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A geometric setting
for classical molecular dynamics

Toshihiro IWAI

Department of Applied Mathematics and Physics,
Kyoto University, Kyoto, Kyoto 606, Japan

Ann. Henri Poincaré,

Vol. 47, n° 2, 1987, Physique theorique

ABSTRACT. - In studying the « internal » motions of a molecule (a
many-particle system), use has been made of the Eckart frame, relative
to which the molecule moves without rotation. This paper shows, on the
geometry of the center-of-mass system due to A. Guichardet, that the
Eckart frame exists for any configuration of the non-rigid molecule, but
not uniquely. The main purpose of this article is then to apply the reduction
method of Marsden-Weinstein to the Hamiltonian system which describes
the classical molecular dynamics and is defined on the cotangent bundle
of the center-of-mass system, in order to eliminate the rotation motion.
If the angular momentum is not zero, nor the molecule is restricted on a
fixed plane, the reduced phase space is larger than the cotangent bundle
of the internal space and carries the two-form to which the source of the
Coriolis force is attributed.

RESUME. 2014 Dans l’étude des mouvements « internes » d’une molecule

(un systeme de plusieurs corps), on emploie un repere d’Eckart, par rapport
auquel la molecule effectue un mouvement sans rotations. On montre, a
la suite d’un travail d’A. Guichardet, qu’il existe un repere d’Eckart pour
une configuration arbitraire de la molecule, mais pas de façon unique. Le
but principal de ce travail est alors d’appliquer la methode de reduction
de Marsden-Weinstein au systeme hamiltonien qui decrit la dynamique
classique de la molecule et est defini sur le fibre cotangent au systeme du
centre-de-gravite, pour eliminer les mouvements de rotation. Si le moment
cinetique n’est pas nul, ou si la molecule n’est pas limitee a un plan fixe,
l’espace de phases reduit est plus grand que le fibre cotangent a l’espace
interne, et muni d’une 2-forme a laquelle est attribuee la source de la force
de Coriolis.
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200 T. IWAI

1. INTRODUCTION

In this paper, a molecule means a system of particles or atomic nuclei,
which is the picture of molecules in the Born-Oppenheimer approximation.
The theory of small vibrations of molecules is found in any book on mole-
cular dynamics. However, if one wishes to study much more of molecular
motions than the small vibrations, one gets involved with difficulty caused
by the non-rigidity of molecules. The problem of separating the vibration
motions from the collective motions has been receiving continuous atten-
tion both in classical and quantum mechanics. Here the collective motions
denote the translation and rotation motions. In any respect, the problem
of the separation makes one study what is meant by the Eckart condition
of the translationless and rotationless constraints. In other words, one
has to investigate what the internal motion of the molecule is. For the
Eckart condition, see Eckart [1 ], Louck and Galbraith [2 ], and Sut-
cliffe [3 ] .

A. Guichardet [4] defined rigorously the vibration motions, and thereby
showed that the vibration motions can not be separated from the rotation
motions on the theory of connections in differential geometry. According
to him, performing a purely vibrational motion, a molecule in Rd can, at
the end of a finite time, come to a final configuration which is deduced
from the initial one by an arbitrary pure rotation. The point of his theory
is the observation that a center-of-mass system is made into a principal
fiber bundle with rotation group SO(d) as the structure group, on which
a connection is defined by the Eckart condition of rotationless constraint.
The internal space for the molecules is then the base manifold of that

principal fiber bundle.
On the basis of the connection theory for the center-of-mass system,

this paper shows that the Eckart frame exists for any configuration of the
molecule, but not uniquely, where the Eckart frame is a moving frame
relative to which the molecule moves without rotation. For this reason,
the Eckart frame is not suitable for dynamics of non-rigid molecules. The
purpose of this paper is then to discuss how the collective motions of the

non-rigid molecules are gotten rid of in the Hamiltonian formalism,
without reference to the Eckart frame.

Hamiltonian mechanics of non-rigid molecules is set up on the cotangent
bundle of the center-of-mass system. Elimination of the angular momentum
will be carried out by using the reduction theorem of Marsden and Wein-
stein [5 ]. The reduced Hamiltonian system will be interpreted as a dyna-
mical system free of collective motions.

This paper is organized as follows. In Section 2, a brief review is given
of Guichardet’s work on which this article is based. The center-of-mass

l’Institut Henri Poincaré - Physique theorique



201A GEOMETRIC SETTING FOR CLASSICAL MOLECULAR DYNAMICS

system for a molecule is described as a principal fiber bundle with rotation
group as the structure group. The internal space of the molecule is then

defined as the base manifold of the principal fiber bundle, which is, so to
speak, the set of all molecule forms independent of their position in a labo-
ratory frame.

According to Guichardet [4 ], a connection is naturally defined on that
principal fiber bundle. Indeed, 5 the Eckart condition of rotationless

constraint defines a « vibrational » subspace of the tangent space at every
point of the total bundle space. The fact that this connection has non-
vanishing curvature makes it impossible to separate vibration from rota-
tion. Even infinitesimal vibrations are coupled to give necessarily rise to
infinitesimal rotations. Hence the Eckart condition in the original form
is not effective for deformable molecules. Sternberg [6] ] and Kobayashi
and Nomizu [7] contains all useful materials on principal fiber bundles,
connections, etc. For physical intuition to the fiber bundle theory, Bleec-
ker [8 ], Nash and Sen [9 ], and Eguchi, Gilkey, and Hanson [10 ] are helpful.

Section 3 contains a study of the Eckart frame [2] in terms of the connec-
tion theory. It is shown that one can find a moving frame, called the Eckart
frame, relative to which the molecule moves without rotation. However,
the frame depends inevitably on the molecular motion chosen, so that
it is not unique for any configuration of the molecule.

In Sections 4 and 5, Hamiltonian mechanics for non-rigid molecules
is set up on the cotangent bundle of the configuration space. See Arnold [11] ]
and Abraham and Marsden [72] for Hamiltonian mechanics in differential
geometric setting. In Sec. 4, reduction of the molecular Hamiltonian system
is performed by using the linear and angular momentums. The reduction
by the linear momentum yields the cotangent bundle of the center-of-mass
system. This is a well-known fact. However, the cotangent bundle of the
center-of-mass system is not reduced in general to the cotangent bundle
of the internal space by using the angular momentum. The reduced phase
space is larger than the cotangent bundle of the internal space. This implies
that the molecular motions should be described in terms of internal coor-
dinates and their conjugate momentums plus some other variables, so
that the motions are not considered as internal in general. The reduction
by the angular momentum also accounts for the source of the Coriolis
force. Indeed, the reduced symplectic form is written as a sum of a « cano-
nical » two-form plus the exterior derivative of the inner product of the
so(d)-valued connection form and the angular momentum value in so(d).
This expression is reminiscent of a symplectic form which is used in

describing motions of a charged particle in a magnetic field [13 ]. In the
case of d = 3, one has so(3) ~ R3, the same space as the molecule moves
in, and therefore can picture that the molecule moves in response to the
magnetic-like field (i. e., acted by the Coriolis force), depending on its

attitude to a fixed angular momentum vector. This also accounts for why

Vol. 47, n° 2-1987.



202 T. IWAI

the molecular motion is not internal, but depends on its attitude in Rd.
Section 5 shows that the kinetic energy is broken up into vibrational

and rotational energies. No Coriolis term appears. However this does
not mean that no Coriolis interaction appears. It comes into dynamics
through the two-form stated above. It is also shown that the vibrational
energy defines a Riemannian metric on the internal space, which can be

thought of as a generalization of Wilson’s G matrix [14 ]. The rotational
energy will define a function (or a centrifugal potential) on the reduced
phase space, when the conservation of angular momentum is taken into
account.

Section 6 is a summary of the reduced Hamiltonian system as a statement
of theorems in this paper.

2. SETTINGS ON THE CENTER-OF-MASS SYSTEM

This section is a review of Guichardet’s work [4 ]. For use in the following
sections, we reproduce necessary definitions and results.

2.1. A principal fiber bundle.

We consider a molecule as a set of N particles or atomic nuclei, whose
position in Rd we denote by xl, ....~sr’ We always assume that N ~ 2

2. The standard inner product in Rd is denoted by the round
brackets ( I ). Each particle at xk is endowed with a mass mk &#x3E; 0. Let Qo
be the set of all ennuples x = ..., with xj ~ xk for j ~ k, which
is an open submanifold of (R. The tangent space to Qo at x, denoted
by consists of all ennuples v = (v 1, ... , vN) with which is
identified with Each tangent space is endowed with a scalar product by

for u = ...,MN) and v = ...,~) of Tx(Qo).
Eliminating the translation motions of the molecule, we get the center-

of-mass system:

We denote the induced metric on the center-of-mass system Q by the
same letter K for notational convenience.

Elimination of rotations is to be performed to get the « internal » space.
Let SO(d) be the rotation group acting on Rd. An induced action of SO(d)
on the center-of-mass system Q is expressed in the form

because ’ for x with Emkxk = 0, one has Emkgxk = 0.

Annales de Henri Poincare - Physique - theorique



203A GEOMETRIC SETTING FOR CLASSICAL MOLECULAR DYNAMICS

We assume that the molecule is in a generic position, i. e., the position
vectors xk, k = 1, ..., N, span a hyperplane in Rd or the whole space Rd.
Note that this assumption implies that N ~ d. Then the SO(d) acts without
fixed point, so that the orbit space Q/SO(d), denoted by M, becomes a
manifold. We mean by 03C0 the natural projection of Q onto M. Physically,
the M is a space of all molecule forms independent of their position in Rd,
and hence we call M the internal space for the molecule. For the three-

body system, it is known what space the internal space is diffeomorphic
to (see [15-16 ]).
We thus have come to the conclusion that the center-of-mass system Q

is a principal fiber bundle over M with structure group SO(d).
We here mention that the structure group SO(d) acts on Q to the left,

contrary to the usual definition in which the action of structure group is
« to the right » [7 ].

2.2. The connection due to Guichardet.

Following Guichardet [4 ], we now show that the Eckart condition of
rotationless constraint defines a connection on the center-of-mass system Q.
Since connections are described in terms of the Lie algebra of the structure
group, we have to start with the Lie algebra of SO(d).

Let A2Rd be the linear space of all antisymmetric tensor of order 2
on Rd. The 2Rd is endowed with a natural inner product, denoted by the
same symbol as in Rd, by

Definition (2.4) extends to all two-vectors through the linearity. If

..., is an orthogonal basis in Rd, ei with i  j constitute an

orthogonal basis in A2Rd. For two-vectors

Definition (2 . 4) gives

Let so(d) be the Lie algebra of SO(d), consisting of antisymmetric d x d
real matrices. The Lie algebra so(d) is identified with A2Rd by an isomor-
phism of A2Rd onto so(d) : ~ ~ Rç such that

Vol. 47, n° 2-1987.



204 T. IWAI

Notice that our definition of R is different from that in [4] in sign. For
03BE ~ 2Rd given in (2 . 5) and x = one has from (2 . 7)

That is, Rç is an antisymmetric matrix with entries 
The Lie algebra so(d) carries a natural scalar product ; for a, ~3 E so(d)

the scalar product of a and /3 is defined by

where the superscript T indicates the transpose. Then from (2. 6) and (2. 9)
R becomes an isometry of A2Rd onto so(d);

We note here that R is equivariant with respect to the action of SO(d)
on both A2Rd and so(d). The action of SO(d) on A2Rd is of course defined
through

and that on so(d) is the adjoint action. The equivariance has then the form

The proof of (2.12) can be performed by using (2.7) and the SO(d)-inva-
riance of the inner product.
The following formulae, easy to prove, are of great use in what follows,

To investigate the Eckart condition of rotationless constraint, we first
define the rotational subspace Wx,rot of Tx(Q). Let Rç denote an antisym-

, 
metric matrix with entries as in (2 . 8). Then the infinitesimal generator of
the action of = exp tR~ is given at x = (xl , ..., xN) by

The is known also as a fundamental vector field [7 ]. Thus we have
the rotational subspace of Tx(Q) :

The orthogonal complement Wx,rot of Wx,rot with respect to Kx is then
constituted by all v E Tx(Q) satisfying

Annales de l’Institut Henri Poincaré - Physique ’ theorique ’
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where we have used (2.13). A. Guichardet defined the vibrational sub-
space Wx,,,ib as the orthogonal complement of Wx,rot, so that one has

This definition (2.18) is a geometric implication of the Eckart condition
of rotationless constraint, though Eckart discussed small vibrations of
molecules at equilibrium in his original paper [1 ].
Now the very definition means that Tx(Q) splits into an ortho-

gonal direct sum.

This decomposition gives a connection on the principal fiber bundle Q,
which was defined by Guichardet. We mention here that, in the connection
theory [7 ], Wx,rot and referred to as vertical and horizontal

subspaces, respectively.

23. The connection and curvature forms.

So far we have treated the connection in terms of vector fields. We turn
to describing the connection in terms of differential forms. We start with
the inertia operator Ax of the configuration x : Ax is the linear operator
in A2Rd defined by

Note that the minus sign in (2.20) should be attributed to the definition
of R. Using (2.14) and (2.1), we obtain

(ç A.(Q) = = R~)), (2. 21)

from which it follows that Ax is symmetric and positive definite. Further-
more, the mapping x -~ Ax is equivariant with respect to the action of
SO(d) on A2Rd, that is,

This is easily verified by using (2.12).
We now proceed to discuss the connection in terms of differential forms.

The connection form co on Q with values in so(d) is defined in such a manner
that for each v E Tx(Q), equals a unique element Rç satisfying the
condition that R~(x) is the rotational component of v [7].
The connection form is then written as

where we have written R(ç) instead of Rç for notational convenience.

Vol. 47, n° 2-1987.
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By definition, vanishes if and only if v is vibrational. The connection
form is characterized by the properties [7]

where denote the action of g on Q ; Cg(x) = gx, and 1&#x3E;: its pull-back.
The first is clear from (2. 23). The second is proved by virtue of (2.12) and
(2 . 22). We note here that in the usual definition of connections [7 ], Eq. (2 . 25)
reads R*g03C9 = Adg-ico, where Rg is the right action, Rg(jc) = xg.
We turn to the curvature from Q of (D, which is defined as the exterior

covariant derivative of The Q is known to be given for v, u E Tx(Q) by
the structure equation

It is here to be noted that in [7] the structure equation is expressed as

Q = dcv + ! [03C9, 03C9]. The minus sign in the right-hand side of (2.26) results

from the left action of the structure group. The factor 1/2 depends on the
choice of the definition of the exterior product. We adopt the definition
in [77].
For vibrational vector fields v and u, the structure equation (2. 26) reads

Writing out the bracket [v, u ], we obtain, for vibrational vector fields,

This equation implies that the curvature never vanishes. In fact, A. Gui-
chardet showed : for x E Q such that ...,JCN generate Rd (N &#x3E; d ), the
elements 03A3mkvk ^ uk generate A2Rd when v and u run over In case
of N = d, those elements generate a proper subspace of A2Rd.

Furthermore; it follows from (2. 28) that the vectors u)(x) span Wx,rot
when v and u run over Wx,vib (N &#x3E; d). Using this fact, A. Guichardet was
also able to show the non-separability of vibration from rotation for finite
motions.
For the three-body system, the connection and curvature forms are

given in an explicit form in [15-16 ].

3. THE ECKART FRAME

The problem we deal with in this section is this : Can one find a moving
frame relative to which the molecule moves without rotations ? Because
of non-vanishing curvature, such a moving frame does not exist uniquely

l’Institut Henri Poincaré - Physique theorique
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for any configuration, but does along any curve in Q. We have here to
realize the difference between « uniquely for any configuration » and « along
a curve of configurations ». Suppose we have two curves C1 and C2 in Q
with the same initial and end points. We denote such a moving frame
along C 1 and C2 by R 1 and R2, respectively. Then, even if R 1 and R2
coincide at the initial point (it is possible), R 1 and R2 does not coincide
at the end point of the curves. This implies that such a moving frame cannot
be found uniquely for any configuration.

3.1. Parallel displacement.

Let x(t) _ (x1 (t), ... , xN(t)) be a smooth curve in Q. We are inquiring
the condition for a curve in SO(d) to give rise to a vibrational curve y(t)
in Q such that x(t) = Here a vibrational curve y(t) is a curve such
that is a vibrational vector for all t. What we wish to perform is to
express in terms of g(t) and x(t). If it is accomplished, the condition
inquired is given by = 0.

Differentiated with respect to t, = g(t)y(t) gives

Then we obtain, after a calculation,

Setting g-1g = R03BE, where ç depending on t, and operating (3 . 2) with
g-1, - Ay 1, and R in this order, we obtain

Furthermore, we employ (2.22) with x to put (3 . 3) into

From this it follows that a necessary and sufficient condition for
= to be vibrational is given by

This equation has a unique solution such that g(0) = id. Hence y(t) becomes
vibrational for the given x(t). The mapping y(o) -~ y(t) is called a parallel
displacement [7 ].

32 The Eckart frame.

Let x(t) be any smooth motion of a molecule. Let g(t) remain to be a
unique solution to (3 . 5) with g(o) = id. Denoted by ..., the
column vectors of the g(t) constitute a one-parameter family of orthonormal
systems in Rd or a moving frame attached to the molecule. We now show

Vol. 47, n° 2-1987.
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that the molecule moves without rotation relative to the frame { 
Let rjk be the components of xk with respect to the frame { fj(t)};

If we mean the column vector of the components = 1, ...,~ by rk,
the expression (3.6) takes a simple form; = g(t)rk(t). Then we can
exploit the result in Sec. 3.1 to obtain

where r = (r 1, ..., rN), an ennuple, and is given by (2 . 23) with x~s
and replaced by rk and rk, respectively. Since is subject to (3.5),
Eq. (3.7) yields = 0, and therefore

which means that the molecular motion is rotationless relative to the

frame { /~)}. Hence we call the { the Eckart frame.

In summary, we have shown:
Let x(t) _ be any smooth curve in the center-of-mass system Q,

a fixed frame in Rd. A moving frame = is called an
Eckart frame if is rotationless relative to the frame { or, equiva-
lently, if the curve is vibrational. This condition implies that the
curve g(t) and therefore { is uniquely determined by the curve 
However, as a consequence of the existence of a non-trivial holonomy,

the value for a fixed to does not depend only on the value x(to).
This means the nonuniqueness of the Eckart frame.
The existence of a non-trivial holonomy is supported by the non-vanishing

of the curvature. We approach again the nonuniqueness of the Eckart
frame through the non-vanishing of the curvature form Q. We will see in
Sec. 4 how the curvature comes into molecular dynamics. Recalling that
the ordinary differential equation (3.5) defines the Eckart frame along a
curve of configurations, we turn to dealing with matrices g. If the contour

integral dg(t) were independent of a choice of ),  would be a matrix-

valued function on Q satisfying the exterior differential equation

where 03C9 is thought of as a matrix-valued differential form;

Then g would be determined uniquely for any configuration x E Q. Now
the integrability condition for (3.9) is given by

Annales de l’Institut Henri Poincaré - Physique theorique
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If this were satisfied, the structure equation (2.26), written in the matrix
form,

would imply that Q = 0. However, this is a contradiction, because Q does
not always vanish, as was shown in Sec. 2. 3. Thus the Eckart frame proves
to depend on a choice of 
However, if we restrict to vibrational curves only ; 03A3mkxk n ack = 0,

the Eckart frame is constant because of g = cvx(x)g = 0, so that it is inde-
pendent of vibrational curves.

4. REDUCTION OF THE PHASE SPACE

As we have shown in Sec. 3, the Eckart frame is not unique, so that it is
not suitable for describing the internal molecular motions. We then choose
to use the reduction method in Hamiltonian mechanics in order to get rid
of rotations and translations from the molecular dynamics. To this end,
we treat in this section linear and angular momentums in the Hamiltonian
formalism, and thereby reduce the phase space T*(Qo).

4.1. Hamiltonian formalism.

We start with momentum variables. Recall that the metric K is defined

on Qo by (2.1). Then the cotangent space at x E Qo is isomorphic
with the tangent space Tx(Qo) by the induced isomorphism K~ defined by

where ’ the dot means the pairing j of covectors and o vectors. Setting p = 
and o writing p i = ...~) as an ennuple, we have, from the definition
ofK

Thus we obtain induced variables (x, p) constituting a coordinate system
of T*(Qo) ~ Qo x (R"T. The x and p are often called coordinate and
momentum variables, respectively.
On the cotangent bundle T*(Qo) there is defined a canonical one-

form [12 ], denoted by 03B8. Let (u, w) be a tangent vector at (x,p) E T*(Qo).
Then the e is defined by

If we let u be a vector field on Qo, we have = ut in the Cartesian
coordinates, so that the canonical one-form 9 is expressed in the form

Vol. 47, n° 2-1987.
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The exterior derivative of 03B8 is called the canonical two-form, having the form

where we have dropped the dot for the pairing and the vertical bar for the
inner product.
On each cotangent space T~(Qo), a natural scalar product Kx is defined

where Kx := (K~) - 1. The Hamiltonian of the molecule is then a function
on of the form

where U is a potential function invariant under the translations R" and
the rotations SO(d). Thus our Hamiltonian system is a triple (T*(Qo), d8, H).
Hamilton’s equations of motion are then given through the Hamiltonian
vector field XH determined by = - dH, i(XH) indicating the interior
product by Xn.
A transformation which leaves d9 invariant is called symplectic (or

canonical). Let G be a group of symplectic transformations, and G its
Lie algebra, identified with the tangent space to G at the identity. For
oc E G we mean a one-parameter subgroup of G by exp ta. Then its infinite-
simal generator aPo(Po = T*(Qo)) is defined by

If for any 0153 E G there is a function Fa on T*(Qo ) satisfying

the action of G is called strongly symplectic. If this is the case, the function F~
depending linearly on a, is expressed in the form

where the dot means the pairing between G and G*, the dual space to G.
This equation defines a momentum mapping J of T*(Qo) to G* up to an
additive constant in G*.

If the action of G is exactly symplectic, that is, G leaves () invariant, the
momentum mapping is given through

This equation [72] ] can be easily verified by using a formula as to Lie
derivatives; Ly = d ~ i(Y) + d for a vector field Y. The momentum
mapping given by (4.12) covers linear and angular momentums, as will
be shown later.
We now refer to reduction of dynamical systems with symmetry. Marsden

l’Institut Henri Poincaré - Physique theorique
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and Weinstein [5] gave geometrical concept to what is happening in the
elimination of variables by using a conservation law. The idea was also
shown in Smale [7~] ] and is explained in Abraham and Marsden [72] ]
and Marsden [79] with several examples. The reduction theorem states :

Let P be a symplectic manifold with a symplectic form (1, and G a sym-
plectic group acting on P, which also acts on the dual space G* to the
Lie algebra G of G through the coadjoint action. Let J : P -+ G* be an
Ad*-equivariant momentum mapping associated with the action of G,
that is, J(gp) = for all pEP. Suppose for ,u E G*, J-1(,u) is a
submanifold of P. Denote by G  an isotropy subgroup of G at  E G*, so
that, = ,u for all Suppose is a manifold
with canonical projection J-1(,u) -+ Then there is a unique sym-
plectic form 6~, on P~ such that 7~ = i * ~, where y : J -1 ( ~c) -+ P is the
inclusion map, and therefore P~ is called the reduced phase space. If a
Hamiltonian H on P is invariant under the action of G, the Hamiltonian
vector field XH projects to a vector field on Pu, namely, = Xn
with = yH.

4.2. Linear momentum.

Though the reduction by the linear momentum is elementary, we describe
it for a comparison with the reduction by the angular momentum.
For the linear momentum, the translation group Rd plays the role of

exact symplectic group. In effect, the action of Rd on T*(Qo ) defined forby

leaves invariant the canonical one-form () given by (4 . 5). For y E Rd, Rd
denoting the Lie algebra of the translation group, the infinitesimal generator
of = ty have the form

so that the momentum mapping Jt of T*(Qo) to Rd is given from (4.12) in
the form

Thus we obtain the usual linear momentum

where we have identified the dual space to the Lie algebra Rd with Rd itself
by the inner product ( I ).
We now apply the reduction theorem for the translation group Rd

acting on T*(Qo). The Ad*-equivariance of Jt is clear, since Jt is Rd-invariant,
and since Ad* equals the identity because Rd is abelian. Let ~, E Rd. Then

is a submanifold of T*(Qo) determined by = ~,. The isotropy
Vol. 47, n° 2-1987.
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subgroup at ~, is Rd itself, as Rd is abelian. Hence Jt 1(~.) is diffeomorphic
with Qo x for any ~,, and the reduced phase space can

be identified with (Qo/Rd) x and therefore with Q x 
Thus is realized as a submanifold of T*(Qo) determined by
03A3mkxk = 0 and Epk = 03BB. We are interested in realized by the
condition

The submanifold determined by (4.17) can be identified with the cotan-
gent bundle T*(Q) of the center-of-mass system Q. The reduced symplectic
form on T*(Q) is now the restriction of d8 on T*(Q). The reduced Hamil-
tonian on T*(Q) is also the restriction of H on T*(Q). For notational conve-
nience, we denote them by the same letters as those on T*(Qo); de and H
subject to the condition (4.17).

4.3. Angular momentum.

We now proceed to the angular momentum defined on T*(Q). The
rotation group SO(d) plays in turn the role of an exact symplectic group,
whose action on T*(Q) is defined for (x, p) and g E SO(d) by

We note here that SO(d) acts actually on T*(Q) as the conditions (4.17)
are invariant under SO(d), and also that if are subject to E/~ = ~, ~ 0,
only a subgroup of SO(d) acts on It is now an easy matter to
check that SO(d) leaves () invariant. It is also easy to see that for a = so(d)
the infinitesimal generator of exp ta is given by

Therefore, we obtain from (4.12) the momentum mapping Jr of T*(Q) to
so (d)*, the dual space to so(d), as follows :

hence

Here we have used (2.10) and (2.13), and identified so(d)* with so(d)
through the scalar product on so(d) (see (2.9)). The minus sign in (4.21)
is to be attributed to the definition of R.
We remark here that Jr is Ad*-equivariant. While this is a specialization

of the theorem [72] ] that for an exact symplectic group the associated
momentum mapping is Ad*-equivariant, we give a short proof ; from (2.12)
and (4 . 21 ) one has
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We here note that since so(d)* is identified with so(d) the Ad*-equivariance
is expressed in the form of adjoint equi variance.
We are now in a position to apply the reduction theorem for the rotation

group SO(d). Let  E so(d)*. Then Jr 1(,u) is a submanifold of

T*(Q). Factoring out the orbits of the isotropy subgroup G~ of SO(d)
at ,u, we obtain a reduced phase This process is nothing but
the elimination of the angular momentum. A question now arises as to
whether or not the reduced phase space is diffeomorphic to the cotangent
bundle T*(M) of the internal space M defined in Sec. 2.1. However, unlike
the result for the translation group, the answer is « no » if  ~ 0 and d ~ 3.
For a reason, we invoke Jacobi’s celebrated « elimination of the nodes ».

According to Wintner [20 ], for the N-body problem in R3 (d = 3), the
dimensions of the Hamiltonian system reduce by 3 + 1 = 4 by eliminating
the angular momentum. The number 4 is accounted for as follows : For
d = 3, dim so(d) = 3, and the isotropy subgroup G,~ turns out to be SO(2),
so that the condition Jr = ,u diminishes dimensions by three and the fac-
toring out of SO(2) orbits does by one. On the other hand, dim T*(M)
is less than dim T*(Q) by 3 x 2 = 6. From this it follows that
dim &#x3E; dim T*(M). This is the case in general. Because for d ~ 3,
the total group SO(d) is an isotropy subgroup G  if and only if  = 0.

However, if ,u = 0, that is, the angular momentum vanishes, the isotropy
subgroup at 0 is SO(d) itself, so that we can expect that the reduced phase
space should be T*(M). To show that this is the case, we

employ Kummer’s theorem [21 ], which says :
Let Q ~ M be a principal G-bundle. Let J : T*(Q) ~ G* be an Ad*-equi-

variant momentum mapping, where the action of G is lifted on T*(M)
so as to be exact symplectic. Suppose  E G* be G-invariant. Then each
connection OJ on the G-bundle defines a symplectomorphism between
the reduced phase space P~, = and the cotangent bundle T*(M),
the latter being endowed with a symplectic form consisting of the canonical
symplectic form on T*(M) plus the ~-component of the curvature of the
connection co, viewed as a two-form on M. (See also Montgomery [22 ].)

Applying this theorem in our case, we have a symplectomorphism of
to T*(M) together with the reduced symplectic form (10

= 0) equal to the canonical symplectic form on T*(M). We note here
that JY 1(0) is a submanifold because the point x = 0 is got rid of. See Bos
and Gotay [23 ].
Without use of Kummer’s theorem, we can attain T*(M) in a conceptual

manner. From (4.21) the condition Jr = 0 is equivalent to Exk n pk = 0.
This equation defines, at every point x of Q, the subspace of the cotangent
space T:(Q) which is the dual space to 

Thus we see that the submanifold JY 1(0) consists of all the points (x, p)
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subject to x E Q and T~(M). The rotation group acts on
J-1r(0), since the condition Exk ^ pk = 0 is invariant under SO(d). Conse-
quently, the orbit space turns out to be the cotangent bundle
of Q/SO(d) = M.

There is another case in which the reduced phase space is
diffeomorphic with T*(M). In fact, if d = 2, the isotropy subgroup G~ is
just equal to SO(d), so that Kummer’s theorem gives a desired diffeomor-
phism. Kummer’s symplectomorphism of Jr 1(,u)/SO(2) with T*(M) will
be pointed out in the last paragraph of this section. Topology of the planar
N-body problem was studied in Smale [24 ].

In conclusion we wish to study the symplectic form ~~ on the reduced
phase space Jr 0. Since 6~ is defined by 7r~ = y6, and
since 6 = de in our case, we have only to consider = In what
follows, we work on T(Q) for notational convenience, as T(Q) can be
endowed with a canonical symplectic form, denoted by the same letter
as that on T*(Q), through the isomorphism of T(Q) to T*(Q) ;

We first define a map ay : so(d) -+ Tx(Q) dual to ~ : so(d),
where we have taken so(d)* and T,(Q) into account.
For a E so(d) and v E Tx(Q), ccy is defined actually by

Using the ay, we show that for any v E Tx(Q) the vector v - 
with = v is vibrational. To this end, it is sufficient to prove that
v - and R~(x) are orthogonal for 

.

On thinking of (x, v) as a coordinate system in T(Q), the submanifold Jr 
is determined in T(Q) ~ T*(Q) by the condition R( - Emkxk n 
Let

Then the pair (x, w) meets the condition R( - 03A3mkxk /B wk) = 0, so that it
serves as a coordinate system in Jr 1(0) under that condition. A coordinate
system on Jr 1(,u) then can be given by the pair (x, w + 
With this in mind we rewrite the canonical one-form 0’
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Consequently, on Jr 1 we have

where - v = w + Thus the canonical two-form d8 restricts to 

where o is the matrix-valued one-torm given by (3. 1U). As is easily seen,
the right-hand side of (4 . 30) is GJl-invariant, and so is the left-hand side :

= for Therefore, d* 03B8 projects to a symplectic form on

We now look into each term in (4 . 30). Since w is vibrational ;
WE the first term in the right-hand side of (4 . 30), inva-
riant under SO(d), is in one-to-one correspondence with the canonical
two-form on T(M) ~ T*(M). Contrary to this, the second term of the
same side, depending only on x, cannot project to a two-form on M. In
fact (/11 is not vibrational (or horizontal) ; we have to recall that the
horizontal part of d03C9 is defined as the curvature form [7]. The term (/11 
when projected on the reduced phase space, serves as an external field, to
which we may attribute the Coriolis force. If d = 2, the two-form (/11 dcv),
invariant under SO(2), will define a « magnetic field » on M. In fact, in
this case, the form equals (/11 Q), where Q is the curvature form. Hence
it is vibrational, and therefore can project to a two-form on M, which is
thought of as a magnetic 2-form. Indeed, the form (4. 30) is reminiscent of
a symplectic form which is used in a description of the charged particle
motion in a magnetic field [13 ]. We conclude this section by remarking
that (/11 Q) is the ~-component of the curvature in Kummer’s theorem.
Thus we come to Kummer’s symplectomorphism in the case of d = 2.

5. REDUCTION OF THE HAMILTONIAN

This section shows that the kinetic energy of a molecule separates into
vibrational and rotational energies. We treat the kinetic energy in the
tangent bundle T(Q), as we have done in Sec. 4. 3 for the symplectic form
(see (4.24)). Recall the decomposition (2.19) and denote by Px the ortho-
gonal projection : Tx(Q)  Set Hx = lx - Px, where lx denotes
the identity in Tx(Q). From the definition of the connection, one has

where we notice that is a mapping of Tx(Q) to so(d). Then any tangent
vector v at x is broken up into the orthogonal sum
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so that one has, for v, 

If we set v = u in (5. 3), we obtain the kinetic energy expressed as the sum
of rotational and vibrational energies. No Coriolis energy appears. However,
this does not mean that the coupling between rotation and vibration disap-
pears. The coupling rather comes into dynamics through the connection
form co (see (4.30)).

5.1. Vibrational energy.

We first pick out the vibrational energy or the second term in the right-
hand side of (5. 3). We use again 7c as the natural projection of Q onto M.
Then the tangent map 7~ restricted on gives an isomorphism of

with T~~x~(M). Let X and Y be tangent vectors in Tm(M), mE M.
Then at every point x with = m one has unique vibrational vectors v
and u satisfying = X and 7rjM) === Y. Consequently, the vibrational
energy or the second term in the right-hand side of (5 . 3) induces a Rieman-
nian metric B on M through

It is easy to verify that the definition (5.4) is independent of the choice
of x with In fact, for any u, one has 
and

We notice here that the Riemannian metric B on M is a generalization
of Wilson’s G matrix [14 ].
We remark in conclusion upon the restriction of the vibrational energy

to the submanifold Jr 1(,u). By using the w defined by (4. 27), the vibrational

energy is written with R(- 03A3mkxk A wk) = 0, and is in one-

to-one correspondence with the kinetic energy of the internal motion
group (5.3).

52 Rotational energy.

We turn to the rotational energy or the first term in the right-hand side
of (5.3). Using the definition of Px, Ax, R, and of the inner product
on A2Rd and so(d), we obtain
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Here we notice that the symbol RAxR - 1 denotes the matrix of the ope-
rator Ax. In fact, on setting

one obtains, for an antisymmetric matrix a = and x = (xi) E Rd,

Thus we know that the rotational energy is quadratic in the components
of the connection 
We proceed to describe the rotational energy in terms of covectors. An

easy way to do so is to substitute pk for mkvk in (5 . 6). The result is this ;

Here we have used (4. 21), and notice that Eqs. (5 . 6) and (5 . 9) are in marked
contrast.

If we take the conservation of the angular momentum, J = /z, into account,
the last expression in (5 . 9) becomes a function of x ; 
This function proves to be invariant under and hence projects to a
function on the reduced phase space, which serves in turn as a centrifugal
potential for molecular motions.

6. THE REDUCED HAMILTONIAN SYSTEM

So far we have discussed the reduced phase space in Sec. 4 and the reduced
kinetic energy in Sec. 5. We now put the results together. The reduced
phase space Jr 1(,u)/G~ carries the symplectic form o-~ which are related

to the canonical form J0 by = On the reduced
Hamiltonian H~ is defined by ~~ = H o i~. These form and Hamiltonian
are expressed, in the coordinate system (x, v) on with v = w + 
as

where R( - Emkxk A wk) = 0. The right-hand sides of (6.1) and (6 . 2) are
invariant under G/l’ and hence thought of as quantities on the reduced
phase space. Especially, the second term of the right-hand side of (6 .1 )
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is to be attributed to the source of the Coriolis force, and the middle term
in the right-hand side of (6.2) is understood as a centrifugal potential.
The first terms of (6.1) and (6.2) are in one-to-one correspondence with
the canonical two-form and with the kinetic energy on T*(M) ~ T(M),
respectively.

If  = 0, the reduced phase space is diffeomorphic to the cotangent
bundle T*(M) of the internal space M, and the symplectic form o-~ becomes
the canonical one on T*(M). The reduced Hamiltonian H~ is then a sum
of the kinetic energy of internal motions and the potential on M. If d = 2
and  ~ 0, the reduced phase space is also dineomorphic to T*(M), but
the symplectic form 6~ is the canonical one plus a two-form viewed as
a « magnetic field » on M. The reduced Hamiltonian H~ becomes the kinetic
and potential energies plus a centrifugal potential. In these cases, the mole-
cular motion is internal, that is, it can be described on T*(M) or in terms
of internal coordinates and their conjugate momenta.
However, if /1 7~ 0 3, the reduced phase space is larger than

T*(M), so that the molecular motion cannot be considered as internal.
For d = 3, we can picture that the molecule moves in response to the magne-
tic-like field (/11 depending on its relative attitude to a fixed vector /1
in R3. This result is characteristic of classical mechanics.

In quantum mechanics, however, the molecular motion is internal
even if the angular momentum eigenvalue is not zero ; that is, the internal
states of the molecule are described as cross sections in a complex vector
bundle over the internal manifold M, and the internal Hamiltonian operator
is expressed as an operator acting on the space of cross sections. These
results are published in and [16 ]. See also Tachibana and Iwai [25 ]
for quantum molecular dynamics.
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