@article{AIHPA_1989__50_2_115_0, author = {Nakamura, Shu}, title = {Scattering theory for the shape resonance model. {I.} {Non-resonant} energies}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {115--131}, publisher = {Gauthier-Villars}, volume = {50}, number = {2}, year = {1989}, mrnumber = {1002815}, zbl = {0686.35090}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1989__50_2_115_0/} }
TY - JOUR AU - Nakamura, Shu TI - Scattering theory for the shape resonance model. I. Non-resonant energies JO - Annales de l'I.H.P. Physique théorique PY - 1989 SP - 115 EP - 131 VL - 50 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1989__50_2_115_0/ LA - en ID - AIHPA_1989__50_2_115_0 ER -
Nakamura, Shu. Scattering theory for the shape resonance model. I. Non-resonant energies. Annales de l'I.H.P. Physique théorique, Tome 50 (1989) no. 2, pp. 115-131. http://www.numdam.org/item/AIHPA_1989__50_2_115_0/
[1] Lectures on exponential decay of solutions of second order elliptic equations. Bounds on eigenfunctions of N-Body Schrödinger operators. Mathematical Notes. Princeton, N. J., Princeton Univ. Press, 1982. | MR | Zbl
,[2] Perturbation theory for shape resonances and large barrior potentials. Commun. Math. Phys., t. 83, 1982, p. 151-170. | MR | Zbl
, ,[3] The shape resonance. Commun. Math. Phys., t. 110, 1987, p. 215-236. | MR | Zbl
, , , ,[4] Convergent expansions for tunneling. Commun. Math. Phys., t. 92, 1983, p. 229-245. | MR | Zbl
, , ,[5] On the shape resonance. Springer lecture notes in physics, 1984, t. 211, p. 64-77. | MR
, , ,[6] Semiclassical quantum mechanics. I: the h → 0 limit for coherent states. Commun. Math. Phys., t. 71, 1980, p. 77-93. | MR
,[7] On the rate of eigenvalue degeneracy. Commun. Math. Phys., t. 60, 1978, p. 73-95. | MR | Zbl
,[8] Double wells. Commun. Math. Phys., t. 75, 1980, p. 239-261. | MR | Zbl
,[9] Multiple wells in the semi-classical limit. I. Commun. in PDE, t. 9, 1985, p. 337-369. | Zbl
, ,[10] Resonances en limite semi-classique. Preprint.
, ,[11] Scattering theory with two Hilbert spaces. J. Funct. Anal., t. 1, 1967, p. 342- 369. | MR | Zbl
,[12] The abstract theory of scattering. Rocky Mountain J. Math., t. 1, 1971, p. 127-171. | MR | Zbl
, ,[13] On the absence of resonances for Schrödinger operators with non-trapping potentials in the classical limit. Commun. Math. Phys., 1986, t. 106, p. 485-494. | MR | Zbl
,[14] Scattering theory for differential operators. I.-II. J. Math. Soc. Japan, t. 25, 1973, p. 75-104 ; 222-234. | Zbl
,[15] Absolute continuity of positive spectrum for Schrödinger operators with long-range potentials. J. Funct. Anal., t. 12, 1973, p. 30-54. | MR | Zbl
,[16] Methods of modern mathematical physics. I-IV. New York, New York, San Francisco, London, Academic Press, 1972-1979. | MR
, ,[17] Semi-classical bounds for resolvents of Schrödinger operators and asymptotics for scattering phase. Commun. in PDE, t. 9, 1984, p. 1017- 1058. | MR | Zbl
, ,[18] Semi-classical estimates for resolvents and asymptotics for total scattering cross-sections. Preprint.
, ,[19] The semiclassical limit of quantum dynamics. I: Time evolution; II: Scattering theory. Preprints. | MR
,[20] Semiclassical analysis of low lying eigenvalues. II. Tunneling. Ann. Math., t. 120, 1984, p. 89-118. | MR | Zbl
,[21] Semiclassical analysis of low lying eigenvalues. IV. Flea of elephants. J. Funct. Anal., t. 63, 1985, p. 123-136. | MR | Zbl
,[22] Quasi-classical approximation in stationary scattering problems, Funct. Anal. Appl., t. 11, 1977, p. 6-18.
,[23] The eikonal approximation and the asymptotics of the total cross-section for the Schrödinger equation. Ann. Inst. Henri Poincaré, t. 44, 1986, p. 397- 425. | Numdam | MR | Zbl
,[24] The quasi-classical limit of scattering amplitude, Finite range potentials. Springer lecture notes in math., t. 1159, 1985, p. 242-263. | MR | Zbl
,[25] The quasi-classical limit of scattering amplitude, L2-approach for short range potentials. Japan. J. Math., t. 13, 1987, p. 77-126. | MR | Zbl
,[26] Private communication.
,[27] On the location of resonances for Schrodinger operators in the semiclassical limit : Resonance free domains. To appear in J. Math. Anal. Appl. | Zbl
, , ,[28] On the location of resonances for Schrödinger operators in the semiclassical limit: II. Barrier top resonances. Commun. in PDE, t. 12, 1987, p. 201-222. | MR | Zbl
, , ,