systems is to use first order

formalism and apply K. O. Friedrichs theory of symmetric hyperbolic
systems ( [ 11 ], [ 12]) . We have done this already ( see [ 19] and [20] for general
relativity) and obtained the same hyperbolicity conditions as here. We
report on this in a separate paper.
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