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ABSTRACT. - As a first step towards a theory of Abelian partial Op*-
algebras, we study the commutant of a family 91 of commuting normal
operators in a Hilbert space, that is, normal operators with the same
spectral measure E( . ). More precisely, we derive conditions under which
a closed operator commuting (in the sense of strong partial Op*-algebras)
with every operator in necessarily commutes with the spectral projec-
tions E(ð.). Under these conditions, which amount essentially to the existence
of a dense domain of common analytic vectors, we show that the partial
Op*-algebra generated by N is of polynomial type, Abelian and standard.

RESUME. - Comme premiere etape vers une theorie des Op*-algebres
partielles abeliennes, nous etudions Ie commutant d’une famille commu-
tative 9t d’operateurs normaux dans un espace de Hilbert, c’est-a-dire des
operateurs normaux de meme mesure spectrale E( . ). Plus precisement,
nous donnons des conditions pour qu’un operateur normal commutant
(au sens des Op*-algebres partielles fortes) avec tout operateur de 91
commute necessairement avec les projecteurs spectraux E(ð.). Sous ces
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162 J.-P. ANTOINE AND W. KARWOWSKI

conditions, qui sont essentiellement equivalentes a 1’existence d’un domaine
dense de vecteurs analytiques communs, nous montrons que l’Op*-algèbre
partielle engendree par N est de type polynomial, abelienne et standard.

I INTRODUCTION

Algebras of unbounded operators have been around for a long time,
since the pioneering work of Powers [1 ], Lassner [2 ], and many others.
They are defined as follows. Given a Hilbert space ~f and a dense domain ~
in ~f, one considers closable operators A which, together with their

adjoint A*, are defined on ~ and leave it invariant. An Op*-algebra is
a set of such operators which is stable under addition, involution (A ~ A*)
and multiplication, thus a *-algebra.
For many reasons, both mathematical and physical, the requirement

that the operators leave the domain ~ invariant is too restrictive. However,
if one relaxes it, the product of two operators need not be defined any
longer, i. e. the multiplication becomes partial.. These circumstances have
led us to introduce [3 ], [4] the concept of partial *-algebra of closed ope-
rators or, more concisely, partial Further developments
include the beginnings of a representation theory [5 ], [6] and a systematic
analysis of commutants and bicommutants [7 ]. Now, in the corresponding
theory of algebras of bounded operators (C*- and W*-algebras), Abelian
ones play a prominent role. Thus the question arises : what is an Abelian
partial Op*-algebra and what are its properties?

In the bounded case, an algebra U is Abelian iff it is contained in its
commutant ~’. For a partial Op*-algebra, however, several notions of
unbounded commutants have been defined [7 ], and it is not clear which
one will give a good notion of Abelianness. The aim of this paper is to
analyze this question, in the restricted case where the partial Op*-algebra
is generated by a family of normal operators with the same spectral measure,
hence commuting in the strong sense. However limited as it is, this case
already exhibits the pathologies that may happen and suggests the right
choice to make.
Given a general partial Op*-algebra 9t, three different unbounded com-

mutants have been defined [7 ], denoted respectively N’2022, N’[], N’03C3; the
first two (called natural) refer to the two possible partial multiplications.
and 0, the third one is the weak unbounded commutant introduced by
Epifanio and Trapani [8 ], and the three are ordered :
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163NORMAL OPERATORS IN PARTIAL Op*-ALGEBRAS

In addition one may consider also the bounded parts of each of those sets :

where 91~ = ~~b (the equality in (1. 2) was not noticed in Ref. [7] for a gene-
ral partial Op*-algebra). Of course bounded commutants are of no use for
defining an Abelian set that contains many unbounded operators ! So we
have to use the unbounded commutants (1.1) themselves. However there
are indications that those are too big. For instance, a representation of 9t,
as defined in Ref. 6, is irreducible iff the bounded part = 91~ of 910 is
trivial, whereas the full commutants 91’, 91~ need not be so. More seriously,
the unbounded commutant 9t. does not exclude the Nelson patho-
logy [9 ], [10 ] : as we will see in Section II, two essentially self-adjoint
operators may commute in the. sense without having (strongly) commuting
closures. A solution to this difficulty is to introduce a more restrictive

commutant. If N is a family of commuting normal operators with the same
spectral measure E( . ), we define the spectral commutant = (91 u { E(0) ~,
ð. Borel) . But then we face two questions. Under what conditions does
one have = 9t. ?. And on the other hand, what is the relationship
between usual Hilbert space notions and those introduced in the context

of partial Op*-algebras?
In Section II below we analyze the concept of spectral commutant.

Then in Sections III and IV we examine the first of the two questions asked
above, first for a set 9t consisting of a single normal operator (Sec. III),
then for a finite family of normal operators with the same spectral measure
(Sec. IV). In both cases, the key point is to build a suitable dense set of
(jointly) analytic vectors, contained in ~. This of course is not a surprise.
Since Nelson’s original work [9 ], it is well-known that a large supply of
analytic vectors eliminates most of the difficulties associated with commu-
tation properties of unbounded operators. Many authors have discussed
those problems, notably Schmudgen [77] and Jorgensen [12 ].
Our main result, in Sections III and IV, is to provide a sufficient condition

for the equality N’sp = 9t. (to find a necessary and sufficient condition
seems hopeless). However limited it is, that result is quite instructive. Indeed
the condition we propose, although it may look ad hoc at first sight, is in
fact very natural: it simply says that the domain ~ must be well-adapted
to the family of operators, if one is to avoid pathologies. Moreover, the
condition is easy to verify in concrete examples, as we shall see.

Finally (Section V) we discuss the partial Op*-algebra generated
by 9~ = { Ai,..., A~ }, a concept introduced in Ref. [3 ]. In the present case,
it turns out that 9J! [9t] simply consists of all polynomials ..., AN }
that are allowed by the. multiplication. A similar result had been obtained
in Ref. 3. The resulting partial Op*-algebra 9M = 9M[9t] is in fact standard
(i. e. all symmetric operators are self-adjoint) and Abelian, in the sense that
9K c M’03C3. This definition is the one used already for the so-called V*-alge-

Vol. 50, n° 2-1989.



164 J.-P. ANTOINE AND W. KARWOWSKI

bras [8 ], [13 ], but it is still too strong for a general partial Op*-algebra.
However, the natural definition cannot be expressed as a simple inclusion
relation. We discuss it at the end of the paper. Further work along this line
is in progress and will be reported elsewhere [14 ].
At this point, however, the situation looks unnecessarily com-

plicated. Indeed, it has been shown in Ref. [7~] ] how to build from
the operators {A1, ..., AN} a genuine Op *-algebra on the domain

... , AN) = Similarly the restriction of 9J! to the
domain of jointly analytic vectors contained in !Ø is another Op*-algebra.
So why should we still consider the domain ~ on which we have only
a partial Op*-algebra? A possible answer lies in the analysis [7~] ofDirac’s
approach to Quantum Mechanics. Schematically, a given physical system
is characterized by a set D of fundamental or labeled observables, repre-
sented by self-adjoint operators with a common dense domain ~. Contrary
to the assumption made in the familiar Rigged Hilbert Space approach [15 ],
[16 ], [17 ], this domain need not be invariant. Then the natural assumption
is to take 0 as a partial Op*-algebra on ~. Within 0, one may choose a
complete set 9t of commuting observables, which by a result of von Neu-
mann [18 ], [79] ] may be taken as having the same spectral measure (of
course the choice of 9t is not unique in general). Thus the domain ~ is
fixed by the set 0, and not by 91. Hence we cannot assume that ? is an
algebra, although it may have an extension or a restriction that is one.
Those considerations will be discussed further at the end of the paper.

II SPECTRAL (BI)COMMUTANTS
OF NORMAL OPERATORS

We fix once and for all a separable Hilbert space Jf and a spectral
in ~f. The latter induces [10 ], [20-22] ] a unitary

map U from ~ onto a direct integral Hilbert space ~ :

In the sequel we will simply identify Jf and ~f. As usual [23 ], [24 ], a closed
operator B on ~ --_ J~ is called decomposable if

with B(À) a closed operator in ~(~,), and diagonal if

Annales de Henri Poincare - Physique " theorique "



165NORMAL OPERATORS IN PARTIAL Op*-ALGEBRAS

A function [R -~ C is called E-measurable (resp. bounded)
iff it is p-measurable (resp. p-essentially bounded), a subset L1 is E-mea-
surable iff its characteristic function is. We denote by E the 03C3-algebra of
all E-measurable subsets of IR.
Given an E-measurable, everywhere finite, function ~: [R -~ C, denote

by 03A3A the 03C3-algebra generated by that is, the smallest cr-algebra for
which is measurable :

03A3A = | 0394 = 03C6-1A(03B4), 03B4 a Borel subset of C}. (2 . 4)

Clearly b 1 n ð2 = 0 implies ~A~i)~A~2)=0. but not conversely (take
e. g. for ~pA a step function). However, if ~A ~(~2) = ~2) = 0.
define ~~ _ ~~B(~1 n(2) forj= 1,2. ~A’(~) ~ ~2) = 0
and b i n ~2 = 0. On the other hand, if ð. E EA and /), E ð., one has
0~, --_ 1( ~ ~pA(~,) ~ ) c ð.. That set 0~, may be reduced to one or several
isolated points, but it contains every segment ð.1 that contains ~, and over
which the function ~pA is constant with value 
The function defines a unique normal diagonal operator A on ~f,

namely : _ _

with domain :

One has = and thus A == is self-adjoint iff ~pA is real.
Notice that E(ð.l) # 0 iff is an eigenvalue of A, with corresponding
eigenspace 
Of course one may also associate to the spectral measure E( . ) a cano-

nical self-adjoint operator, namely Ao == ~E(~) which is much easier

to handle. But more singular functions are unavoidable when we treat
several operators simultaneously. Thus we consider a general operator
in Eq. (2.5).
We emphasize that our spectral measure E( . ) is always defined on [R,

following Riesz-Nagy [18 ], and not on the complex plane, as it is often
the case in the spectral theory of normal operators [20 ].

Let now be a family of E-measurable, everywhere finite functions;
we associate to it :

i ) a family 91 of strongly commuting normal operators, with common
spectral measure E( . ) :

Vol. 50, n° 2-1989.



166 J.-P. ANTOINE AND W. KARWOWSKI

ii) the 6-algebra ~91 generated by 91 (or 9t), i. e. the smallest 6-algebra
containing all the sets ð. = ~(~). for some and some Borel set
5c:C.

Thus one has, for each A 

For convenience, we may simply assume without loss of generality (and
shall do so unless otherwise indicated) that ~91 = ~. For eigenvalues, this
means the following. If is a common eigenspace for all A E 9t, and
ð.’ c ð., 11’ # ð., then ð.’ is not E-measurable : the spectral measure E( . )
« sees » only maximal common eigenspaces. ’

We return now to partial Op*-algebras. Let !Ø be a fixed dense domain
in and 0152(~) the set of closed, ~-minimal operators [3 ], [4 ] :
A E 0152(~) Ç&#x3E; A closed, ~ c D(A) n D(A*), ~ is a core for A: A = A f ~.

On the set 6( ~) we will consider the following operations:
i ) vector space structure :

ii) involution :

iii) strong partial multiplication :

The product A. B is defined only for those pairs A, B which satisfy the two
conditions B {Ø c D(A), A * {Ø c D(B~). In that case, we say that A is
a strong left multiplier of Band B a strong right multiplier of A, and we
write A E LS(B), B E Let now N be any subset of E(D). We call mul-
tipliers of N the elements of the set :

The space of multipliers carries two natural topologies, the so-called
quasi-uniform topologies L*(m) and described in detail in Refs. [3 ], [4 ].

Remark. - 0152(’@) also carries the so-called weak partial multiplica-
tion [3 ], [4] ] denoted 0, but we will not consider it here, except briefly
in Section IV. The corresponding structure, called a weak partial Op*-
algebra, will be studied systematically in other publications [14 ], [25 ]. Here
we stick to the definitions and terminology of Refs. [3 ], [4 ].
Given a ~ -invariant subset 9t = N~ of D(D), we will consider two types

of unbounded commutants :

i ) its strong natural commutant :

Annales de l’Institut Henri Poincaré - Physique theorique



167NORMAL OPERATORS IN PARTIAL Op*-ALGEBRAS

ii) its weak unbounded commutant :

Obviously one has :

In the sequel, we will consider a subset 91 of ~(~) consisting of normal
operators with the same spectral measure E( . ), as described above. For
such a set 91, we want to characterize the commutant ~t; and the bicommu-
tant 91~ ~ and compare them with the familiar notion of commutant
in the sense of unbounded operators.

First we observe that any normal operator A E ~(~) is standard i. e.
A* = A $ . Indeed, if A is normal, D(A*) = D(A), and ~A*f~ = II 
‘d f E D(A) ; hence ~ is dense in D(A*) with its A*-graph norm, i. e.

~ ~ ~* ~ ~ ~ ~=t=
We begin with bounded operators.

PROPOSITION 2.1. - Let N = 91* c D(D) consist of normal operators
with the same spectral measure E( . ). Then any bounded element B of 9~
commutes with E(ð.), for all 0394 E E.

Proof - Since A and B . A are closed and minimal, we have
D(B . A) ::) D(A) and (B . A) = B(A ~D(A)). Indeed, for f E D(A),
take fn ~ D such that f" ~ f, Afn ~ Af ; hence (B2022A)fn = BAfn ~ BAf,
so that f ~D(B . A). In the same way Bfn ~ Bf and ABfn = BAfn ~ BAf,
so that B f E D(A) and ABfn  ABf Thus we get :

i. e. B commutes with A in the sense of unbounded operators. It follows,
. as in the proof of Fuglede’s theorem (see Ref. [2~], § 1. 6), that B commutes

also with A* = A =*= and with the spectral projections of each i. e.

with the spectral measure E( . ) = E91(.). tt
The argument above, however, does not extend to unbounded operators

B E 9t.. Take for instance the example of Nelson [9], [10 ]. Given a dense
domain ~, he exhibits two operators X, Y, essentially self-adjoint on ~,
such that X ~ c ~, Y ~ c ~, XY f ‘d f E ~, and therefore

X. Y=Y* X, i.e. Y 6 {X }.. Yet eitX and eitY do not commute, so that, in
particular, Y does not commute with the spectral projections of X.

This situation suggests the introduction of a new, more restrictive, type
of commutant. Let A E 0152:(~) be a normal operator, with spectral measure
E( . ). Its spectral commutant is defined as follows :

Thus, when one has both B. A = A. Band B. E(il) = E(A)* B

Vol. 50, n° 2-1989.



168 J.-P. ANTOINE AND W. KARWOWSKI

for all 0 E Similarly, for a family 9t of normal operators with the same
spectral measure E, we define :

In this language, the statement of Proposition 2.1 is that N’sp and 9t;
contain the same bounded elements, or in the notation of Ref. [~], that

= (9~)~. The properties of the spectral commutant are summarized
in the next lemma.

LEMMA 2.2. - Let 9t c 0152(.@) be a family of normal operators with
the same spectral measure E( . ). Then :

i ) every B E N’sp is decomposable;
ii) is closed in the space of multipliers of 91 u { E(A)} for the quasi-

uniform topologies T~(9t u { 1}).
Proof. 2014 ~) Denote by ( E(ð.) ) the vector space generated by the ~ E(0) ~,

by 9J1 =  E(ð.) y the Abelian von Neumann algebra generated by { E(0) ~.
Then we observe that :

The first equality is trivial, the second follows from the fact that ( 
is strongly dense in 9[R. Indeed given C E there is a net { e ( 
converging strongly to C. Hence, for we have ~) :

i. e. B E 9M~. Now, as shown in Ref. [27], every element of is a closed

decomposable operator in the direct integral (2 .1 ), which proves the
assertion.

ii) This follows from eq. (2.13) if one remarks [3 ], [4] that every strong
natural commutant D. is closed in the space of its strong multipliers M" 0
for the quasi-uniform topologies T~(9~), and that r~(9t u { E(0) ~ ) is

equivalent to u {1 }). II
We notice that elements of the natural commutant 9t, need not be

decomposable. This, together with the (Nelson) counter-example above,
suggests that 91~ is actually too big. Furthermore, we can characterize
explicitly the spectral bicommutant of 91, = (~sp): (equality holds
because E(A) E re

We have seen that every B E N’sp is decomposable, i. e. B = B(03BB)dp(03BB),

B(~,) a closed operator in ~f (/).). Conversely every bounded decomposable

Annales de l’Institut Henri Poincaré - Physique theorique
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operator in MsN (that is, B(*) !!Ø c D(A), belongs to N’sp. Let
now Ce(9~p).. Since C commutes with every E(ð.), it is also

re

decomposable, C = C(~p(~). In addition C must commute with

every B E i. e. C(~) must commute with every B(/).), for a. e. ~,, on an
appropriate domain ~(~;) (see Ref. [27?, hence C(~,) _ 
C is diagonal. For eigensubspaces, we can see it directly. Let X1 be a
maximal common eigensubspace of N:

where contains no eigensubspace with ð.’ c ð., by the
assumption ~9I = X. Let now B be any bounded symmetric operator such
that ~2 is an eigenspace for B. Then, the decomposition (2.14) reduces
both B and every A ~ N (B is arbitrary on X1) and B E Let now

in particular B. C=C B. For g E ~1 n ~, CBg = BCg, i. e.
BCE(0)g. Thus CE(A) commutes with B on hence

C is a multiple of the identity, i. e. = ~fi is an eigenspace
for C as well, and of course Jfi c D(C).

We have seen that C is diagonal, C = ~c(~E(~) = E(~c)’ Then the diago-
nal operator C belongs to (N’sp)’. if and only if C~RsN’sp~LsN’sp c (D).
Necessity is clear. To see that the condition is sufficient, observe that if
f E ~, then E(A)/ E D(C) n D(B), for every ð. E ~9I and B E Then

we have :

Let C E then f E D, B E N’sp imply strong convergence of the integral

But by (2 .15), the l.h.s. of (2 .16) equals :

If the same argument works, interchanging the two integrals.
So in either case, we get BCf = CBf, V/ E D, hence B. C = C. B, that is,
C E (~sp); .

Thus, if we want to characterize (9~p)$, it remains to translate into the
function ~p~ the condition This gives the following

’Vol. 50, n° 2-1989.



170 J.-P. ANTOINE AND W. KARWOWSKI

conditions, which state, respectively, that Bf E D(C) and 

We collect all those results in a proposition.

PROPOSITION 2 . 3. - Let 9t = 91 * c 0152(~) be a family of normal ope-
rators with common spectral measure E( . ). Then :

re

i ) N’sp is the family of all decomposable operators B = 

B E.’0152(~), which verify the conditions (2.18) for all C ~ 9~ f E ~.
ll ) = is the set of all diagonal operators

whose function ~p~ verifies the conditions (2.18) for all B E f E . II

III STRONG NATURAL COMMUTANT
VS. SPECTRAL COMMUTANT :

THE CASE OF A SINGLE OPERATOR

Let A = be a normal operator in 0152(!Ø). In Section II we have
introduced its spectral commutant {A which is a subset of {A}..
In view of Proposition 2.1 and the Nelson counterexample, the natural
question to ask is, when does one have { A }~p == { A }, ? In other words,
when does B . A = A. B imply B. E(ð.) = E(ð.). B for all ð. E A ? Clearly
this statement involves both the domain D and the spectral properties of A,
e. g. the function As it is well-known the standard way of circumventing
the Nelson pathology is to consider analytic vectors, thus we shall be
concerned now with selecting a proper set of analytic vectors.
To begin with, we examine the 6-algebra ~A and, for later convenience,

we subdivide it into two subsets. First we consider the ring consisting of
inverse images of bounded Borel subsets :

Clearly a subset belongs to SA iff 03C6A is bounded on 1B, i.e. p).
In general SA is only a ring, since R ~ A. It is a 6-algebra iff 03C6A is bounded,
but then = EA .
For every the set 0~, = ~pA 1( ~ ~pA(~,) ~ ) belongs to SA’ since the

Annales de l’Institut Henri Poincaré - Physique theorique
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function is everywhere finite. It follows that every ~, is contained in a
measurable subset belonging to In other words :

LEMMA 3.1. - The family SA covers the whole real line, i.e. :

Next we consider spectral subspaces of A.

LEMMA 3 . 2. - Let A = and Then :

i ) c D(A) iff ð. E EA ;
ii) For any closed decomposable operator B, c D(B) iff

= BE(A) is bounded.

Conversely, let c D(A). Since A is closed, its restriction to 
is a closed operator from the Hilbert space into hence it must
be bounded. But then the diagonal operator

is bounded, hence must be essentially bounded on ð.. The argument is the
ye

same for ii), if one notices that the condition that E(A)B= JA B(/~p(~)
be bounded means that B(~,) is a bounded operator in ~(~,) for a. e. ~, E ð..

II
It follows from Lemma 3 . 2 i ) that, if then = E(ð.)D(A)

= where = Indeed since ~pA is bounded
on ð., it follows that E(A)/ E D(A") for n =1, 2, ..., and hence E(A)/ E 

It may be useful to consider also those subsets ð. E EA on which ~pA is not
bounded and to define the singular set of A as

For instance, if p is the Lebesgue measure and ~pA(~,) is the function :

Vol. 50, n° 2-1989.
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then SA = ~ 2k + 1, k }. Intuitively SA is the set of points in the neigh-
borhood of which the function is unbounded. Actually SA need not
be of E-measure 0. For instance, if we take the same function as above,
but with dp = d~, + (2k + 1)), then SA = ~A 1( ~ 1 ~ ) has posi-
tive measure.
As can be seen from those examples, the singular set SA may be used to

characterize SA itself.

PROPOSITION 3 . 3. - A subset ð. E EA belongs to SA iff
. either ð. n SA ~ 0 and then 0° n SA = 0 (0° the interior of ð.)
. or ð. n SA = 0 and then X n SA = 0. II

We omit the easy proof.
After these preliminaries, we come back to our search for the set of ana-

lytic vectors.

PROPOSITION 3 . 4. - Let A = SA the corresponding ring. Then :
i ) For every ð. E SA and f E Jf, the vector E(A)/ is an analytic vector

for A.

ii) The set ~an(A) - is a dense subspace of ~f and a core
for A; it consists of analytic vectors and contains all eigenspaces of A.

Proof - Statement i ) results from the following trivial estimate
(n = 1, 2, ... ) : :"

Thus the set of ii) consists of analytic vectors for A. It is a vector
space because SA is a ring, so that 01, ð.2 E SA implies ð.2 E SA and

+ c 02)~, Clearly contains all eigen-
spaces of A, which are all of the with 
and E(A~) 5~ 0. In that case the argument of ii) holds with dA(0) = 
Next we show that is dense in ~f. We cover C by an increasing

sequence of bounded Borel sets ~n, ~=0,1,2, ..., with ðo = 0. for instance
open squares of side 2n centered at the origin, or open disks of radius n.
Then C = is a partition by (disjoint) bounded Borel sets.
Hence and On+ l~~n - ~A 1(~n+ l~~n) both belong to SA.
Now any f E ~f may be written as :

where the sum converges strongly since :

Annales de Henri Poincare - Physique " theorique "



173NORMAL OPERATORS IN PARTIAL Op*-ALGEBRAS

This means is a Cauchy sequence. Therefore f-- 
which implies that is dense in ~f. Finally is a dense set of

analytic vectors, and it is invariant under A, hence it is a core for A [70].
II

In fact, the vectors in an(A) are not only analytic, but even bounded,
in the terminology of Faris [28 ]. Since the distinction between the two
notions will not be used in the sequel, we will continue to call our vectors
« analytic ».

Still the set an(A) is too big for our purposes. In view of Lemma 3 . 2 ii )
the assumption c D(B) would drastically reduce the family of B’s
under consideration. To give an example, let Jf = L2(1R2, dxdy), A and B
the self-adjoint operators of multiplication by x and y, respectively,
~ = D(A) n D(B). Then B . A = A . Band E~A). B = B . E~A); yet
an(A) = is not contained in D(B). Clearly one does not
want to exclude this pair A, B !

But in fact we don’t need the whole of an(A). Indeed, we want to consider
the operator A only in the context of the partial *-algebra 0152(!Ø) of minimal
operators. Thus ~ is necessarily a core for A. Put

Then ~(E~) c an(A) and hence ~(gA) is a set of analytic vectors for A.
It is also dense in Jf, but not necessarily A-invariant. To remedy this, we
consider the set flJ of all polynomials of one real variable and define :

This set is dense in Jf since it contains ~(E~). It is clearly A-invariant and
its elements are analytic vectors for A. Thus ,@&#x26;’(SA) is a core of analytic
(in fact, bounded) vectors for A.
Now we are ready to formulate the main result of this Section :

THEOREM 3 . 5. - Let A = Be6:(~) and ~(E~, the sets

defined by (3.4) and (3.5) respectively. Assume that

Then, for every ð. E EA and h E ~, one has BE(0)h = E(A)Bh. II
The proof of this theorem will be subdivided into a series of Lemmas

and Propositions. We begin our discussion with Take a, 
a ~ b, and denote by ~a, bb compact subsets of C containing a and b,
respectively, such that ~a = 0. Let Da = ~pA 1(aa), Ob - ~PA ~(~b).
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Then A, Ob E SA and o Da n Ob = 0. By Urysohn’s lemma  there " exists two
continuous functions (1) (2) such 1 that:

For i = 1, 2, (z)} be a sequence of polynomials converging uni-
formly to on Then we claim :

LEMMA 3 . 6. - With the notations as above, we have :

The proof is easy and will be omitted. Notice that, for 03B4b = { b }, the
function must be constant on so that the convergence indicated
in i ) is pointwise on and similarly for ~a = ~ a }.
Next we show :

LEMMA 3.7.2014Let and such
that A~ n Ob = 0. Then, under the assumptions of Theorem 3 . 5, one has
for everv h E ~ :

or, equivalently :

Proof 2014 Assume first that ~a, ~b are disjoint compact subsets, so that
Da n Ob = 0. Then one has, for i = 1, 2, f E ~f and 0 c Ob :

In particular we have

then E ~(,~ A) c D(B), so that, similarly,

We also have by iii) and iv) :

We claim that (3.10) converges to where is
the closure " of This clearly follows from (3.8), (3.9) and o (3.10)
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provided E(Ob)B is closable, but it must be so, since (E(Ob)B)* contains D
in its domain, as follows from ii). Thus we have :

The functions ~r~l~, ~~2~ are equal on Da, hence

This proves (3 . 6) for ~a and ~b compact.
For general disjoint subsets Da, Ob E we may always suppose that ba

and bb are disjoint. Indeed, if ba n ~b ~ 0, one may replace ~a, ~b by ba, ~b
such that Da = ~pA 1(~a), Ob - ~A 1(~b) and ba n 5~ = 0. So if ba, ~b are
compact, we are done. If not, they may be approximated from inside by
compact subsets, aa~ i ab, with n = 0, m, as in the

proof of Proposition 3.4.
Assume that ~b is compact and ~a is not. Then E D(B).

But = 0 for every n and hence the sequence converges.
Since E(Ob)B is closable, the limit is 0 = = 

Thus (3 . 6) holds for every 0394a ~ SA, and every disjoint Ob with 03B4b compact.
Let now 03B4b be bounded but not closed and as discussed above. We get :

where ’ ~a can be compact or not. So (3 . 6) holds true in general.
Clearly (3. 6a) implies (3 . 6). To prove the converse 

’ implication, take ’ any
then : 

_

Since is dense, this proves the statement and completes the proof
of Lemma 3. 7. II
A similar lemma is valid for B*.

LEMMA 3 . 8. - Let such that
Da n Ob = 0. Then, under the assumptions of Theorem 3 . 5, one has
for every h E qø :

or, equivalently :
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Proof. Let h, E EØ. Then :

which implies (3.12) and (3.12a). II
Now we go back to Theorem 3 . 5. Let again h, f and d E SA. We have:

Hence

This formula can be extended to any 0394 ~ 03A3A. Indeed, let d 1(03B4) with b
an unbounded Borel subset of C and f E EØ. If b" i ð with ~n bounded
and 1((S"), then

The last equality follows because B is closed, thus (3.13) holds for any
f and A e EA. This completes the proof of Theorem 3 . 5. II
Suppose the assumptions of Theorem 3.5 hold. Does that imply

E(0) . B = B. E(0) ? The answer is affirmative if both products exist.
In fact, B. always exists, since the non-trivial condition E(d)!Ø c D(B)
follows from (3.13). Exactly the same argument, using the closedness of B*,
yields the condition E(d)!Ø c D(B*). However, existence of E(d). B is

equivalent to the stronger statement E(d)!Ø c D(B $ ). If this holds, then
(3.13) implies E(0) . B = B* E(0). Notice that the stronger statement
holds true whenever B is normal, which implies B* = B~, and in particular
self-adjoint. We state those results as a corollary.

COROLLARY 3 . 9. - Suppose that A = and B E 0152(!Ø) verify
the assumptions of Theorem 3.5. Assume, in addition, that either

i ) E(d)!Ø c D(B $ ), or ii) B is normal, in particular, self-adjoint. Then
E(0) . B = B . E(0). II

If we assume now that !Ø(SA) c ~, then condition ii) of Theorem 3 . 5
automatically fulfilled, and in fact Hence, if 
we have E(d)!Ø c !Ø c D(B~). For an arbitrary 0394 ~ 03A3A, r the condition

E(0) f E D(B $ ) follows from the closedness of B~, exactly as in the proof
of Theorem 3 . 5. Thus we have :

THEOREM 3.10. - Let A = BE 0152(qø), and the sets !Ø(SA)’ 
defined by (3 . 4) and (3 . 5) respectively. Assume conditions i ), iii) and iv) of
Theorem 3 . 5, and in addition :

Then, for every one 
’ has E(0) . B = B  E(0).. II
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At this point one may ask the following questions :
1) Are the assumptions of Theorem 3.10 sufficient to conclude that

A.B=B.A?

2) If assumption iv) in Theorems 3 . 5 and 3.10 is replaced by A. B = B. A,
does the relation E(A). B = B. E(d) still hold ?
As for the first question the answer is negative. Take for example

Consider B = A. Then all assumptions of Theorem 3.10 are fulfilled,
- but the product A. A is not even defined !

However, if ~~(~~) and A. B = B. A, then all assumptions of
Theorem 3.10 are fulfilled and we have :

COROLLARY 3.11. With the notations of Theorem 3.10, assume :

f) qø9(8A) C ~,
ii) A* B = B A.

Then for every ð E EA, one has E(0) . B = B . E(0), and thus B E { A }~.
. II

Putting all together, we may state finally :

THEOREM 3.12. - Assume that c ~. Then { A }~ = ~ A ~; .
II

This answers our original question for the case of a single operator A.
In the next Section we will extend the analysis to the case of several ope-
rators. But, before that, we want to comment the main result, Theorem 3 .12.
Of course, the condition ~~(~,A) c ~ is only a sufficient condition for

the equality {A }~ = {A }, , but it is a natural one. In fact it must be seen
as a consistency condition on the domain ~ : the latter must be well-adapted
to the operator A, lest all pathologies of Nelson type break loose. Let
f E ~. Then the condition says that the vector P(A)E(0) f must belong
to ~ again, for any polynomial P and every d E 8A (remember that P(A)
is bounded on E(A)Jf, so that the first factor is rather harmless). Let us
give some simple examples. Take Jf = dx), A = multiplication by x.
Then the condition is satisfied for each of the following domains : D(A),
D(Ak) or the domain for

any fixed k &#x3E; 1. Notice that none of those domains is invariant under A.

IV . THE CASE OF SEVERAL OPERATORS

For a family 9t containing more than one operator, the analysis proceeds
essentially along the same lines. The key point in the argument of Section III
is the introduction of the set SA for generating a dense subspace of analytic
vectors. What we need now is a subset 891 of 03A3N that will play the same role.
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We start by considering a two element family N = {A1, A2 }, corres-
ponding to the functions = 1, 2. Each Aj generates the (7-algebra E~
with 8j the subset of E~ consisting of inverse images under of bounded
Borel subsets of C. Finally L9I is the (y-algebra generated 
and we assume that L9I = E, as indicated in Section II.

Let now d be an element of the « good » subset 891 we are loo-
king for. A vector of the form E(0) f is surely jointly analytic for AI, A2
if both operators are bounded on the subspace This means that

n ~p21(~2) for some bounded Borel subsets ~1, 52cC. Notice
that it may, and in fact often will, happen that ~p2 is not bounded on the
whole or ~pl on (~2 ~(~2). Let us give an example of such a behavior.

Let the measure p defined by E( . ) be the Lebesgue measure for simplicity
(see E. (2 .1)), and consider the following functions :

where e is a fixed irrational number, with 0  E  1. In the terminology
of Section III, Eq. (3 . 5), the singular sets of 03C61, 03C62 are Z and respectively.
Given any two numbers a, b such that 0  a  b  1, define ð1 = [b -1, ].
Then ~p~ 1(~1) is the union of infinitely many disjoint intervals, and for any

contains infinitely many points ~2) of S2 == This

follows from Birkhoff’s ergodic theorem [Ref. [28 ], Sec. 16, Th. C ] : taking
everything modulo one, the orbit {~,~=1,2...} is dense in [0,1 ].
In other words the = 1, 2 ... } is dense Yet there

are plenty of intervals where both 03C61 and 03C62 are bounded : any closed

interval contained in u S 2) will do. Take, for instance, any closed
interval 03940 c (0, and 03C62 are bounded on A0, 03C6j(03940) ~ 03B4j(j=1,2),
with 03B4j bounded Borel and Another example
that looks even more pathological, but is in fact equivalent to the previous
one, is given by the functions :

Those- examples suggest to choose as « good &#x3E; subset the family :

In general, 891 is not a ring and does not contain 81 Or 82 (unless and/or ({J2
is bounded). In fact, in the examples above, one has 81 n 82 = 0.
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LEMMA 4 .1. - Let 891 be the set defined in (4 . 3). Then :

i ) ordered by inclusion, 891 is stable under intersection and directed
to the right;

ii) 891 covers the whole line : = tR.

Proof 2014 Statement i ) is immediate; directedness means that every pair
of elements has an upper bound :

where the r. h. s. belongs to 891 again since jd U E~, ~ = 1,2. As for ii),
it follows, as in Lemma 3.1, from the fact that both functions ~p2 are

everywhere finite by assumption. II
Now we proceed as in Proposition 3.4. Clearly, for every d E 9191

and the vector E(A)/ is jointly analytic for A1 and A2,
since both operators are bounded on Then we introduce the set

= First it is a vector subspace of by the inclu-
sion (4.4). Second it is dense in jf. For proving this we write again
C = 03B4n, 03B4n ~ 03B4n+1, 03B40 = 0. and define, for j = 1, 2, ’On = 03C6-1j(03B4n).
Then every f E ~f may be written as follows :

and therefore

where 10n, n 20394n2 E N, which shows that is dense. Notice that some
of those elements of N at least have positive measure, because of the equality:

Finally ~a"(~) is a dense invariant set of analytic vectors, hence it is a core
for A 1 and A2 .

Clearly all those arguments hold true for any finite family 91 = {Aj,
y=l,2,...,N}, A~=E(~). In particular, Eq. (4 . 4) becomes [29 ] :

We summarize the discussion above as a proposition.

PROPOSITION 4.2.2014Let 9t={A~...,AN} be a finite family of
normal operators with the same spectral measure E( . ), namely Aj = E(~),
j = 1, ..., N. For each j = 1, ..., N, define the ring

and the set

Then :

i ) 891 is stable under intersection, directed to the right, i. e. verifies (4 . 8),
and covers the whole line : 8m} = [R.
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ii) For every and /eJf, the vector E(0) f is jointly analytic
for A1, A2, ..., AN.

The set ~a"(~J~t) = is a dense subspace of jointly analytic
vectors and a common core for A1, A2, ..., A. II

The density of ~an(~) rests on the following approximation, valid for
any/:

where ’On~ _ 1(~n~ ) is our standard increasing sequence of
bounded Borel sets covering C. Here again the subsets d = 
cannot have all measure zero : this corresponds to the fact that there are
sufficiently many sets of positive measure where A1, ....Apq are simul-
taneously bounded; in other words, the joint singular set of the family 9t,
S9I = is a discrete set. However, as one sees easily, this property
does not extend to an infinite family 9t. To get a counterexample, one may
generalize the examples (4.1) or (4.2). For every j = 1, 2, ..., define
the function :

Then S(Aj) = 7L/j, which is discrete. So is the union of any finite number
of similar sets = 1, 2, ... , N. But if we take all ’e we get :

the rational numbers, which are dense in [R. Thus the construction breaks
down and so does the approximation (4.11) : the corresponding set

891 = { nj= 1 jd, ’0 E contains no set of positive measure, only isolated
points. Thus for an infinite family 9t, we need an assumption, for instance
that S9I = is nowhere dense [70]. Then t~BS~ contains a dense
open set and the construction may be generalized. However, we shall
not pursue that point here.
Having thus identified the « good » subset 891 of E~, we may proceed

exactly as in Section III. As in (3.4), (3.5), we define two sets of analytic
vectors :

where 9N denotes the set of polynomials in N real variables, and P(A1, ..., AN)
is defined by the functional calculus. Then the reasoning of Lemma 3.7
goes through. Taking N = 2 for simplicity, let d = 1 d n 2 d, d’ = 1 d’ n 20.,
with d, 0’ E 891, d n d’ = 0, and consider the operator E(0)BE(0’), where B
verifies the assumptions of Lemma 3.7. Using the decomposition
r = (r n r) u (rBr) for the four sets = 1, 2, and applying
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Lemma 3 . 7 for j = 1 and 7=2 successively, we obtain :

The approximation method defined in the proof of Lemma 3 . 7 works for
several operators as well, so that we may extend our analysis to arbitrary
subsets d, d’ The same is true for Lemma 3 . 8.

Putting all together, we obtain the analogue of Theorem 3 . 5 :

THEOREM 4 . 3. 2014 Let N = {A1’ ..., AN }, Aj = Ê(({J j) as before, B~E(D),
~(891) and qø9(891) the sets defined in (4.13), (4.14) respectively. Assume that

i ) ~9(891) c D(B),
ii) q¿(891) c D(B~),
iii) BDP(N) C D(A),
iv ) 

Then, for every d E L9I and h E ~, one has BE(0)h = E(0)Bh. II

The rest of the discussion of Section III goes through as well, replacing
everywhere { A}., { A }’sp by N’2022, N’sp respectively. We simply reformulate
the last two theorems.

THEOREM 4.4. - Let 9t, B, ~(891) and ~9(891) be as above. Assume
conditions i ), iii) and iv) of Theorem 4 . 3, and in addition :

ii’) ~(S9l) c ~ .

Then, for every A e Lgh one has E(0) . B = B. E(0). II

THEOREM 4. 5. - Assume that ~9(891) c ~. Then = 9t.. II
The comments made at the end of Section III apply here too. Again the

condition ~9(891) c !Ø is a natural one to impose on the domain ~, for
the same reasons. Examples are easy to give, using for instance the concrete
situations described in [13 ]. Besides the complete sets of commuting ope-
rators {x1, x2, x3} and {p1, p2, p3}, which are obvious for a quantum
mechanical system, the case of { H, L~ is easy to treat also, especially
when the Hamiltonian H has a purely discrete spectrum { En } . For instance,
the following domains verify our conditions, for any triple of positive
integers r, s, t :

The philosophy is always the same : the domain ~ must be well-adapted
to the set 9t.
Theorem 4 . 5 answers our original question for the case of a finite set 91

of operators. The last step is to extend the analysis to the (partial) *-algebra
generated by 9~ and this will be done in Section V.

Vol. 50, n° 2-1989.



182 J.-P. ANTOINE AND W. KARWOWSKI

V. OUTCOME : AN ABELIAN PARTIAL Op*-ALGEBRA

For simplicity, we restrict ourselves to N = 2 and real-valued func-
tions 03C62 such that Ê(({J2) are self-adjoint and belong to E(D).
We assume throughout that ~ =3 !Ø9(891)’ where 91 = { 6(~2)}.
Take first the self-adjoint operator + b~p2), a, b E ~. By standard

results [18 ], [20], we have + b~p 2) ~ + b E(~p 2) and
n D(Ê(({J2)) :::&#x3E; !Ø :::&#x3E; !Ø9(891). Since !Ø9(891) is an invariant domain

of analytic vectors for + b~p2), it is a core, hence ~ is also a core,
and therefore + b~p2) E ~(~), i. e. :

Similarly, one has

Observe that the following three conditions are equivalent :

If they hold, we get D(E(03C61)E(03C62)) ~ D ~ DP(N) and as above this implies
that ~ is a core for (~2), i. e. E(~ 1 ~p2) E 0152(!Ø) and therefore :

In particular, c with ~p = ~pl or we get:

Notice that the first equality is always true. Similar relations hold for all
powers : if the k-fold product E(~)* ...  E(~p) exists, it coincides with
[E(~p) ]k = Such products are associative, as already noted in Ref. [3 ].

Clearly all those results extend to complex-valued functions ( j = 1, 2),
which yield normal operators as well as to any finite number N

. of operators E(~).
As observed in Section 2, all self-adjoint and normal operators in 0152(!Ø)

are standard. Furthermore, if A and B are standard, one has A. B = A a B,
where 0 denotes the weak partial multiplication defined in Ref. [3 ]. Then
the discussion above shows that all operators E(~p~ ) are standard, and so
are their + -sums and their. - or a-products. It follows that 91 = { Ê(qJ1)’...,
E(~pN) } generates a partial Op*-algebra a~[9t], namely the smallest one
containing 91 (with the. multiplication only, difficulties may arise with
distributivity, see Add./Err. to Ref. [3 ]). As in Example 3 . 5 of Ref. [3 ], 9M [91] ]
is a polynomial partial Op*-algebra, consisting of all polynomials in
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Ê(({J1), ..., which are well-defined with respect to the. multipli-
cation. If P j is such a polynomial, the existence condition is that

..., ~)) =~ ~. Then we have :

where P j denotes the polynomial P~ evaluated with the operations. and + .
Clearly the operator in (5. 5) is normal, which means that the partial Op*-
algebra 9J1 [91] itself is standard, in the sense of Ref. 3.
The partial Op*-algebra 9Jl [91] is also Abelian, in a sense that we will

specify now. An abstract partial *-algebra ~ is naturally called Abelian
if the following two conditions hold :

i ) 
ii) x. y = y . x, for all xe9t, yeR(x).

For a partial Op*-algebra as considered here, there is an alternative defi-
nition, namely U c U’03C3, or explicitly :

As it is easily seen, the inclusion 9t c ~~ implies that ~ is Abelian, but not
the converse in general. We refer to a further publication [7~] for a syste-
matic analysis of those questions. ,

For the partial Op*-algebra 9K[9t], the relation (5.6) is readily verified,
namely :

Hence we may state :

PROPOSITION 5.1. - Let 9t = { ..., }. Assume that

~9(S9l) c ~. Then the partial Op*-algebra 9.R[9t] generated by 9t consists
of all allowed polynomials in Ê(({J1),... ,.Ê(({JN). It is standard and Abelian,
and furthermore 9Jl [91] c 9M[9~. A given polynomial Pj is allowed iff
~ c D(P~ (~p 1, ... , ~pN)), and all relations (5.1)-(5.5) hold true. II

Finally we come back to the comparison of the present results with those
obtained previously, using the language of V*-algebras. Let again
9t = {A1’ ....A~}, Aj = From the results of Ref. 13, one infers
that ~9(891) c = both domains are dense in ~f and

a common core for A1, ..., AN, and the restriction of 9t to each of them
is an Op*-algebra. In addition, 9100 == 91 is standard, self-adjoint
and completely regular (that is (91OO)~~ c 2+(~)) and 93 = (9t~)~ is an

If we take now 9t c 0152(~) and make the natural assumption that
!Ø c D~(N), then all polynomials P(A 1, ... , AN) are well - defined on D
and are normal; let ~ [91] denote their set. It follows that ~ [9t] is a *-alge-
bra for the weak multiplication 0, which coincides here with the ordinary
operator product. However, this need not be the case for the. multipli-
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cation. !Ø is not necessarily a core for every polynomial P(A1, ... , AN),
hence the. product of two such polynomials need not be always defined,
i. e. is only a partial Op*-algebra.

All those pathologies disappear if we add our standing assumption, thus
c D~(N) : then D is indeed a core for every P(A1, ..., AN),

and therefore M[N] = B[N] is an Abelian, standard Op*-algebra on D
as well, for both. and a, which now coincide.
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