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ABSTRACT. - We prove a Nekhoroshev-type theorem for a simple
but important one-dimensional nonautonomous hamiltonian system. By
adapting the classical perturbation scheme to our model, we are able to
find a realistic threshold of validity of our result. Some generalizations
are outlined expecially in the aim of discussing the true dependence on
the degrees of freedom of the exponential estimates for the stability times.

RESUME. 2014 On demontre un theoreme de type Nekhoroshev pour un
systeme hamiltonien unidimensionnel dependant du temps, simple mais
important. La theorie classique des perturbations est adaptee au systeme
etudie et permet d’ obtenir des estimations realistes. On discute des modeles
plus generaux, en particulier pour la bonne dependance par rapport aux
degres de liberte des estimations exponentielles pour les temps de stabilite.
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200 P. LOCHAK AND A. PORZIO

I. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Although less revolutionary - with respect to classical perturbation theo-
ry - than the KAM type results, Nekhoroshev’s theorem appeared in fact
much later [Nekh]. We shall first recall informally some of its main

features, so as to put the present work in perspective. As is usual in
hamiltonian perturbation theory, one starts with a near integrable system
governed by the hamiltonian

where (A, p) are the action-angle variables of the unperturbed hamiltonian
h, and E f is a perturbation, as emphasized by the explicit appearance of
the small parameter E. One works on a domain where D is a

"nice" - say convex - subset of IRd and ~d is the d dimensional torus. In
fact, Nekhoroshev’s theorem is an essentially analytic result in that it

requires that the hamiltonian H can be extended to a complex neighbor-
hood of the above domain (this is made precise below in the particular
case we shall deal with), or equivalently that the Fourier coefficients
decrease at an exponential rate.
The analytical technique then consists in performing the classical algo-

rithm of step by step elimination of the angles to an order N which
however depends on E. Typically it is shown that one may set

(0~1), a choice which makes remainders on the order
of EN exponentially small in E. In conjunction with some non trivial

geometric ideas, this allows to bound the deviation of the action variable(s)
globally in phase space ( i. e. without the occurrence of arithmetic conditions
as is the case in the KA M theorem) over exponentially long intervals of
time, ascertaining in particular that Arnold’s diffusion can take place only
on this extremely slow time-scale. Complete proofs of the theorem can be
found in the original papers (with a generic assumption of steepness on
h) and in the physically relevant case of quasi-convex hamiltonians (energy
surfaces are convex) in [BGG] and [BG].
As is the case for the KAM theorem, it is however extremely difficult

to obtain analytic realistic estimates, in particular for what concerns the
threshold of validity of the results. Already in the most favorable situation
(d = 2, h convex) the above cited papers provide estimates which are valid
only for 8~10’~, a number which is not only physically irrelevant but
also numerically inaccessible. It is in fact very likely that no realistic

general estimate can be obtained and that one has to resort to a case by
case method, exploiting the peculiarities of the situation at hand. Very
few problems have as yet been examined along these lines; notable among
them is the stability of the Lagrange (L4) point of the three-body problem,
discussed in [GDFGS] who show how the general estimates can be enor-
mously improved to the point of furnishing a physically satisfactory result.

Annales de l’Institut Henri Poincaré - Physique theorique



201A REALISTIC EXPONENTIAL ESTIMATE FOR A PARADIGM HAMILTONIAN

Here we examine the important - albeit simple - hamiltonian with one
and a half degree of freedom

This is certainly one of the simplest non trivial ( i. e. non integrable)
hamiltonians and we postpone to the end of the paper the reasons which
make it interesting to apply Nekhoroshev’s technique to a system with so
few degrees of freedom. The reader will also find there outlined some
possible generalizations of the result stated below. If E is taken as the
variable conjugate to t, ( 2) may be written under the form ( 1 ) with

h = 1 A 2 + E which is indeed quasi convex. Systems which may be described
by (2) arise (more or less naturally...) in various physical situations
( [Es], [ED]); besides, it has been used to build an approximate renormaliza-
tion scheme ( [Es], [ED]) and also to find rigorous - computer assisted
- estimates of the break-up threshold of KA M tori [Cel-Ch]. In fact, until
now, numerical and realistic theoretical estimates connected with the KA M
theorem have almost all been performed on the standard map and the
hamiltonian (2); they also almost all deal with the breaking of the "golden

torus", with rotation number p = 5-1 2 ~0.618 close to the unperturbed
one given by A = p [Cel - Ch].
Here we prove the following estimate. We consider the hamiltonian (2)

as defined on = 1~ x 1 _&#x3E;_ ~ &#x3E; 0, p &#x3E; O. D p, ; is itself defined as follows.
We pick Ao E (o,1) and (y, 1)-diophantine, in the sense that

B

We set

Then we have the following

diophantine ’ and , for any t such that

Vol. 51, n° 2-1989.



202 P. LOCHAK AND A. PORZIO

Observe that the time T may be given a natural interpretation as a

number of revolutions around the cylinder, which is very close to A (0) T .
21t

The core of the paper is devoted to the proof of the above Nekhoroshev-
type estimate. In the last section we further explain its meaning and discuss
some possible natural extensions.

II. PROOF OF THE THEOREM

1. Formal perturbation theory and recursive relations

As is usual, the estimate in the theorem is proved by building a normal
form which locally conjugates the system to an other one which is integra-
ble up to an exponentially small remainder. This conjugacy is performed
via a canonical transform S : S ( A, (p)==(A~ q/) generated by a generating
function A’(p+F

The new hamiltonian reads

and the new action variable A’ evolves according to

so that

The generating function F is built directly from (6), requiring that H’
be "as independent as possible" of the angles cp, t. We emphasize that no
inversion is needed at this level as is seen from ( 7) and ( 8), provided
ò 2 F . 

ff" I II- remains sufficiently small.
acp aA’
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203A REALISTIC EXPONENTIAL ESTIMATE FOR A PARADIGM HAMILTONIAN

The recurrence for the p-th order term Fp of the generating function is

where ~ * indicates the constraints ?+~==~, 7+/=~ k + k’ = m. F 1
explicitly reads

It is important to notice that (as is checked by induction) Ffm = 0 if

We now define a norm which allows to derive more easily upper
bounds on Fp

One obviously has

One has

using that e2(| m I + II c e2(| j I + I k e2(| j’ i + I k’ I)l;.
We rewrite this as

Vol.51,n°2-1989.



204 P. LOCHAK AND A. PORZIO

We shall later impose that so that this last condition will be
satisfied. We thus find

Setting (Xp=/?/p this may be rewritten as

We have taken arbitrary for future reference; the above case uses
r = 2. Now for any sequence satisfying ( 16) we have the following

PROPOSITION:

(see the appendix for a proof).
This implies in this case

with

Requiring Ao E C 1, 31 and p _ r _ 1 we obtainB4 4/ 40

2. Effective conjugacy and final estimates

Now that we have formally constructed the canonical transform Sand
found a first estimate on the generating function F, we shall list below
the various conditions that we need impose to carry out the construction.
Firstly, we should find a complex domain D1 [Ao-r, on

which S exists and is invertible, The evolution of the

system is then described as usual, using the chain

where the second step refers to the evolution governed by the transformed
hamiltonian H’. One has to determine a real domain 

Annales de l’Institut Henri Poincaré - Physique theorique



205A REALISTIC EXPONENTIAL ESTIMATE FOR A PARADIGM HAMILTONIAN

such that the above chain makes sense when
P(0)eD,.
The needed estimates write as follows
1. To control the small divisors until step N we need that inequality

( 14) be satisfied; imposing this yields the condition

which we supplement with r~l/40 [see condition above eq. (20)] in order
to control the divisors at the first step.

2. The dynamical condition requests that (A’ (T), cp’ (T)) E D1 if
(A (0), cp (0)) E D2 and in fact we require the more stringent (since

If P(O) c D2 that is

The deviation A (t) - A (0) U I t ~ T may be majorized as

3. The last ingredient we need is an inversion theorem, of which we
briefly recall the version we shall use (see [G]). Consider the transformation
formulas

the inversion in the action variable is made possible by the implicit function
theorem, provided the condition

is satisfied. Here r 1 is a positive constant and 8 is the analyticity loss in
the periodic variables. Analogously, the inversion of the second equation
is possible under the condition

Vol. 5|, n° 2-1989.



206 P. LOCHAK AND A. PORZIO

where r 2 is another positive constant (see below).
This yields well defined transformations

and

which are mutual inverses (SS = SS = I) on the common domain

Dp~-T ~-(4/3)s=Di. It is possible to choose

We set 03B6 = 1 2, 03C4=3 2log 2 and 03B4=03B6 2=1 4, which yields the conditions

Having derived conditions (21), (22) and (27) we now turn to the
necessary estimates on F and its derivatives. The one for F will be easily

derived from (18) and (19), in fact 2014 writes
~(p

from which there follows

Annales de , l’Institut Henri Physique theorique
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In order to estimate aF one needs to turn back to the recursive relation (9)
aA’

where ¿* refers to the constraints written out under eq. (9). We set

|~Fp ~A’| ~gp so that (30) entails

Changing to so that |~F ~A’|03C103B6~03A3 p-1 p=1~p03B2p p we have that
~A/~ 

where ap verifies

We again obtain a relation of type ( 16) and as it is shown in the

appendix this implies that

We are now ready to estimate F and its derivatives, fixing the hitherto
arbitrary parameter N =N(E), i. e. the number of steps. We use the

norm |L, the other norm ~.~03C103B6 having been introduced for technical
convenience only (so as to entail the set of recursive inequalities ( 15)). We

Vol. 51, n° 2-1989.
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start with :

having defined ~=50y ~~ ~~e. This definition and the formula above
stress that (E/’Y) is in fact the natural, dimensionless small parameter. We
have used (20) to estimate fl and Stirling’s formula in the next to last
step in the rather precise form

for what concerns the derivatives of the generating function we get in a
similar way

Furthermore

and lastly

Finally to get an estimate for 20142014 observe that
S(p

so that

Annales de l’Institut Henri Poincare - Physique theorique
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Thus

Observing that the largest term is obtained for q =1 and and

using Stirling’s formula we get (assuming N~2)

We have now to choose N so as to minimize the values of the sums
[see (35), (36), (41)]

Before we do that, it may be useful to notice that these are typical of the
behavior of the perturbation series. Observe that the important feature is
to get a factor where c a constant. This can be traced back to the

diophantine inequality. It will yield (see below) N (E) ~ E-l/2 and even-
tually a time of the order Ideally, 2 should be replaced by d
in dimension d, (see section III).
We now work with the natural variable 11 and translate in fine the

estimates in terms of E. We simply compute

The minimum is for p= 20142014. We impose N = 1 so that ~pP2 p

decreases If we also require N~3 and write the first two terms
explicitly, we get

Also

Vol. 51, n° 2-1989.
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1 . 

"

where c== -(1 + log 2) ̂ _r 0. 623. The estimates f or the sums 03A3 p=1 ~pp2 p t 1 per-
e p=i

taining to the evaluation of F and 
~ 
are obtained similarly (with of

course the same value of N). One gets

Collecting the estimates we get

The theorem is now within reach. In fact, we need only verify conditions
(21), (22) and (27) keeping in mind that one must also have 

and A0~ (1 4, 3 4). As we already noticed, we shall use 03BE=1/2 and it turns
out that we can set p==r. We then 5003B3-1~~18.4~/03B3. This value

~

we use in order to check the invertibility conditions (27); however, in the
dynamical condition (22), we notice that everything takes place on a r~
domain. Since ~=50y’~~’~E, we may set there ç = 0, that is

" ~ ~/?= -~Y~ s~6.77y’~ E, i. e., " has been divided by a factor ~ On

the other hand the number of steps remains unchanged. The reader will

easily convince himself that the estimates on 2014 and 201420142014 may be divided
~03C6 ~03C6 ~A’

by a factor e, whereas - IS now estimated as
~(p

Annales de l’Institut Henri Poincaré - Physique - théorique -
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so that we find the same upper bound as in (45) with a constant

= 0.807 and with the same value of 11 = 50 e03B3-1~.
We now proceed to check the various conditions. (21) reads

( 22) can be written as

At the same time the second condition in (27) requires that

I ~ ~ p = ~ r or in view of (45), 1.12 yn  - r. That is r &#x3E; 24 E.
8 

’ ’ 

’’8

In (47) the most relevant part is 2014 , ’ the size of the action part of
~P po

the canonical transform, which is bounded by 1.12y2014~7.6s.
~

At this point there are obviously arbitrary choices to be made, and we
simply present below a reasonable set of parameters. Namely we set

r=60s, cx = 5/6. On the other hand it is easy to see that the first of the

invertibility conditions (27) implies that also 201420142014 I ~1/40, so that
S(p òA p o

with these choices (47) reads

This yields a time of validity

Finally the deviation is controlled by

The value of the threshold is obtained by requiring that the number of

steps N = 1 be at least 3; we have used this to get estimates ( 45 ) and
2e~

anyway the whole theory supposes that N is "large" enough, otherwise
everything can be done by hand.
We obtain ~/Y~2.10"~ which also guarantees that the invertibility

conditions (27) are satisfied. This completes the proof of the theorem.

Vol. 51, n° 2-1989.
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III. COMMENTS AND EXTENSIONS

We now come to some comments about the above result.
1. We did not prove a global estimate, i. e. one which applies to any

initial condition with A(0) inside the interval2014say2014(0, 1). One rather
trivial reason is that the width of the primary resonances near A = 0 and
A =1 is on the order of /e and is thus much larger than the order of the
deviation we allowed. One has to take A (0) far enough from 0 or 1 such
that the denominators appearing at the first step are not too small. A
much more serious inconvenience is the arithmetic property we had to
impose on Ao (but not A (0)).

In fact the basic dimensionless perturbation parameter appears to be
the combination E/Y which depends very sensitively on the value of the
action. What we did basically consisted in working as if the unperturbed
hamiltonian could locally be considered as a harmonic oscillator and we
find a result which is valid as far as the local frequency does not differ
too much from this value. This local reduction to the linear case is in fact
a common feature of the classical perturbation theories and the geometric
part of the proof of Nekhoroshev’s theorem consists essentially in pasting
these local estimates together (including those around the resonances). We
refer to [B G] for a general treatment of the purely linear case

(~(A)=co’A, A E R d).
In any case our result provides at least partial barriers in the sense that

the zones described by the allowed initial conditions cannot be traversed
in less than T = T (E, y).
To get a global estimate, one should be able to use resonant normal

forms inside the resonant subdomains and then paste together the various
estimates. This is done in the general proof of Nekhoroshev theorem but
at the expense of a great loss in precision. This is not only a matter of
worsening the value of the constants, but also reflects a real theoretical
problem, in particular for what concerns the exponent of E appearing in
the value of T(E, y) ( see below).
Here we confine ourselves to stating a proposition which uses (almost

optimally) the above obtained estimates in order to formulate a global
statement.

Annales de l’Institut Henri Poincaré - Physique theorique
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this condition holds ). Under these circumstances, one has

when I t I ~ T (the same as in the statement of the theorem), with

where 03C3 = 5-1 2 and qn is the nth Fibonacci number

One sees that S (y, n) is independent of £ so that we loose much of the
power of the usual Nekhoroshev type results. The above proposition
depends simply on the distribution of the diophantine numbers ( see e. g.
[Khi]).

2. It is of ten said that for two dimensional hamiltonians KA M tori

partition the phase space and provide barriers which trap any trajectory
inside the gap between two tori. This would of course make such an
estimate as the one presented above rather useless. This assertion however
assumes that one works with a value of £ which lies below the threshold
of destruction of "many" tori. But this in turn requires 8 to be much too
small to be of any physical or even numerical significance. In fact the
validity threshold for our estimate lies below the known numerical breack-
up parameter for the golden torus (8=0.027, see [Gre]) and even below
the best rigorous computer assisted estimate (E = 0.015, see [Cel-Chi]). It
lies however most likely much above the break-up threshold of most other
tori (including the noble ones) for which no numerical or realistic analytical
estimates are available. Predictions can however be made using an approxi-
mate renormalization scheme [Es]. In a less dramatic way, the argument
of the perpetual trapping between tori would also necessitate an upper
bound on the width of the gap between two successive surviving tori. As
a matter of fact, the distortion of a given torus (distance of the perturbed
to the unperturbed torus) is itself on the order of E/"{ and thus strongly y-
dependent.

3. The above estimate may be extended in various directions. Let us
first consider the "multiwave" perturbation

Almost everything remains unchanged except that here for

+ I m I &#x3E; Kp. This induces a change in the recursive inequalities ( 15)
which in fact amounts to introducing a factor K2 in front of the r.h.s.

Vol. 51, n° 2-1989.
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Also, the value of the initial term fl is altered. In fact, one has

Hence (compare ( 19))

Since A’ E (0, 1), |A’-k|-1 decreases as |k|increases and, if the amplitu-
des fk are not too large, fl remains close to its value for the two-wave
hamiltonian.
To summarize, we must change in ( 16) with a new al = fi;

accordingly, the value of ~ is multiplied by K2 with the new value of f1.

N in turn is given in terms of s as N~ 1 K~, which leaves the exponent
of E in the double exponential in T (E) unmodified.
We observe that we have not taken any trigonometric polynomial as a

perturbation (see 4), nor have we considered the case of out-of-phase
waves, which would correspond to changing into in the

hamiltonian, where cpk E (0, 2 7t) is an arbitrary initial phase. In some cases
( in particular when f or k even, and (p~=7t f or k odd), on physical
grounds one expects better estimates, but the method we use is too rough
to make this clear.

4. What we have done above can also be extended almost word for
word to a class of simple d-dimensional systems (see also [G G]). We
sketch below the qualitative scheme, which emphasizes the d-dependence
of the exponent appearing in N(E) and consequently in T(E).

Let us consider the d-degrees of freedom hamiltonian

... 

i

The perturbation f is thus a trigonometric polynomial independent of the
action variables A (/~eR). The formal perturbation theory provides, as
above, the following recursive expression for the generating function F.

where (/./) indicates the scalar product and * indicates the constraints
~+/=~, q + q‘ = p. By induction one checks that Ff = 0 if One

uses then the diophantine inequality 1-1 ~ and introduces

Annales de l’Institut Henri Poincaré - Physique theorique
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as above the norm (see (11))

N N

so that Setting as above we see that
1 1

ap verifies

which yields (see ( 17))

The same analysis as in the two dimensional case for the sums ( see ( 34),
(35), (36))

(where s=0,1,2 according to the various quantities involved), allows to
choose In this way one obtains that if A o is (y, d -1 )-diophan-
tine and A (0) is "near" A o then the deviation in action remains "small"
(of order E) for an interval of time of the order of exp 

5. Very roughly speaking, Nekhoroshev’s theorem says that for

a - say - quasi convex unperturbed hamiltonian h (A), the deviation of the
action variable(s) for the nearby hamiltonian H (A, p) (see(l)) can be
controlled (and remains small in the sense that it vanishes together with
E) over an interval of time on the order of exp(e’°’), (0a~ 1).
The exponent a may well be the only intrinsically defined parameter in

these exponential estimates. For instance in the quasi convex case one
may give a lower bound for this quantity which depends only on the
dimension d (see [Nekh] or [BG]). In fact, may be defined as the

upper bound of the a’ such that V8&#x3E;0~s~=8~(~, ö) such that if 
and (A (t), is a trajectory of H (A, cp), then one
has

and

This is of course nothing but a formal way of expressing that the
deviation in action remains o ( 1) (independently of /) for

Voi.51,n°2-1989.
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Here we require only a o ( 1) deviation because it is

likely than any other requirement (such as 8==o(e~), 0 P~ 1) would define
the same a (taking 03B2 small enough). In terms of small denominators, this
is linked with the rate of divergence of the relevant perturbation series,
which should behave at worst The growth of the terms

P

in these series is in turn connected with the diophantine exponent.

On these grounds, one could expect that 03B1(d)~1 d "or at least

(x(d)==o(-)", locally around the good frequencies, i. e. the values of A

such = 2014 is y-diophantine with exponent d -1. We recall that
aA

these numbers (or rather d-vectors) have Lebesgue measure 0 and Haus-
dorff measure d in the space of frequencies co. This local bound reduces

to a statement concerning the perturbation of a linear hamiltonian
it is however unproved in general, perhaps because the

general proof is done recursively, using Cauchy estimates. Above, we have
shown that this holds good in the case of a paradigmatic hamiltonian, or
in fact in the linear case in any dimension when the perturbation is a

trigonometric polynomial of the angles (and is independent of the action
variables). A global estimate is much harder to obtain, if one wants to go
beyond the comparatively rough way of pasting the local behaviours,
which is used in the proof of Nekhoroshev’s theorem. It is worth noticing
finally that the exponent a is also connected, on the geometrical side, with
the splitting of the separatrices, as is best seen by analysing Arnold’s
original example [A], so that this quantity has both an "elliptic" and a
"hyperbolic" meaning (see also [N]).

APPENDIX

We first study the set of Mf

Using the generating function

(A.1) ensures that :J’ solves the equation

Annales de l’Institut Henri Poincare - Physique theorique
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Hence :

so that :

We get :

The more general recurrence is dealt with by a variation of the constants
method :

that is Pp verifies the recursive inequalities with r = 0. A - nearly optimal -
choice is seen to be y (/?) = (p !)r.
Combining the above inequality (A. 4) and a scaling to take the constant

c into account one finds inequality ( 17).
We turn now to the proof of (33).
Starting from ( 31 ), ( 32), we and again if

where :

We choose as We obviously have that where

ap verifies (A. 7) with an equality so that (see (A. 3))

Vol. 51, n° 2-1989.
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Setting ~p’ = 4 which is the coefficient of the expansion of
one has where this last quantity

satisfies

Finally, letting

that is

Tracing back all the scalings we find

which is ( 3 3) .
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