
ANNALES DE L’I. H. P., SECTION A

PETER D. HISLOP

SHU NAKAMURA
Semiclassical resolvent estimates
Annales de l’I. H. P., section A, tome 51, no 2 (1989), p. 187-198
<http://www.numdam.org/item?id=AIHPA_1989__51_2_187_0>

© Gauthier-Villars, 1989, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1989__51_2_187_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


p. 187-1

Semiclassical resolvent estimates
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Vol. 51, n° 2, 1989, Physique theorique

ABSTRACT. - We prove estimates in the semiclassical regime of small h
on the boundary values of the resolvent of the Schrodinger operator:
H (h) _ - h2 0 + V in a neighborhood of a non-trapping energy E. The
potential V is bounded, but not necessarily decaying with derivatives
decaying at infinity. The method also applies to potentials with local
singularities and to a family of Stark Hamiltonians. The proof is based
on Mourre theory and decay estimates for wave packets in the classically
forbidden region.

RESUME. 2014 Dans Ie regime semi-classique (petit h), nous estimons les
valeurs au bord de la resolvante de Foperateur de Schrodinger
H ( h) _ - h2 0 + V dans un voisinage d’ une energie non liante E. Le poten-
tiel Vest borne mais n’est pas necessairement decroissant mais ou avec

des derivees decroissantes a l’infini. La methode s’applique aussi a des
potentiels avec des singularites locales et a une famille d’Hamiltoniens de
Stark. La preuve repose sur la theorie de Mourre et des estimations de

decroissance des paquets d’ ondes dans la zone classiquement interdite.
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1. INTRODUCTION

Semiclassical estimates on the resolvent of Schrodinger operators are
an important technical tool for studying the behavior of observables like
the scattering matrix and the total cross-section ([RT-1], [RT-2], [Y], see
also [N-l] for an application to the shape resonances). In this note, we
give a simple proof of these estimates for a large class of potentials.
We give the details for reasonably smooth potentials and discuss the
generalization in Section 4. We consider the following conditions:

CONDITION (A). 2014 V is a real valued function such that V = V 1 + V 2
i = 1, 2 and

where x)= (1+~~)~, ..., aj, 
We will consider fixed energy E~R and let

CONDITION (B). - There are constants 8, ~o&#x3E;0 and a C3-vector field
f : such that

for any where J f is the Jacobian of f and
(.,.) denotes the Euclidean inner product.

Condition (A) implies H (h) is self-adjoint on (the Sobolev space
of order 2). Our main result is:

THEOREM. - Let H (h) : = 2014~ A+V and suppose that V satisfies 
tions (A) and (B) at energy E. Then there is an open interval IE such that
for any a &#x3E; 1/2 and 

exists, and

if h is sufficiently small.

Annales de I’Institut Henri Poincare - Physique theorique



189SEMICLASSICAL RESOLVENT ESTIMATES

This result is a key ingredient in the estimation of the semiclassical
behavior of the scattering cross-section E&#x3E;0, For

potentials V(x)=0((x)’"), a &#x3E;20142014, and energies E such that (1.1)p ( ) ( x&#x3E;-03B1 ), 03B1&#x3E;n+1 2, and ener gies E such that (1.1 )

holds on [R" withf(x)=x, the leading behavior of co) is 0(h’"),
where (cf [RT-2], [V]). Using the above theorem, it
should be possible to extend [RT-2] to the more general situation where
V satisfies Condition (A) (with possible local singularities, see Section 4)
and is non-trapping in the sense of Condition ( B) . A similar result may
hold for Stark Hamiltonians discussed in Section 4. We also remark that
our methods apply to generalized N-body Schrodinger operators, although
the potential V does not satisfy Condition (A). The potential

N

V=03A3 Vj.03C0j, where {03C0j}Nj=1 is a set of mutually orthogonal projections

in We assume that each Vj satisfies Condition (A) on Then, if
we take f(x)=x in Condition (B) and consider energies E for which the
resulting nontrapping condition ( 1.1) holds on the analog of the above
theorem holds for H = - h2 0 + V. To see this, we simply note that all the
remainder terms in (3 . 3)-(3 . 5) vanish except for (x.V)V and (x . ~)2 V
because c~~/(~~)=0. (Jensen [J] has recently obtained similar results
in this case).
Our proof of this theorem is given in Sections 2-3. In Section 4,

we discuss generalizations to potentials with singularities and to Stark
Hamiltonians. Our method of proof utilizes the local positive commutator
approach of E. Mourre ( [M], [CFKS]) to obtain estimates in the nontrap-
ping region and semiclassical decay estimates on wave pack-
ets localized to G(E+8) (cf the Appendix).
Some results on semiclassical resolvent estimates are known. These first

appeared in a paper by Robert and Tamura [RT-1] who consider nontrap-
ping potential Later, in [RT-2] they obtained semiclassical
resolvent estimates at (classically) nontrapping energy E for smooth poten-
tials decaying at infinity as (x)’", P &#x3E; 0, using both Mourre theory and
Fourier integral methods. We note that Condition (B) implies the classical
condition of [RT-1], [RT-2]. A shorter proof of their result was given by
Gerard and Martinez [GM] who constructed an escape function a (x, p)
such that the Poisson bracket {h, a ~ is globally positive. Yafaev [Y] also
used Mourre theory to obtain semiclassical resolvent estimates in the high
energy regime for potentials C2 in the ~-variable and satisfying

x ~C(k=0, 1, 2). A method of Lavine [L] was also

applied to prove estimate ( 1. 2) for decaying potentials under nontrapping
condition ( 1.1) with f (x) =x [N-1].

Vol. 51, n° 2-1989.
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We note that the semiclassical resolvent estimate is closely related to
the absence of resonances near the real axis in the semiclassical limit. Our

non trapping condition ( 1. 2) first appeared in a proof of the absence of
resonance in [N-2] (see also [BCD-1], [DeBH], [HeSj], [K], [S-1]).

2. SEMICLASSICAL MOURRE ESTIMATES

We restate the standard assumptions of the Mourre theory for a self-
adj oint operator H and a skew-operator A in an h-dependent manner.
For let with the norm

= I I ( I H I + 1)S~2 ~ ~ ~, and t denotes the norm of

the maps from ~S to We let C denote a h-independent constant
whose value may change from line to line.
(Ml) D (A) U H2 is dense in 
(M2) The form [H, A] defined on D (A) extends to a bounded

operator from H2 to and I [H, A] I I2, _ 1 _ C h.
(M3) There exists a self-adjoint operator Ho with D (Ho) = D (H) such

that [Ho, A] extends to a bounded operator from H2 to 

and is a

core for Ho. 
:f

(M4) The form [[H, A], A] where [H, A] is as in (M2) extends from
D (A) nD(HA) to a bounded operator from Je2 and A],

DEFINITION (The semiclassical Mourre estimate). - Let g be a function
such that and on a neighborhood of an
interval I. We say that the semiclassical Mourre estimate holds on I if

there exist such a an operator K (h) from Je2 to ~ _ 2 with
as and 03B10&#x3E;0 such that

M2 : =g (H) [H, (2.1)

PROPOSITION 2 . 1. - Let H ( h) be a self-adjoint operator and A ( h) a
operator satisfying (M1)-(M4), and suppose the Mourre 

mate (2 . 1) holds on Then there exist ho &#x3E; 0 such that for any
oc &#x3E; 1 /2, h E (0, 

£-+0

Proof - ( 1) We retrace the proof of Mourre as presented in [CFKS]
and [PSS] keeping track of the h-dependence, and we refer Section 4. 3 of
[CFKS] for details. At first we remark that if h is sufficiently small, the
second term of the RHS of (2.1) is dominated by the first term, and

hence it can be omitted.
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For ~&#x3E;0 let Gt(z) : which is analytic in z for Re z E I
and Im z&#x3E;0. Then we obtain the following estimates (cf Lemma 4.14 of
[CFKS]):

if E is sufficiently small. It follows in the same way as in [CFKS] that the
bounds (2. 3), (2. 4) and (2. 5) hold with replacing 11.11.

(2) Let D,: =(1+~)~(8~+1)~ for ae(l/2, 1], s&#x3E;0 and let

FE (z) : = DE GE (z) D£ for z : RezEI, Im z&#x3E;0. By (2 . 5) and the definition

From ( 2 . 3) and ( 2 . 4) with (p=D~, we have

The derivative of F£ (z) in ~ is estimated using (2 . 3)-(2 . 6) [CFKS],
Lemma 4.15), and we obtain

It follows from (2 . 6) and (2 . 8) that there exists C&#x3E;O such that

after integrating a finite number of times ([CFKS], Proposition 4. 11).
(3) By differentiating Fg(z) in z, we have

for sufficiently small fixed h. Here we used estimates (2. 7) and 
(2. 8) and (2. 9) imply

If we set s = ~ z -z’ I~ -1, then we obtain the Holder

continuity of order (cx -1/2)/( cx + 1/2) for F 0 (z). The existence of the limit
of F 0 (z) as 1m z~0, Rez~I follows from this. Consequently, (2 . 2)
follows from (2.9). N
Remark 2 . 2. - It follows from ( M2), ( M4) and Lemma 4.12 of

[CFKS], i. e. that ~) [A, g (H)] I~ _ 1,1 _ C in our situation, that for any

[g (H) [H, A]g(H), A] extends to a bounded operator and is

Vol. 51, n° 2-1989.
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O ( h). As an alternative to ( M4) we can take

(M4Q 11[g(H)[H, A] g (H), 

3. PROOF OF THEOREM

In this section, we prove that Conditions (A) and (B) imply that H (h)
satisfies (M1)-(M4) and the semiclassical Mourre estimate for supp g
sufficiently small and containing the nontrapping energy E. The conjugate
operator is

where f is the vector field of Condition B.

LEMMA 3 . 1. - Let H (h) : - - h2 0 + V where V satisfies Conditions
(A) and (B). Let I compact and E E I. Then

(i) A and H satisfy (Ml)-(M4) with H0 : =H in (M 3).
(ii) There exist ao &#x3E; 0 and a bounded operator K (h) with II K (h) II ~ o as

h -~ 0 such that for sufficiently small,

The operator K (h) is given explicitly in (3 . 8) below.
In the proof of this lemma, we use a decay result for wave packets in

the classically forbidden region G (E). This result, in its optimal form due
to [BCD-2], is discussed in the Appendix.

Let b be as in Condition (B). The function:
K (x) : - 1- 2  ç, J f (x) ~ ~ ~ is easily seen to be uniformly Lipschitz

continuous, and let co be the Lipschitz constant.

LEMMA 3 . 2. - Let K (x) be as above and Eo be as in ( 1. 1 ). Then there
exists K (x) E Coo such that

Proof. - Let cx be a mollifier: Let

Kx: = Cx * K, so Since K is uniformly Lipschitz, it follows that

Annales de l’Institut Henri Poincaré - Physique ’ theorique ’
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for If (ii) holds. []
Proof of lemma 3 . 1. - ( 1) Since is a common core for D (H),

D (A), etc., it is sufficient to prove the estimates. By a simple calculation,
as a quadratic form on C~ (tR"):

where J f = (a is the Jacobian matrix By Conditions
(A) and [H, A] ~I2,o  ch, hence (M1)-(M3) are satisfied. As for (M4),
[[H, A], A] as a quadratic from on has the form:

where ’ : = : =(~fi)/(~xk), etc. The term h2 { ... } is cle-
Xk

arly uniformly bounded  by H, and  the last is also uniformly bounded by
H. The second  term is

Clearly, 11 is 0 (h2), and (H + i) -1 I2 (H + i) -1 is O (h) since is

uniformly H-bounded. Thus A], A]~, -2=0(~).
(2) In the sense of quadratic forms, it follows from Lemma 3.2 that

and We obtain from
(3.3): .

Let g E Co (I), E~I and let x be the characteristic function of Gc(E+03B4).
By Lemma 3. 2,

Vol. 51, n° 2-1989.
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Let B: - sup 12K(E- V) - f . vv I and y = sup I K(x) I . Then for I I I
xEG(E+8) x~Rn

sufficiently small,

where

and EI (H) is the spectral projection for H and I. By Lemma A. 2,
for any N, so we This

completes the proof. []

Proof of Theorem. - By Lemma 3. 1, the hypothesis of Proposition
2 . 1 are satisfied, so the resolvent of H (h) satifies (2 . 2). To pass to ( 1. 3),
we use the fact there exists a constant C independent of h such that

for a E [0,1] (cf Lemma 8 . 2 of [PSS]). Estimate (3 . 9) is proved directly
for a=l using the fact I  x ~ -1 f (x) I _ C which follows from Condition
( B), and extended by complex interpolation..

Remark 3. 3. - In certain cases, a more precise propagation estimate
results from ( 2 . 2) if we replace  A &#x3E; -0152 by  f ~ - °‘. This is the case when

f vanishes on some unbounded set.

Remark 3 . 4. - Instead of Lemma A. 2, we can also apply the cut and

paste technique ( or so-called geometric method) to isolate the classically
forbidden region. In fact, if the semiclassical resolvent estimate is proved
for H on L~(G,(E+8)), the estimate on L~") follows (cf (A . 5) or

[BCD-2]). Since nontrapping inequality ( 1.1) holds globally on 
the semiclassical resolvent estimate on L~(G~(E+8)) can be proved by
the above argument.

Annales de l’Institut Poincaré - Physique theorique
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4. GENERALIZATIONS

A. Stark Hamiltonians

The methods developed here can be extended to a class of Stark
Hamiltonians as we now indicate. In place of Condition (A) we assume

~)V(x) I ~C, I Cï I = 1,2. The vector

field in Condition (B) must satisfy f~C4(Rn), and

The nontrapping condition is as in ( 1. 1). Note that the proof of Lemma
3 . 2 must be improved to show that with small
K&#x3E;O using the fact that We also need the following
lemma:

LEMMA 4.1. - and suppose that 
some y : 0~y~2. is relatively H (h)-bounded uniformly
in h.

It follows from the assumptions and this lemma that

A] (H + i) -1 ~ ~ = O (h) and A], A](H+f)’’~=0(~). With these
modifications, one proves (M1)-(M4) and the semiclassical Mourre esti-
mate (2. 1). As a consequence, we obtain the semiclassical resolvent esti-
mate

where is the usual Sobolev space with norm

v = II c~ II2 + h2 ~) ~ cp ~I2. Here we used the fact that 
and the inclusion map is bounded uniformly in h.

B. Local Singularities

The results of Section 3 apply if V is singular in the classically forbidden
region for an interval of nontrapping energies around E. In this case, we
require for Ö as in Condition ( B), with p = 2 for M~3
and p &#x3E; n/2 for ~4. As is easily seen from the proof, we only need
V to be bounded away from G(E+8) so the decay estimate 

= 0 (hN) holds for this class of potentials.

Vol. 51, n° 2-1989.
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C. Exploding potentials

We can also treat potentials of the type

VeC~(~), and V~C2(Rn), |
~x) 

V(x)| ~Cx&#x3E;2-|03B1|,|03B1|~2, and V(x)--+-oo

as 00. Again, we must take vector fields f such that f~C4 (Rn) and

I 2014 ) /(x) |~Cx&#x3E;-1-|03B1|, |03B1|~4. Following modifications similar to

those described in Part A above, we obtain a semiclassical Mourre estimate
and the result that 

APPENDIX

Decay of wave packets

The purpose of this section is to prove Lemma A. 2 the result of which

is used in equation (3.8). We use a perturbation idea of [BCD-2] and a
simple iteration argument on the localized resolvent. Although Lemma
A. 2 is sufficient for our purposes, we mention a result of [BCD-2] which
states that there exists cr &#x3E; 0, where o is described in terms of a distance
in the Agmon metric, such that II (1 -x) EI(H) II = 0 

where ’ Gc (E) : = and ’ dist ( . , . ) is the Euclidean distance. ’

Proof - Let xEG(F), then

for the path y : By the assumption,

This proves the lemma. []
We note that the assumption sup|~V|~ is necessary only on the

convex hull of G ( E) in order to apply the method to exploding potentials
[Section 4 (C)].

Annales de l’Institut Henri Poincaré - Physique theorique
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LEMMA A. 2. - Suppose sup Let x be the characteristic

function of Gc (F) and , I = [D, E] with D  E  F. Then

for any N, where the spectral projection of H.

Proof. - Let s:=(F-E)/(2N+4). By virtue of Lemma A.l, there
exist such that (i) (ii)

(iii) if xEG(F-2jE) and = 0 if
Let Vo (x) : E + 2 E ~, and let

Then o(Ho)=[E+2e, oo). We have the geometric
resolvent equation:

where

It is easy to see and hence

Using this identity, we obtain

Let r be a positively oriented, simple closed around I, and away from
[E + 2 E, oo). Then, as the first term of the RHS of (A. 5) is analytic in r,
we conclude

Now, since and on r, it follows

immediately from (A. 7) 
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