@article{AIHPA_1989__51_3_265_0, author = {Ichinose, Takashi}, title = {Essential selfadjointness of the {Weyl} quantized relativistic hamiltonian}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {265--297}, publisher = {Gauthier-Villars}, volume = {51}, number = {3}, year = {1989}, mrnumber = {1034589}, zbl = {0721.35059}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1989__51_3_265_0/} }
TY - JOUR AU - Ichinose, Takashi TI - Essential selfadjointness of the Weyl quantized relativistic hamiltonian JO - Annales de l'I.H.P. Physique théorique PY - 1989 SP - 265 EP - 297 VL - 51 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1989__51_3_265_0/ LA - en ID - AIHPA_1989__51_3_265_0 ER -
Ichinose, Takashi. Essential selfadjointness of the Weyl quantized relativistic hamiltonian. Annales de l'I.H.P. Physique théorique, Tome 51 (1989) no. 3, pp. 265-297. http://www.numdam.org/item/AIHPA_1989__51_3_265_0/
[1] Symbols of Operators and Quantization, Coll. Math. Soc. Janos Bolyai 5, Hilbert Space Operators, 21-52, Tihany, 1970. | MR | Zbl
and ,[2] One-Electron Molecules with Relativistic Kinetic Energy: Properties of the Discrete Spectrum, Commun. Math. Phys., Vol. 94, 1984, pp. 523-535. | MR
,[3] One Electron Relativistic Molecules with Coulomb Interaction, Commun. Math. Phys., Vol. 90, 1983, pp. 497-510. | MR | Zbl
and ,[4] Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1953. | Zbl
,[5] Relativistic Stability of Matter-I, Rev. Mat. Iberoamericana, Vol. 2, 1986, pp. 119-213. | MR | Zbl
and ,[6] Spectral Theory of the Operator (p2+m2)1/2-Ze2/r. Commun. Math. Phys., Vol. 53, 1977, pp. 285-294; Errata, Ibid., Vol. 55, 1977, p. 316. | MR | Zbl
,[7] Domination of Semigroups and Generalization of Kato's Inequality, Duke Math. J., Vol. 44, 1977, pp. 893-904. | MR | Zbl
, and ,[8] The Analysis of Linear Partial Differential Operators III, Springer, Berlin-Heidelberg-New York-Tokyo, 1985. | MR | Zbl
,[9] The Nonrelativistic Limit Problem for a Relativistic Spinless Particle in an Electromagnetic Field, J. Functional Analysis, 73, 1987, pp. 233-257. | MR | Zbl
,[10] Path Integral for a Weyl Quantized Relativistic Hamiltonian and the Nonrelativistic Limit Problem, in Differential Equations and Mathematical Physics; Lecture Notes in Mathematics, Springer, No. 1285, 1987, pp. 205-210. | MR | Zbl
,[11] Kato's Inequality and Essential Selfadjointness for the Weyl Quantized Relativistic Hamiltonian, Proc. Japan Acad., 64A, 1988, pp. 367-369. | MR | Zbl
,[12] Imaginary-Time Path Integral for a Relativistic Spinless Particle in an Electromagnetic Field, Commun. Math. Phys., Vol. 105, 1986, pp. 239- 257 ; Path Integral for the Weyl Quantized Relativistic Hamiltonian, Proc. Japan Acad., Vol. 62A, 1986, pp. 91-93. | MR | Zbl
and ,[13] Uniqueness of the Self-Adjoint Extension of Singular Elliptic Differential Operators, Arch. Rat. Mech. Anal., Vol. 9, 1962, pp. 77-92. | MR | Zbl
and ,[14] Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodansha, Amsterdam, Tokyo, 1981. | MR | Zbl
and ,[15] On Some Relations Between the Harmonic Measure and the Lévy Measure for a Certain Class of Markov Processes, J. Math. Kyoto Univ., Vol. 2, 1962, pp. 79-95. | MR | Zbl
and ,[16] Schrödinger Operators with Singular Potentials, Israel J. Math., Vol. 13, 1972, pp. 135-148. | MR | Zbl
,[17] Pseudo-Differential Operators, The M.I.T. Press, Cambridge, Massachusetts, 1981.
,[18] The Weyl Correspondence and Path Integrals, J. Math. Phys., Vol. 16, 1975, pp.2201-2206. | MR
,[19] The Lp-Boundedness of Pseudo-Differential Operators with Non-Regular Symbols, Comm. in P.D.E., Vol. 2, 1977, pp. 1045-1061. | MR | Zbl
,[20] On the Essential Self-Adjointness of Quantum Hamiltonians of Relativistic Particles in Magnetic Fields, Sci. Rep. Col. Gen. Educ. Osaka Univ., Vol. 36, 1987, pp. 1-6. | MR | Zbl
and ,[21] Methods of Modern Mathematical Physics, IV: Analysis of Operators, Academic Press, New York, 1975. | MR | Zbl
and ,[22] Pseudodifferential Operators and Spectral Theory. Springer, Berlin- Heidelberg, 1987. | MR | Zbl
,[23] An Abstract Kato's Inequality for Generators of Positivity Preserving Semi-groups, Indiana Univ. Math. J., Vol. 26, 1977, pp. 1067-1073. | MR | Zbl
,[24] Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970. | MR | Zbl
,[25] Spectral Analysis of Pseudodifferential Operators, J. Functional Analysis, 20, 1975, pp. 319-337. | MR | Zbl
,