@article{AIHPA_1989__50_2_205_0, author = {de Filippo, Sergio and Landi, Giovanni and Marmo, Giuseppe and Vilasi, Gaetano}, title = {Tensor fields defining a tangent bundle structure}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {205--218}, publisher = {Gauthier-Villars}, volume = {50}, number = {2}, year = {1989}, mrnumber = {1002820}, zbl = {0752.58010}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1989__50_2_205_0/} }
TY - JOUR AU - de Filippo, Sergio AU - Landi, Giovanni AU - Marmo, Giuseppe AU - Vilasi, Gaetano TI - Tensor fields defining a tangent bundle structure JO - Annales de l'I.H.P. Physique théorique PY - 1989 SP - 205 EP - 218 VL - 50 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1989__50_2_205_0/ LA - en ID - AIHPA_1989__50_2_205_0 ER -
%0 Journal Article %A de Filippo, Sergio %A Landi, Giovanni %A Marmo, Giuseppe %A Vilasi, Gaetano %T Tensor fields defining a tangent bundle structure %J Annales de l'I.H.P. Physique théorique %D 1989 %P 205-218 %V 50 %N 2 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPA_1989__50_2_205_0/ %G en %F AIHPA_1989__50_2_205_0
de Filippo, Sergio; Landi, Giovanni; Marmo, Giuseppe; Vilasi, Gaetano. Tensor fields defining a tangent bundle structure. Annales de l'I.H.P. Physique théorique, Tome 50 (1989) no. 2, pp. 205-218. http://www.numdam.org/item/AIHPA_1989__50_2_205_0/
[1] Quantum Field Theory, McGraw-Hill. N. Y. 1980. and , Gauge Fields. Introduction to Quantum Theory, Benjamin/Cummings, London, 1980. | MR
and ,Quantum Theory of Gravity I: The Canonical Theory. Phys. Rev., t. 160, 1967, p. 1113. | Zbl
,Quantum Theory of Gravity II; The manifestely Covariant Theory. Phys. Rev., t. 162, 1967, p. 1195-1239. | Zbl
,Quantum Theory of Gravity III ; Applications of Covariant Theory. Phys. Rev., t. 162, 1967, p. 1239-1256. | Zbl
,[2] Lectures on Quantum Mechanics. Belfer Graduate School of Science Monographs Series n. 2, N.Y. 1964.
,Classical Dynamics: A Modern Perspective. Wiley and Sons, N. Y. 1974. | MR | Zbl
and ,Constrained Hamiltonian Systems. Accademia Nazionale dei Lincei Roma 1976.
, and ,[3] Feynman Integral for Singular Lagrangian. Theor. Math. Phys., t. 1, 1970, p. 1. | MR
,[4] Foundations of Mechanics. Benjamin Reading, Massachussets, 1978. | MR | Zbl
and ,[5] Symmetry and Reduction of Dynamical Systems. Wiley and Sons, N. Y. 1985. | MR
, , and ,Symplectic Geometry and analitical Mechanics. | MR | Zbl
and ,Dordrecht, 1987.
Tangent and Cotangent Bundles. Marcel Dekker, 1973. | MR | Zbl
and ,Tangent Bundle Geometry for Lagrangian Dynamics. J. Phys., t. A16, 1983, p. 3755-3772. | MR | Zbl
,[6] Dynamics and Symmetry for Constrained Systems; A Geometrical Analysis. La Rivista del Nuovo Cimento, t. 6, 1983, p. 2. | MR
, and ,Presymplectic Manifolds and the Dirac-Bergman Theory of Constraints. J. Math. Phys., t. 19, 1978, p. 2388. | MR | Zbl
, and ,Presymplectic Lagrangian Systems I: The Constraint Algorithm and the Equivalence Theorem. Ann. Inst. H. Poincaré, t. 30A, 1979, p. 129-142. | EuDML | Numdam | MR | Zbl
and ,The Second Order Equation Problem. Ann. Inst. H. Poincaré, t. 32A, 1980, p. 1-13. | EuDML | Numdam | MR | Zbl
and ,[7] The Inverse Problem in the Calculus of Variations and the Geometry of the Tangent Bundle. Naples Preprint, 1987. | MR | Zbl
, , , and ,Canonical Dynamics of Spinning Particles in Gravitational and Electromagnetic Fields. J. Math. Phys., t. 13, 1972, p. 739-744. | MR | Zbl
,Reduction of degenerate Lagrangian Systems. J. Geom. Phys., t. 3, 1986, p. 3. | MR | Zbl
, , and ,[8] Gauge Symmetries and Fibre Bundles. Lecture Notes in Physics, 1988, p. 188. | MR | Zbl
, , and ,[9] Introduction to Lie Groups and Transformation Group. Lecture Notes in Math., n° 7 Springer Verlag, 1969. | Zbl
,[10] 1-Forms With the Exterior derivative of Maximal Rank. J. Differential Geometry, t. 2, 1968, p. 253-264. | MR | Zbl
,[11] Structures symplectiques ou J-symplectiques homogènes sur l'espace tangent à une variété. Sympos. Math., t. 14, 1974, p. 181-192. | MR | Zbl
,Proc. IUTAM-ISIMM symposium on modern developments in analytical mechanics. S. Benenti, M. Francaviglia and A. Lichnerowicz eds. Pitagora (Bologna 1984).
,[12] Defining Euler-Lagrange Fields in Terms of Almost Tangent Structures. Phys. Lett., t. 95A, 1983, p. 466-468. | MR
,[13] Affine Bundles and Integrable Almost Tangent Structures. Math. Proc. Camb. Phil. Soc., t. 98, 1985, p. 61-71. | MR | Zbl
and ,