@article{AIHPA_1988__49_3_387_0, author = {Sudarshan, E. C. G. and Imbo, Tom D. and Imbo, Chandni Shah}, title = {Topological and algebraic aspects of quantization : symmetries and statistics}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {387--396}, publisher = {Gauthier-Villars}, volume = {49}, number = {3}, year = {1988}, mrnumber = {988435}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1988__49_3_387_0/} }
TY - JOUR AU - Sudarshan, E. C. G. AU - Imbo, Tom D. AU - Imbo, Chandni Shah TI - Topological and algebraic aspects of quantization : symmetries and statistics JO - Annales de l'I.H.P. Physique théorique PY - 1988 SP - 387 EP - 396 VL - 49 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1988__49_3_387_0/ LA - en ID - AIHPA_1988__49_3_387_0 ER -
%0 Journal Article %A Sudarshan, E. C. G. %A Imbo, Tom D. %A Imbo, Chandni Shah %T Topological and algebraic aspects of quantization : symmetries and statistics %J Annales de l'I.H.P. Physique théorique %D 1988 %P 387-396 %V 49 %N 3 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPA_1988__49_3_387_0/ %G en %F AIHPA_1988__49_3_387_0
Sudarshan, E. C. G.; Imbo, Tom D.; Imbo, Chandni Shah. Topological and algebraic aspects of quantization : symmetries and statistics. Annales de l'I.H.P. Physique théorique, Tome 49 (1988) no. 3, pp. 387-396. http://www.numdam.org/item/AIHPA_1988__49_3_387_0/
[2] Relativity, Groups and Topology II, edited by B. S. DeWitt and R. Stora (Elsevier, New York, 1984), and references therein.
, in[5] Center for Particle Theory. Report, No. DOE-ER40200-142, 1988.
, and ,[7] Lecture Notes in Mathematics, vol. 170 (Springer Verlag, Berlin, 1970).
, in[8] Phys. Rev., t. D 3, 1971, p. 1375 ; , Ph. D. Thesis, University of North Carolina, 1971.
and ,[9] Phys. Lett., t. B 213, 1988, p. 471. | MR
, and ,[10] Phys. Rev. Lett., t. 60, 1988, p. 481. | MR
and ,[11] A group G is called perfect if [G, G] = G where [G, G] is the commutator (or derived) subgroup of G. See, for example, A Course in the Theory of Groups (Springer Verlag, New York, 1982). | Zbl
,[12] Math. Scand., t. 10, 1962, p. 111. | MR | Zbl
and ,[13] Math. Scand., t. 10, 1962, p. 119 ; , Braids, Links and Mapping Class Groups (Princeton University Press, Princeton, 1974), and references therein. | MR | Zbl
and ,[14] Center for Particle Theory. Report, in preparation.
and ,[15] Phys. Rev. Lett., t. 52, 1984, p. 2103. | MR
,[16] Phys. Rev., t. B 31, 1985, p. 1191.
and ,[17] J. Phys., t. A 18, 1985, p. 3521. | MR | Zbl
,[18] Applications of Finite Groups (Academic Press, New York, 1959). | MR | Zbl
,[19] J. Phys., t. A 16, 1983, p. 729 ; , in Topological Properties and Global Structure of Space-Time, edited by P. G. Bergmann and V. de Sabbata (Plenum, New York, 1986); , Phys. Rev., t. 90, 1953, p. 270. | MR
, and ,[20] Abh. Math. Sem. Hamburg, t. 4, 1926, p. 47. | JFM
,[21] B3(R2) is torsion-free and is also isomorphic to the group of the trefoil knot. For more on braids and knots see Topics in the Theory of Group Presentations (Cambridge University Press, Cambridge, 1980), and J. S. BIRMAN in Ref. 13. | Zbl
,[22] Proc. Roy. Soc. London, t. A 265, 1962, p. 229. | MR | Zbl
,[23] Ann. Math., t. 38, 1937, p. 533. | JFM | Zbl
,[24] Duke Math. Jour, t. 29, 1962, p. 243 ; , Trans. Amer. Math. Soc., t. 122, 1966, p. 81. | MR | Zbl
and ,[25] See Refs. 7 and 8, as well as J. Math. Phys., t. 7, 1966, p. 1218 ; and , J. Math. Phys., t. 9, 1968, p. 1762; , Phys. Rev., t. 176, 1968, p. 1558 ; J. Math. Phys., t. 12, 1971, p. 304; , J. Phys., t. A 5, 1972, p. 936.
,[26] Further references on nonscalar quantizations are, Nucl. Phys., t. B 271, 1986, p. 227; Syracuse University Report No. SU-4428-361, 1987 ; Syracuse University Report No. SU-4428-373, 1988 ; as well as Ref. 2.
,